Solar eclipse of March 18, 1988

A total solar eclipse occurred at the Moon's ascending node of orbit between Thursday, March 17 and Friday, March 18, 1988,[1] with a magnitude of 1.0464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.1 days after perigee (on March 16, 1988, at 20:30 UTC), the Moon's apparent diameter was larger.[2]

Solar eclipse of March 18, 1988
Map
Type of eclipse
NatureTotal
Gamma0.4188
Magnitude1.0464
Maximum eclipse
Duration226 s (3 min 46 s)
Coordinates20°42′N 140°00′E / 20.7°N 140°E / 20.7; 140
Max. width of band169 km (105 mi)
Times (UTC)
Greatest eclipse1:58:56
References
Saros139 (28 of 71)
Catalog # (SE5000)9482

Totality was visible in Indonesia and southern Philippines. A partial eclipse was visible for parts of South Asia, Southeast Asia, East Asia, Northeast Asia, Australia, and Alaska.

Observation

edit

The tourism office of the General Santos City government in the Philippines promoted it as a big tourism event. Hordes of scientists, astronomers, journalists, TV crews and tourists from all over the globe observed the totality from there. Then President of the Philippines Corazon Aquino also joined in to experience the event.[3]

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[4]

March 18, 1988 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1988 March 17 at 23:24:58.4 UTC
First Umbral External Contact 1988 March 18 at 00:23:32.6 UTC
First Central Line 1988 March 18 at 00:24:27.6 UTC
First Umbral Internal Contact 1988 March 18 at 00:25:22.6 UTC
First Penumbral Internal Contact 1988 March 18 at 01:38:59.5 UTC
Greatest Duration 1988 March 18 at 01:57:26.1 UTC
Greatest Eclipse 1988 March 18 at 01:58:56.4 UTC
Ecliptic Conjunction 1988 March 18 at 02:03:15.6 UTC
Equatorial Conjunction 1988 March 18 at 02:23:10.7 UTC
Last Penumbral Internal Contact 1988 March 18 at 02:18:20.1 UTC
Last Umbral Internal Contact 1988 March 18 at 03:32:16.8 UTC
Last Central Line 1988 March 18 at 03:33:10.6 UTC
Last Umbral External Contact 1988 March 18 at 03:34:04.3 UTC
Last Penumbral External Contact 1988 March 18 at 04:32:47.6 UTC
March 18, 1988 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 1.04640
Eclipse Obscuration 1.09496
Gamma 0.41879
Sun Right Ascension 23h51m32.0s
Sun Declination -00°55'03.0"
Sun Semi-Diameter 16'04.1"
Sun Equatorial Horizontal Parallax 08.8"
Moon Right Ascension 23h50m42.6s
Moon Declination -00°32'52.0"
Moon Semi-Diameter 16'33.4"
Moon Equatorial Horizontal Parallax 1°00'45.8"
ΔT 55.9 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of March 1988
March 3
Descending node (full moon)
March 18
Ascending node (new moon)
   
Penumbral lunar eclipse
Lunar Saros 113
Total solar eclipse
Solar Saros 139
edit

Eclipses in 1988

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 139

edit

Inex

edit

Triad

edit

Solar eclipses of 1986–1989

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

Solar eclipse series sets from 1986 to 1989
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
119 April 9, 1986
 
Partial
−1.0822 124 October 3, 1986
 
Hybrid
0.9931
129 March 29, 1987
 
Hybrid
−0.3053 134 September 23, 1987
 
Annular
0.2787
139 March 18, 1988
 
Total
0.4188 144 September 11, 1988
 
Annular
−0.4681
149 March 7, 1989
 
Partial
1.0981 154 August 31, 1989
 
Partial
−1.1928

Saros 139

edit

This eclipse is a part of Saros series 139, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 17, 1501. It contains hybrid eclipses from August 11, 1627 through December 9, 1825 and total eclipses from December 21, 1843 through March 26, 2601. There are no annular eclipses in this set. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 61 at 7 minutes, 29.22 seconds on July 16, 2186. This date is the longest solar eclipse computed between 4000 BC and AD 6000.[6] All eclipses in this series occur at the Moon’s ascending node of orbit.[7]

Series members 18–39 occur between 1801 and 2200:
18 19 20
 
November 29, 1807
 
December 9, 1825
 
December 21, 1843
21 22 23
 
December 31, 1861
 
January 11, 1880
 
January 22, 1898
24 25 26
 
February 3, 1916
 
February 14, 1934
 
February 25, 1952
27 28 29
 
March 7, 1970
 
March 18, 1988
 
March 29, 2006
30 31 32
 
April 8, 2024
 
April 20, 2042
 
April 30, 2060
33 34 35
 
May 11, 2078
 
May 22, 2096
 
June 3, 2114
36 37 38
 
June 13, 2132
 
June 25, 2150
 
July 5, 2168
39
 
July 16, 2186

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between January 5, 1935 and August 11, 2018
January 4–5 October 23–24 August 10–12 May 30–31 March 18–19
111 113 115 117 119
 
January 5, 1935
 
August 12, 1942
 
May 30, 1946
 
March 18, 1950
121 123 125 127 129
 
January 5, 1954
 
October 23, 1957
 
August 11, 1961
 
May 30, 1965
 
March 18, 1969
131 133 135 137 139
 
January 4, 1973
 
October 23, 1976
 
August 10, 1980
 
May 30, 1984
 
March 18, 1988
141 143 145 147 149
 
January 4, 1992
 
October 24, 1995
 
August 11, 1999
 
May 31, 2003
 
March 19, 2007
151 153 155
 
January 4, 2011
 
October 23, 2014
 
August 11, 2018

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
August 28, 1802
(Saros 122)
 
July 27, 1813
(Saros 123)
 
June 26, 1824
(Saros 124)
 
May 27, 1835
(Saros 125)
 
April 25, 1846
(Saros 126)
 
March 25, 1857
(Saros 127)
 
February 23, 1868
(Saros 128)
 
January 22, 1879
(Saros 129)
 
December 22, 1889
(Saros 130)
 
November 22, 1900
(Saros 131)
 
October 22, 1911
(Saros 132)
 
September 21, 1922
(Saros 133)
 
August 21, 1933
(Saros 134)
 
July 20, 1944
(Saros 135)
 
June 20, 1955
(Saros 136)
 
May 20, 1966
(Saros 137)
 
April 18, 1977
(Saros 138)
 
March 18, 1988
(Saros 139)
 
February 16, 1999
(Saros 140)
 
January 15, 2010
(Saros 141)
 
December 14, 2020
(Saros 142)
 
November 14, 2031
(Saros 143)
 
October 14, 2042
(Saros 144)
 
September 12, 2053
(Saros 145)
 
August 12, 2064
(Saros 146)
 
July 13, 2075
(Saros 147)
 
June 11, 2086
(Saros 148)
 
May 11, 2097
(Saros 149)
 
April 11, 2108
(Saros 150)
 
March 11, 2119
(Saros 151)
 
February 8, 2130
(Saros 152)
 
January 8, 2141
(Saros 153)
 
December 8, 2151
(Saros 154)
 
November 7, 2162
(Saros 155)
 
October 7, 2173
(Saros 156)
 
September 4, 2184
(Saros 157)
 
August 5, 2195
(Saros 158)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
July 17, 1814
(Saros 133)
 
June 27, 1843
(Saros 134)
 
June 6, 1872
(Saros 135)
 
May 18, 1901
(Saros 136)
 
April 28, 1930
(Saros 137)
 
April 8, 1959
(Saros 138)
 
March 18, 1988
(Saros 139)
 
February 26, 2017
(Saros 140)
 
February 5, 2046
(Saros 141)
 
January 16, 2075
(Saros 142)
 
December 29, 2103
(Saros 143)
 
December 7, 2132
(Saros 144)
 
November 17, 2161
(Saros 145)
 
October 29, 2190
(Saros 146)

References

edit
  1. ^ "March 17–18, 1988 Total Solar Eclipse". timeanddate. Retrieved 9 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 9 August 2024.
  3. ^ "Solar Eclipse Photos circa 1988 in GenSan". GenSan News Online Mag. Archived from the original on 10 March 2016.
  4. ^ "Total Solar Eclipse of 1988 Mar 18". EclipseWise.com. Retrieved 9 August 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ Ten Millennium Catalog of Long Solar Eclipses, −3999 to +6000 (4000 BCE to 6000 CE) Fred Espenak.
  7. ^ "NASA - Catalog of Solar Eclipses of Saros 139". eclipse.gsfc.nasa.gov.
edit

Photos:

  NODES
INTERN 4
Note 1