(4) Prove IMVT

edit

Problem Statement

edit

(i)   for   <br\> (ii) Another version of IMVT   for all  

<br\> Ref: Lecture Notes p.5-1 <br\>

Solution

edit

<br\> Ref: Lecture Notes p.2-3 <br\> (i)

 

<br\> where,

  • m:=min f(x)
  • M:=max f(x) <br\> a) Integrating,   <br\> b) Dividing by       <br\> c) By Interm. Value Them, There exists   <br\>   <br\> (ii)   <br\> where,
  • m:=min f(x)
  • M:=max f(x) <br\> a) Integrating,   <br\> b) Dividing by       <br\> c) By Interm. Value Them, There exists   <br\> d)   is strictly negative, so   <br\>   <br\>

    (8) Taylor, Trap and Simpson Rule

    edit

    Problem Statement

    edit

     

    (i) Taylor series exp. fn<br\> (ii) Comp. Trap. rule <br\> (iii) Comp. Simpson rule <br\> <br\> Ref: Lecture Notes p.6-5 <br\>

    Solution

    edit

    (i)<br\> a) n=2,

     

    a-1) Error for n=2,

     

    <br\> <br\> b) n=4,

     

    b-1) Error for n=4,

     

    <br\> <br\> c) n=8,

     

    c-1) Error for n=8,

     

    <br\>

    (ii)<br\> This one can be calculated by the Comp. Trap. rule or the Corrected Trap. rule but it is hard to define the first term, X0.

    Thus, some math-codes are required. <br\>


     =Find the true value of I=
    

    MATLAB Code

    clc;
    clear all;
    format long
    F=@(x)(exp(x)-1)./x;
    I=quad(F,0,1)
    
    I = 1.317902151956861 %Assumption: This is the true valuse of I
    
     
    

    <br\>

    a) the Comp. Trap. rule

     

    b) the Corrected Trap. rule

     

    Where

  •   <br\> <br\> c) Results of Comp. Trap. rule
    n In En
    2 1.328291728 -0.010389576
    4 1.320504619 -0.002602468
    8 1.318553087 -0.000650935
    16 1.318064905 -0.000162753
    32 1.317942841 -4.06892*10-5
    64 1.317912324 -1.0172*10-5
    128 1.317904695 -2.54263*10-6
    256 1.317902787 -6.3528*10-7

    Where

  • En = The true value of I (=1.317902152) - In <br\> Finally, the value of n=128 is closer to the true value with about 10-6 order. <br\> d) Example of MATLAB Code (n=2)
    clc;
    clear all;
    format long
    X=eps:0.5:1;
    Y=(exp(X)-1)./X;
    Z=trapz(X,Y)
    

    <br\>

    (iii)<br\> This one can be calculated by the Comp. Simpson rule but it is also hard to define the first term, X0.

    Thus, some math-codes are required.

    <br\> <br\>

    a) the Comp. Simpson rule

     

    <br\> <br\>

    b) Results of Comp. Simpson rule

    n In En
    2 1.318008666 -0.000106514
    4 1.317908917 -6.76473*10-6
    8 1.317902576 -4.24046*10-7
    16 1.317902178 -2.60589*10-8

    Where

  • En = The true value of I (=1.317902152) - In <br\> Finally, the value of n=4 is closer to the true value with about 10-6 order. <br\> c) MATLAB Source Code
    function y = simpson(f,a,b,n)
    %SIMPSON Simpson's rule integration with equally spaced points
    %
    % y=SIMPSON(f,a,b,n) returns the Simpson's rule approximation to
    % the integral of f(x) over the interval [a,b] using n+1 equally
    % spaced points. The input variable f is a string containing the
    % name of a function of one variable. The function f(x) must accept
    % a vector argument and return the vector of values of the function.
    %
    % NOTE: n must be even.
    
    h=(b-a)/n;
    x=linspace(a,b,n+1);
    fx=feval(f,x);
    
    y=h/3*(fx(1)+4*sum(fx(2:2:n))+2*sum(fx(3:2:n-1))+fx(n+1));
    

    <br\>

    <br\> d) Example of MATLAB Code (Run, n=2)

    clear all
    format long
    z=simpson(@(x) (exp(x)-1)./x,eps,1,2)
    

    <br\>

    --Heejun Chung 17:43, 27 January 2010 (UTC)

  •   NODES
    Note 5