Solar eclipse of November 23, 1965

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, November 23, 1965,[1] with a magnitude of 0.9656. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.3 days before apogee (on November 29, 1965, at 12:00 UTC), the Moon's apparent diameter was smaller.[2]

Solar eclipse of November 23, 1965
Map
Type of eclipse
NatureAnnular
Gamma0.3906
Magnitude0.9656
Maximum eclipse
Duration242 s (4 min 2 s)
Coordinates1°42′N 119°48′E / 1.7°N 119.8°E / 1.7; 119.8
Max. width of band134 km (83 mi)
Times (UTC)
Greatest eclipse4:14:51
References
Saros132 (43 of 71)
Catalog # (SE5000)9433

Annularity was visible from the Soviet Union (today's eastern Turkmenistan, southern Uzbekistan and southwestern Tajikistan), Afghanistan, Pakistan, India, China, Nepal (including the capital city Kathmandu), southwestern Sikkim (now merged with India), Burma, southwestern tip of Sainyabuli Province in Laos, Cambodia, South Vietnam (now belonging to Vietnam), Spratly Islands, Brunei, Malaysia, Indonesia, the Territory of Papua New Guinea (today's Papua New Guinea), and Gilbert and Ellice Islands (the part now belonging to Kiribati). 8 of the 14 eight-thousandersDhaulagiri, Annapurna, Manaslu, Shishapangma, Cho Oyu, Everest, Lhotse and Makalu, as well as the highest peak of Oceania, Puncak Jaya, lie in the path of annularity. A partial eclipse was visible for most of Asia, Australia, and Oceania.

Observation

edit

An observation team of the Lockheed Corporation and the United States Air Force observed the annular eclipse near Chiang Mai, Thailand's second largest city. They calculated the relationship between the angular diameters of the moon and the sun during annularity, and the flattening of the moon based on the results.[3]

Eclipse details

edit

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse.[4]

November 23, 1965 Solar Eclipse Times
Event Time (UTC)
First Penumbral External Contact 1965 November 23 at 01:24:37.4 UTC
First Umbral External Contact 1965 November 23 at 02:29:29.3 UTC
First Central Line 1965 November 23 at 02:31:10.9 UTC
First Umbral Internal Contact 1965 November 23 at 02:32:52.8 UTC
First Penumbral Internal Contact 1965 November 23 at 03:52:46.9 UTC
Equatorial Conjunction 1965 November 23 at 04:00:47.7 UTC
Ecliptic Conjunction 1965 November 23 at 04:10:27.3 UTC
Greatest Eclipse 1965 November 23 at 04:14:51.0 UTC
Last Penumbral Internal Contact 1965 November 23 at 04:37:14.5 UTC
Greatest Duration 1965 November 23 at 04:40:27.4 UTC
Last Umbral Internal Contact 1965 November 23 at 05:56:56.0 UTC
Last Central Line 1965 November 23 at 05:58:40.8 UTC
Last Umbral External Contact 1965 November 23 at 06:00:25.4 UTC
Last Penumbral External Contact 1965 November 23 at 07:05:17.0 UTC
November 23, 1965 Solar Eclipse Parameters
Parameter Value
Eclipse Magnitude 0.96561
Eclipse Obscuration 0.93240
Gamma 0.39061
Sun Right Ascension 15h54m02.2s
Sun Declination -20°17'39.6"
Sun Semi-Diameter 16'11.9"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 15h54m30.7s
Moon Declination -19°56'39.6"
Moon Semi-Diameter 15'24.9"
Moon Equatorial Horizontal Parallax 0°56'34.5"
ΔT 36.5 s

Eclipse season

edit

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of November–December 1965
November 23
Descending node (new moon)
December 8
Ascending node (full moon)
   
Annular solar eclipse
Solar Saros 132
Penumbral lunar eclipse
Lunar Saros 144
edit

Eclipses in 1965

edit

Metonic

edit

Tzolkinex

edit

Half-Saros

edit

Tritos

edit

Solar Saros 132

edit

Inex

edit

Triad

edit

Solar eclipses of 1964–1967

edit

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The partial solar eclipses on January 14, 1964 and July 9, 1964 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1964 to 1967
Ascending node   Descending node
Saros Map Gamma Saros Map Gamma
117 June 10, 1964
 
Partial
−1.1393 122 December 4, 1964
 
Partial
1.1193
127 May 30, 1965
 
Total
−0.4225 132 November 23, 1965
 
Annular
0.3906
137 May 20, 1966
 
Annular
0.3467 142 November 12, 1966
 
Total
−0.33
147 May 9, 1967
 
Partial
1.1422 152 November 2, 1967
 
Total (non-central)
1.0007

Saros 132

edit

This eclipse is a part of Saros series 132, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 13, 1208. It contains annular eclipses from March 17, 1569 through March 12, 2146; hybrid eclipses on March 23, 2164 and April 3, 2182; and total eclipses from April 14, 2200 through June 19, 2308. The series ends at member 71 as a partial eclipse on September 25, 2470. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 25 at 6 minutes, 56 seconds on May 9, 1641, and the longest duration of totality will be produced by member 61 at 2 minutes, 14 seconds on June 8, 2290. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

Series members 34–56 occur between 1801 and 2200:
34 35 36
 
August 17, 1803
 
August 27, 1821
 
September 7, 1839
37 38 39
 
September 18, 1857
 
September 29, 1875
 
October 9, 1893
40 41 42
 
October 22, 1911
 
November 1, 1929
 
November 12, 1947
43 44 45
 
November 23, 1965
 
December 4, 1983
 
December 14, 2001
46 47 48
 
December 26, 2019
 
January 5, 2038
 
January 16, 2056
49 50 51
 
January 27, 2074
 
February 7, 2092
 
February 18, 2110
52 53 54
 
March 1, 2128
 
March 12, 2146
 
March 23, 2164
55 56
 
April 3, 2182
 
April 14, 2200

Metonic series

edit

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between September 12, 1931 and July 1, 2011
September 11–12 June 30–July 1 April 17–19 February 4–5 November 22–23
114 116 118 120 122
 
September 12, 1931
 
June 30, 1935
 
April 19, 1939
 
February 4, 1943
 
November 23, 1946
124 126 128 130 132
 
September 12, 1950
 
June 30, 1954
 
April 19, 1958
 
February 5, 1962
 
November 23, 1965
134 136 138 140 142
 
September 11, 1969
 
June 30, 1973
 
April 18, 1977
 
February 4, 1981
 
November 22, 1984
144 146 148 150 152
 
September 11, 1988
 
June 30, 1992
 
April 17, 1996
 
February 5, 2000
 
November 23, 2003
154 156
 
September 11, 2007
 
July 1, 2011

Tritos series

edit

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
March 4, 1802
(Saros 117)
 
February 1, 1813
(Saros 118)
 
January 1, 1824
(Saros 119)
 
November 30, 1834
(Saros 120)
 
October 30, 1845
(Saros 121)
 
September 29, 1856
(Saros 122)
 
August 29, 1867
(Saros 123)
 
July 29, 1878
(Saros 124)
 
June 28, 1889
(Saros 125)
 
May 28, 1900
(Saros 126)
 
April 28, 1911
(Saros 127)
 
March 28, 1922
(Saros 128)
 
February 24, 1933
(Saros 129)
 
January 25, 1944
(Saros 130)
 
December 25, 1954
(Saros 131)
 
November 23, 1965
(Saros 132)
 
October 23, 1976
(Saros 133)
 
September 23, 1987
(Saros 134)
 
August 22, 1998
(Saros 135)
 
July 22, 2009
(Saros 136)
 
June 21, 2020
(Saros 137)
 
May 21, 2031
(Saros 138)
 
April 20, 2042
(Saros 139)
 
March 20, 2053
(Saros 140)
 
February 17, 2064
(Saros 141)
 
January 16, 2075
(Saros 142)
 
December 16, 2085
(Saros 143)
 
November 15, 2096
(Saros 144)
 
October 16, 2107
(Saros 145)
 
September 15, 2118
(Saros 146)
 
August 15, 2129
(Saros 147)
 
July 14, 2140
(Saros 148)
 
June 14, 2151
(Saros 149)
 
May 14, 2162
(Saros 150)
 
April 12, 2173
(Saros 151)
 
March 12, 2184
(Saros 152)
 
February 10, 2195
(Saros 153)

Inex series

edit

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
 
March 4, 1821
(Saros 127)
 
February 12, 1850
(Saros 128)
 
January 22, 1879
(Saros 129)
 
January 3, 1908
(Saros 130)
 
December 13, 1936
(Saros 131)
 
November 23, 1965
(Saros 132)
 
November 3, 1994
(Saros 133)
 
October 14, 2023
(Saros 134)
 
September 22, 2052
(Saros 135)
 
September 3, 2081
(Saros 136)
 
August 15, 2110
(Saros 137)
 
July 25, 2139
(Saros 138)
 
July 5, 2168
(Saros 139)
 
June 15, 2197
(Saros 140)

Notes

edit
  1. ^ "November 23, 1965 Annular Solar Eclipse". timeanddate. Retrieved 7 August 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 7 August 2024.
  3. ^ Stoddard, L. G. ; Carson, D. G. (January 1967). SELENODETIC MEASUREMENTS FROM THE ANNULAR ECLIPSE OF 23 NOVEMBER 1965. Air Force Cambridge Research Laboratories. Archived from the original on 21 April 2016.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. ^ "Annular Solar Eclipse of 1965 Nov 23". EclipseWise.com. Retrieved 7 August 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Solar Eclipses of Saros 132". eclipse.gsfc.nasa.gov.

References

edit
  NODES
INTERN 4
Note 3