Four rectifications

120-cell

Rectified 120-cell

600-cell

Rectified 600-cell
Orthogonal projections in H3 Coxeter plane

In geometry, a rectified 120-cell is a uniform 4-polytope formed as the rectification of the regular 120-cell.

E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as tC120.

There are four rectifications of the 120-cell, including the zeroth, the 120-cell itself. The birectified 120-cell is more easily seen as a rectified 600-cell, and the trirectified 120-cell is the same as the dual 600-cell.

Rectified 120-cell

edit
Rectified 120-cell
 
Schlegel diagram, centered on icosidodecahedon, tetrahedral cells visible
Type Uniform 4-polytope
Uniform index 33
Coxeter diagram        
Schläfli symbol t1{5,3,3}
or r{5,3,3}
Cells 720 total:
120 (3.5.3.5)  
600 (3.3.3)  
Faces 3120 total:
2400 {3}, 720 {5}
Edges 3600
Vertices 1200
Vertex figure  
triangular prism
Symmetry group H4 or [3,3,5]
Properties convex, vertex-transitive, edge-transitive
 
Net

In geometry, the rectified 120-cell or rectified hecatonicosachoron is a convex uniform 4-polytope composed of 600 regular tetrahedra and 120 icosidodecahedra cells. Its vertex figure is a triangular prism, with three icosidodecahedra and two tetrahedra meeting at each vertex.

Alternative names:

  • Rectified 120-cell (Norman Johnson)
  • Rectified hecatonicosichoron / rectified dodecacontachoron / rectified polydodecahedron
  • Icosidodecahedral hexacosihecatonicosachoron
  • Rahi (Jonathan Bowers: for rectified hecatonicosachoron)
  • Ambohecatonicosachoron (Neil Sloane & John Horton Conway)

Projections

edit
3D parallel projection
  Parallel projection of the rectified 120-cell into 3D, centered on an icosidodecahedral cell. Nearest cell to 4D viewpoint shown in orange, and tetrahedral cells shown in yellow. Remaining cells culled so that the structure of the projection is visible.
Orthographic projections by Coxeter planes
H4 - F4
 
[30]
 
[20]
 
[12]
H3 A2 / B3 / D4 A3 / B2
 
[10]
 
[6]
 
[4]
edit
H4 family polytopes
120-cell rectified
120-cell
truncated
120-cell
cantellated
120-cell
runcinated
120-cell
cantitruncated
120-cell
runcitruncated
120-cell
omnitruncated
120-cell
                                                               
{5,3,3} r{5,3,3} t{5,3,3} rr{5,3,3} t0,3{5,3,3} tr{5,3,3} t0,1,3{5,3,3} t0,1,2,3{5,3,3}
               
             
600-cell rectified
600-cell
truncated
600-cell
cantellated
600-cell
bitruncated
600-cell
cantitruncated
600-cell
runcitruncated
600-cell
omnitruncated
600-cell
                                                               
{3,3,5} r{3,3,5} t{3,3,5} rr{3,3,5} 2t{3,3,5} tr{3,3,5} t0,1,3{3,3,5} t0,1,2,3{3,3,5}

Notes

edit

References

edit
  • Kaleidoscopes: Selected Writings of H. S. M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
    • (Paper 22) H.S.M. Coxeter, Regular and Semi-Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
    • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
    • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • J.H. Conway and M.J.T. Guy: Four-Dimensional Archimedean Polytopes, Proceedings of the Colloquium on Convexity at Copenhagen, page 38 und 39, 1965
  • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
edit
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds
  NODES
Note 3
Project 7