Add your request in the most appropriate place below.

Before adding a request please:


By convention, Wikipedia article titles are not capitalized except for the first letter and proper names -- write your request as This and such theorem instead of This And Such Theorem. Every request for an article on a mathematical topic must include a reliable source where the the topic is defined, and must specify the place in the source where the topic is defined, particularly when the source is a book. Also, when adding a request, please include as much information as possible (such as webpages, articles, or other reference material) so editors can find and distinguish your request from an already-created article.

See also: User:Mathbot/Most wanted redlinks, Wikipedia:WikiProject Mathematics/List of math draft pages.

  • Wolf and Pate correlation (capillary tubes)
  • L-PLS (extends Partial Least Squares regression to 3 connected data blocks)
  • OPLS-DA (Orthogonal Projections to Latent Structures - Discriminant Analysis) (Partial Least Squares with discrete variables)
  1. Mathematics and Its Applications Nonlinear Stochastic Evolution Problems in Applied Sciences [1 ed.] ISBN 978-94-010-4803-3
  2. Researching the Socio-Political Dimensions of Mathematics Education: Issues of Power in Theory and Methodology (Mathematics Education Library) [1 ed.] ISBN 9781402079061
  1. Limit (mathematics)
  2. Equilateral_triangle#Circumradius,_inradius,_and_exradii
  3. Perimeter#Circumference_of_a_circle
  4. Pompeiu's theorem


  • Please make a page on linearization of ordinary differential equations. More precisely, consider the system x dot = f(x,u,t) wherex and u are vectors. Then it is a standard result used in the theroy of control systems (in engineering disciplines) that it can be linearized as

x dot = Ax + Bu where A = partial f / partial x and B = partial / partial u. However, in the engineeiring books or web resources no proof is offered for it. Many textbooks cite the following book [*] as a reference for its proof, but unfortunately I do not have access to it. In the engineering field many researchers will benefit from its proof.

[*] H. Amann. Ordinary Differential Equations: An Introduction to Nonlinear Analysis, volume 13 of De Gruyter Studies in Mathematics. De Gruyter, Berlin - New York, 1990. —  Preceding unsigned comment added by 151.238.150.222 (talkcontribs) 20:12, 11 October 2015‎

This is a simple application of the concept of a Total derivative. Whether there is justification for having a whole article on the specific application you have in mind I am not sure. The editor who uses the pseudonym "JamesBWatson" (talk) 14:59, 13 October 2015 (UTC)[reply]

I have made a draft article on Quasilinearization in response to the request above. It is awaiting approval at Draft:Quasilinearization. Rob.Corless (talk) 20:46, 31 March 2022 (UTC)[reply]

History of mathematics and other cultural aspects

edit

doi:10.1016/j.jcp.2014.06.010

Mathematical logic

edit

Prior to creating an article, any biographical details can be added to: Wikipedia:WikiProject Mathematics/missing mathematicians.

A–G

edit

H–N

edit

O–Z

edit

[83] [84]

  • 32760_(number) -- lowest number evenly divisible by all integers from 1 to 16; factorisation 2 * 2 * 2 * 3 * 3 * 5 * 7 * 13. [Comment: 32760 is not divisible by 16 or 11. The correct lowest number divisible by 1 through 16 is 720720.]
  • 7920 (number) -- see http://www.numbergossip.com/7920 -- as far as I can see, the only unique thing about this number is that it's the order of the smallest sporadic simple group

Representation theory (incl. harmonic analysis)

edit

Uncategorized

edit

Please try to classify these requests.

See also

edit

References

edit
  1. ^ "A C Method - Texas Wesleyan University" (PDF).
  2. ^ Jacobson, Nathan (1968). Structure and Representations of Jordan Algebras. American Mathematical Society Colloquium Publications. Vol. 39. American Mathematical Society. p. 287. ISBN 0-8218-7472-1.
  3. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 254. ISBN 3-540-21902-1. Zbl 1159.11039.
  4. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics. Vol. 78. Providence, RI: American Mathematical Society. p. 27. ISBN 0-8218-0730-7. Zbl 0714.16001.
  5. ^ Kaplansky, Irving (1972). Fields and Rings. Chicago Lectures in Mathematics (2nd ed.). University Of Chicago Press. ISBN 0-226-42451-0. Zbl 1001.16500.
  6. ^ Garibaldi, Skip; Petersson, Holger P. (2011). "Wild Pfister forms over Henselian fields, K-theory, and conic division algebras". J. Algebra. 327: 386–465. doi:10.1016/j.jalgebra.2010.07.039. S2CID 115177472. Zbl 1222.17009.
  7. ^ Loos, Ottmar (2011). "Algebras with scalar involution revisited". J. Pure Appl. Algebra. 215 (12): 2805–2828. doi:10.1016/j.jpaa.2011.04.001. Zbl 1229.14002.
  8. ^ Baur, Karin; King, Alastair; Marsh, Robert J. (2016). "Dimer models and cluster categories of Grassmannians". Proceedings of the London Mathematical Society. 113 (2): 213–260. arXiv:1309.6524. doi:10.1112/plms/pdw029. S2CID 55442266.
  9. ^ Knus, Max-Albert; Merkurjev, Alexander; Rost, Markus; Tignol, Jean-Pierre (1998). The book of involutions. Colloquium Publications. Vol. 44. With a preface by J. Tits. Providence, RI: American Mathematical Society. p. 128. ISBN 0-8218-0904-0. Zbl 0955.16001.
  10. ^ McCrimmon, Kevin (1977). "Axioms for inversion in Jordan algebras". J. Algebra. 47: 201–222. doi:10.1016/0021-8693(77)90221-6. Zbl 0421.17013.
  11. ^ Racine, Michel L. (1973). The arithmetics of quadratic Jordan algebras. Memoirs of the American Mathematical Society. Vol. 136. American Mathematical Society. p. 8. ISBN 978-0-8218-1836-7. Zbl 0348.17009.
  12. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics. Vol. 78. Providence, RI: American Mathematical Society. p. 51. ISBN 0-8218-0730-7. Zbl 0714.16001.
  13. ^ Racine, Michel L. (1973). The arithmetics of quadratic Jordan algebras. Memoirs of the American Mathematical Society. Vol. 136. American Mathematical Society. p. 2. ISBN 978-0-8218-1836-7. Zbl 0348.17009.
  14. ^ Schinzel, Andrzej (2000). Polynomials with special regard to reducibility. Encyclopedia of Mathematics and Its Applications. Vol. 77. Cambridge: Cambridge University Press. ISBN 0-521-66225-7. Zbl 0956.12001.
  15. ^ Choie, Y.; Diamantis, N. (2006). "Rankin–Cohen brackets on higher-order modular forms". In Friedberg, Solomon (ed.). Multiple Dirichlet series, automorphic forms, and analytic number theory. Proceedings of the Bretton Woods workshop on multiple Dirichlet series, Bretton Woods, NH, USA, July 11–14, 2005. Proc. Symp. Pure Math. Vol. 75. Providence, RI: American Mathematical Society. pp. 193–201. ISBN 0-8218-3963-2. Zbl 1207.11052.
  16. ^ McCrory, Clint; Parusinski, Adam (1996). "Algebraically constructible functions". arXiv:alg-geom/9606004.
  17. ^ Montgomery, Susan (1993). Hopf algebras and their actions on rings. Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. Regional Conference Series in Mathematics. Vol. 82. Providence, RI: American Mathematical Society. p. 164. ISBN 978-0-8218-0738-5. Zbl 0793.16029.
  18. ^ Willerton, Simon (2013-02-18). "Tight spans, Isbell completions and semi-tropical modules". arXiv:1302.4370 [math.CT].
  19. ^ Jech, Thomas (2003). Set Theory. Springer Monographs in Mathematics (Third Millennium ed.). Berlin, New York: Springer-Verlag. pp. 88–89. ISBN 978-3-540-44085-7. Zbl 1007.03002.
  20. ^ Sikorski, Roman (1964). Boolean algebras (2nd ed.). Berlin-Göttingen-Heidelberg-New York: Springer-Verlag. MR 0177920. Zbl 0123.01303.
  21. ^ Chabert, Jean-Luc (1979). "Anneaux de Skolem". Arch. Math. (in French). 32: 555–568. doi:10.1007/BF01238541. S2CID 120142530. Zbl 0403.13008.
  22. ^ Snaith, Victor P. (1994). Galois module structure. Fields Institute monographs. Vol. 2. American Mathematical Society. p. 41. ISBN 0-8218-7178-1.
    Taylor, Martin (1984). Classgroups of group rings. LMS Lecture Notes. Vol. 91. Cambridge University Press. p. 26. ISBN 0-521-27870-8.
  23. ^ Berstel, Jean; Reutenauer, Christophe (2011). Noncommutative rational series with applications. Encyclopedia of Mathematics and Its Applications. Vol. 137. Cambridge: Cambridge University Press. p. 53. ISBN 978-0-521-19022-0. Zbl 1250.68007.
  24. ^ Narkiewicz, Władysław (1990). Elementary and analytic theory of numbers (Second, substantially revised and extended ed.). Springer-Verlag. p. 37. ISBN 3-540-51250-0. Zbl 0717.11045.
  25. ^ Gabber, Ofer; Ramero, Lorenzo (2003). Almost Ring Theory. Lecture Notes in Mathematics. Vol. 1800. Berlin: Springer-Verlag. doi:10.1007/b10047. ISBN 3-540-40594-1. MR 2004652. S2CID 14400790.
    Notes by Torsten Wedhorn
  26. ^ Bhargava, Manjul; Ho, Wei (2013). "Coregular spaces and genus one curves". arXiv:1306.4424v1 [math.AG].
  27. ^ a b Marcolli, Matilde (2010). Feynman motives. World Scientific. ISBN 978-981-4304-48-1. Zbl 1192.14001.
  28. ^ Soulé, C.; Abramovich, Dan; Burnol, J.-F.; Kramer, Jürg (1992). Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics. Vol. 33. Joint work with H. Gillet. Cambridge: Cambridge University Press. p. 36. ISBN 0-521-47709-3. Zbl 0812.14015.
  29. ^ Timashev, Dmitry A. (2011). Invariant Theory and Algebraic Transformation Groups 8. Homogeneous spaces and equivariant embeddings. Encyclopaedia of Mathematical Sciences. Vol. 138. Berlin: Springer-Verlag. ISBN 978-3-642-18398-0. Zbl 1237.14057.
  30. ^ Knutson, Allen; Lam, Thomas; Speyer, David (15 Nov 2011). "Positroid Varieties: Juggling and Geometry". arXiv:1111.3660 [math.AG].
  31. ^ Welschinger, Jean-Yves (2005). "Invariants of real symplectic 4-manifolds and lower bounds in real enumerative geometry". Inventiones Mathematicae. 162 (1): 195–234. arXiv:math/0303145. Bibcode:2005InMat.162..195W. doi:10.1007/s00222-005-0445-0. Zbl 1082.14052.
  32. ^ Itenberg, Ilia; Mikhalkin, Grigory; Shustin, Eugenii (2007). Tropical algebraic geometry. Oberwolfach Seminars. Vol. 35. Basel: Birkhäuser. pp. 86–87. ISBN 978-3-7643-8309-1. Zbl 1162.14300.
  33. ^ Consani, Caterina; Connes, Alain, eds. (2011). Noncommutative geometry, arithmetic, and related topics. Proceedings of the 21st meeting of the Japan-U.S. Mathematics Institute (JAMI) held at Johns Hopkins University, Baltimore, MD, USA, March 23–26, 2009. Baltimore, MD: Johns Hopkins University Press. ISBN 978-1-4214-0352-6. Zbl 1245.00040.
  34. ^ Machiel van Frankenhuijsen (2014). The Riemann Hypothesis for function fields. LMS Student Texts. Vol. 80. Cambridge University Press. ISBN 978-1-107-68531-4.
  35. ^ Bartolome, Boris (2014). "The Skolem-Abouzaid theorem in the singular case". arXiv:1406.3233 [math.NT].
  36. ^ Nisse, Mounir (2011). "Complex tropical localization, and coamoebas of complex algebraic hypersurfaces". In Gurvits, Leonid (ed.). Randomization, relaxation, and complexity in polynomial equation solving. Banff International Research Station workshop on randomization, relaxation, and complexity, Banff, Ontario, Canada, February 28–March 5, 2010. Contemporary Mathematics. Vol. 556. Providence, RI: American Mathematical Society. pp. 127–144. ISBN 978-0-8218-5228-6. Zbl 1235.14058.
  37. ^ Ballico, E. (2011). "Scroll codes over curves of higher genus: Reducible and superstable vector bundles". Designs, Codes and Cryptography. 63 (3): 365–377. doi:10.1007/s10623-011-9561-6. S2CID 27463381.
  38. ^ Sanyal, Raman; Sturmfels, Bernd; Vinzant, Cynthia (2013). "The entropic discriminant". Adv. Math. 244: 678–707. doi:10.1016/j.aim.2013.05.019. S2CID 119177866. Zbl 1284.15006.
  39. ^ Björner, Anders; Ziegler, Günter M. (1992). "8. Introduction to greedoids". In White, Neil (ed.). Matroid Applications. Encyclopedia of Mathematics and its Applications. Vol. 40. Cambridge: Cambridge University Press. pp. 284–357. doi:10.1017/CBO9780511662041.009. ISBN 0-521-38165-7. MR 1165537. Zbl 0772.05026.
  40. ^ Park, Seong Ill; Park, So Ryoung; Song, Iickho; Suehiro, Naoki (2000). "Multiple-access interference reduction for QS-CDMA systems with a novel class of polyphase sequences". IEEE Trans. Inf. Theory. 46 (4): 1448–1458. doi:10.1109/18.850681. Zbl 1006.94500.
  41. ^ Ardila, Federico; Rincón, Felipe; Williams, Lauren (15 Sep 2013). "Positroids and non-crossing partitions". arXiv:1308.2698 [math.CO].
  42. ^ Marcolli, Matilde (2005). Arithmetic noncommutative geometry. University Lecture Series. Vol. 36. With a foreword by Yuri Manin. Providence, RI: American Mathematical Society. p. 83. ISBN 0-8218-3833-4. Zbl 1081.58005.
  43. ^ Marcolli, Matilde (2005). Arithmetic noncommutative geometry. University Lecture Series. Vol. 36. With a foreword by Yuri Manin. Providence, RI: American Mathematical Society. p. 83. ISBN 0-8218-3833-4. Zbl 1081.58005.
  44. ^ *Fuchsian System -- from Wolfram MathWorld
  45. ^ *Soulé, C. (1992). Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics. Vol. 33. with the collaboration of D. Abramovich, J.-F. Burnol and J. Kramer. Cambridge University Press. ISBN 0-521-41669-8. MR 1208731. Zbl 0812.14015.
  46. ^ Mirzakhani, Maryam (2008). "Ergodic theory of the earthquake flow". International Mathematics Research Notices. doi:10.1093/imrn/rnm116. Zbl 1189.30087.
  47. ^ Christian Bonatti; Lorenzo J. Díaz; Marcelo Viana (30 March 2006). Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective. Springer Science & Business Media. p. 9. ISBN 978-3-540-26844-4.
  48. ^ Baake, Michael; Moody, Robert V., eds. (2000). Directions in mathematical quasicrystals. CRM Monograph Series. Vol. 13. Providence, RI: American Mathematical Society. p. 237. ISBN 0-8218-2629-8. Zbl 0955.00025.
  49. ^ Walters, Peter (2000). "Topological Pressure and Its Relationship with Invariant Measures". An Introduction to Ergodic Theory. Graduate Texts in Mathematics. Vol. 79. Springer-Verlag. p. 207. doi:10.1007/978-1-4612-5775-2_10 (inactive 2024-11-02). ISBN 0-387-95152-0. ISSN 0072-5285.{{cite book}}: CS1 maint: DOI inactive as of November 2024 (link)
  50. ^ a b Azizov, T.Ya.; Iokhvidov, E.I.; Iokhvidov, I.S. (1983). "On the connection between the Cayley-Neumann and Potapov-Ginzburg transformations". Funkts. Anal. (in Russian). 20: 3–8. Zbl 0567.47031.
  51. ^ Cwikel, Michael; Jawerth, Björn; Milman, Mario (1990). "On the Fundamental Lemma of Interpolation Theory". Journal of Approximation Theory. 60: 70–82. doi:10.1016/0021-9045(90)90074-Z.
  52. ^ Viswanath, K. (1971). "Normal Operators on Quaternionic Hilbert Spaces". Transactions of the American Mathematical Society. 162: 337–350. doi:10.2307/1995758. JSTOR 1995758.
  53. ^ Khokulan, M.; Thirulogasanthar, K.; Srisatkunarajah, S. (2017). "Discrete Frames on Finite Dimensional Left Quaternion Hilbert Spaces". Axioms. 6: 3. arXiv:1302.2836. doi:10.3390/axioms6010003.
  54. ^ Jacobson, Nathan (1996). Finite-dimensional division algebras over fields. Berlin: Springer-Verlag. ISBN 3-540-57029-2. Zbl 0874.16002.
  55. ^ a b Whaples, G. (1957). "Galois cohomology of additive polynomial and n-th power mappings of fields". Duke Math. J. 24 (2): 143–150. doi:10.1215/S0012-7094-57-02420-1. Zbl 0081.26702.
  56. ^ McCarthy, Paul J. (1991). Algebraic extensions of fields (Corrected reprint of the 2nd ed.). New York: Dover Publications. p. 132. Zbl 0768.12001.
  57. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd ed.). Springer-Verlag. p. 562. ISBN 978-3-540-77269-9. Zbl 1145.12001.
  58. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd ed.). Springer-Verlag. pp. 463–464. ISBN 978-3-540-77269-9. Zbl 1145.12001.
  59. ^ Leriche, Amandine (2011). "Pólya fields, Pólya groups and Pólya extensions: a question of capitulation". J. Théor. Nombres Bordx. 23: 235–249. doi:10.5802/jtnb.758. Zbl 1282.13040.
  60. ^ Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics. Vol. 67. American Mathematical Society. p. 453. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023.
  61. ^ Lam, Tsit-Yuen (2005). Introduction to Quadratic Forms over Fields. Graduate Studies in Mathematics. Vol. 67. American Mathematical Society. p. 463. ISBN 0-8218-1095-2. MR 2104929. Zbl 1068.11023.
  62. ^ Coxeter, H.S.M.; Greitzer, S.L. (1967). Geometry Revisited. New Mathematical Library. Vol. 19. Washington, D.C.: Mathematical Association of America. p. 100. ISBN 978-0-88385-619-2. Zbl 0166.16402.
  63. ^ Conway, John; Burgiel, Heidi; Goodman-Strauss, Chaim (2008). "Polystix". The Symmetries of Things. Wellesley, Massachusetts: A K Peters. p. 346-348. ISBN 978-1-56881-220-5. MR 2410150.
  64. ^ Erickson, Martin J. (2014). Introduction to Combinatorics. Discrete Mathematics and Optimization. Vol. 78 (2 ed.). John Wiley & Sons. p. 134. ISBN 978-1118640210.
  65. ^ Imre, Sandor; Gyongyosi, Laszlo (2012). Advanced Quantum Communications: An Engineering Approach. John Wiley & Sons. p. 112. ISBN 978-1118337431.
  66. ^ Oh, Suho; Postnikov, Alex; Speyer, David E (20 Sep 2011). "Weak separation and plabic graphs". Proceedings of the London Mathematical Society. 110 (3): 721–754. arXiv:1109.4434. doi:10.1112/plms/pdu052. S2CID 56248427.
  67. ^ Manjunath, Madhusudan; Sturmfels, Bernd (2013). "Monomials, binomials and Riemann-Roch". J. Algebr. Comb. 37 (4): 737–756. doi:10.1007/s10801-012-0386-9. S2CID 14480700. Zbl 1272.13017.
  68. ^ Ellis-Monaghan, Joanna A.; Moffatt, Iain (2013). Graphs on Surfaces: Dualities, Polynomials, and Knots. SpringerBriefs in Mathematics. Springer-Verlag. ISBN 978-1461469711.
  69. ^ Zhao, Xiang-Yu; Huang, Bin; Tang, Ming; Zhang, Hai-Feng; Chen, Duan-Bing (2014). "Identifying effective multiple spreaders by coloring complex networks". Europhysics Letters. 108 (6). arXiv:1410.1972. Bibcode:2014EL....10868005Z. doi:10.1209/0295-5075/108/68005.
  70. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd ed.). Springer-Verlag. p. 613. ISBN 978-3-540-22811-0. Zbl 1055.12003.
  71. ^ Fried, Michael D.; Jarden, Moshe (2008). Field arithmetic. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Vol. 11 (3rd ed.). Springer-Verlag. p. 352. ISBN 978-3-540-22811-0. Zbl 1055.12003.
  72. ^ Tao, Terence (2012). Higher-order Fourier analysis. Graduate Studies in Mathematics. Vol. 142. Providence, RI: American Mathematical Society. ISBN 978-0-8218-8986-2. Zbl 1277.11010.
  73. ^ Cite error: The named reference TaoHOFA92 was invoked but never defined (see the help page).
  74. ^ Montgomery, Susan (1993). Hopf algebras and their actions on rings. Expanded version of ten lectures given at the CBMS Conference on Hopf algebras and their actions on rings, which took place at DePaul University in Chicago, USA, August 10-14, 1992. Regional Conference Series in Mathematics. Vol. 82. Providence, RI: American Mathematical Society. p. 207. ISBN 978-0-8218-0738-5. Zbl 0793.16029.
  75. ^ Kaplansky, Irving (1972). Fields and Rings. Chicago Lectures in Mathematics (2nd ed.). University Of Chicago Press. p. 135. ISBN 0-226-42451-0. Zbl 1001.16500.
  76. ^ Deligne, Pierre; Etingof, Pavel; Freed, Daniel S.; Jeffrey, Lisa C.; Kazhdan, David; Morgan, John W.; Morrison, David R.; Witten, Edward, eds. (1999). Quantum fields and strings: a course for mathematicians. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 1996–1997. Vol. 2. Providence, RI: American Mathematical Society. p. 884. ISBN 0-8218-8621-5. Zbl 0984.00503.
  77. ^ Belavin, A.A. (1980). "Discrete groups and integrability of quantum systems". Funkts. Anal. Prilozh. 14 (4): 18–26. Zbl 0454.22012.
  78. ^ Saha, Prasenjit (November 2009). "Interpreting the Kustaanheimo-Stiefel transform in gravitational dynamics". Monthly Notices of the Royal Astronomical Society. 400 (1): 228–231. arXiv:0803.4441. Bibcode:2009MNRAS.400..228S. doi:10.1111/j.1365-2966.2009.15437.x. S2CID 15001977.
  79. ^ Joao Caramalho Domingues (2014). "The repercussion of José Anastácio da Cunha in Britain and the USA in the nineteenth century". BSHM Bulletin. 20 (1): 32–50. doi:10.1080/17498430.2013.802111. hdl:1822/26424. S2CID 54220154.
  80. ^ Brualdi, Richard A. (2006). Combinatorial Matrix Classes. Encyclopedia of Mathematics and its Applications. Vol. 108. Cambridge University Press. p. 401. ISBN 0-521-86565-4. ISSN 0953-4806.
  81. ^ Formanek, Edward (1991). The polynomial identities and invariants of n×n matrices. Regional Conference Series in Mathematics. Vol. 78. Providence, RI: American Mathematical Society. p. 45. ISBN 0-8218-0730-7. Zbl 0714.16001.
  82. ^ Guterman, Alexander E. (2008). "Rank and determinant functions for matrices over semirings". In Young, Nicholas; Choi, Yemon (eds.). Surveys in Contemporary Mathematics. London Mathematical Society Lecture Note Series. Vol. 347. Cambridge University Press. pp. 1–33. ISBN 978-0-521-70564-6. ISSN 0076-0552. Zbl 1181.16042.
  83. ^ http://nuclearstrategy.co.uk/prime-number-distribution-series
  84. ^ "Prime Number Distribution Series". 9 September 2014.
  85. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 307. ISBN 3-540-21902-1. Zbl 1159.11039.
  86. ^ * Narkiewicz, Władysław (1990). Elementary and analytic theory of numbers (Second, substantially revised and extended ed.). Springer-Verlag. p. 416. ISBN 3-540-51250-0. Zbl 0717.11045.
  87. ^ Narkiewicz, Władysław (2004). Elementary and analytic theory of algebraic numbers. Springer Monographs in Mathematics (3rd ed.). Berlin: Springer-Verlag. p. 123. ISBN 3-540-21902-1. Zbl 1159.11039.
  88. ^ Bossert, Walter; Suzumura, Kōtarō (2010). Consistency, choice and rationality. Harvard University Press. p. 36. ISBN 978-0674052994.
  89. ^ Ash, Robert B. (1965). Information Theory. New York: Interscience. p. 68. ISBN 9780486665214.
  90. ^ Da Prato, Giuseppe; Zabczyk, Jerzy (2014). Stochastic equations in infinite dimensions. Cambridge University Press. p. 58. ISBN 9780521385299.
  91. ^ Capon, Jack (1964). "Randon-Nikodym Derivatives of Stationary Gaussian Measures". The Annals of Mathematical Statistics. 35 (2): 517–531. doi:10.1214/aoms/1177703552. JSTOR 2238506.
  92. ^ Gantmacher, F.R. (2005) [1959]. Applications of the theory of matrices. Dover. ISBN 0-486-44554-2. Zbl 0085.01001.
  93. ^ a b c Turzański, Marian (1992). "Strong sequences, binary families and Esenin-Volpin's theorem". Commentationes Mathematicae Universitatis Carolinae. 33 (3): 563–569. MR 1209298. Zbl 0796.54031.
  94. ^ Arhangel'Skii, A. (1996). General topology II: compactness, homologies of general spaces. Encyclopaedia of mathematical sciences. Vol. 50. Springer-Verlag. p. 59. ISBN 0-387-54695-2. Zbl 0830.00013.
  95. ^ a b Arhangelʹskiĭ, A. V. (1969). "An approximation of the theory of dyadic bicompacta". Dokl. Akad. Nauk SSSR (in Russian). 184: 767–770. MR 0243485.
  96. ^ Tall, Franklin D. (1976). "The density topology". Pac. J. Math. 62: 275–284. doi:10.2140/pjm.1976.62.275. Zbl 0305.54039.
  97. ^ Šunić, Zoran (2014). "Cellular automata and groups, by Tullio Ceccherini-Silberstein and Michel Coornaert (book review)". Bulletin of the American Mathematical Society. 51 (2): 361–366. doi:10.1090/S0273-0979-2013-01425-3.
  NODES
3d 1
Association 3
coding 3
HOME 4
Idea 6
idea 6
Intern 4
languages 1
mac 7
Note 11
OOP 3
os 84
text 5
web 6