
Lecture 28

Different Types of
Antennas–Heuristics

28.1 Types of Antennas

There are different types of antennas for different applications [128]. We will discuss their
functions heuristically in the following discussions.

28.1.1 Resonance Tunneling in Antenna

A simple antenna like a short dipole behaves like a Hertzian dipole with an effective length.
A short dipole has an input impedance resembling that of a capacitor. Hence, it is difficult
to drive current into the antenna unless other elements are added. Hertz used two metallic
spheres to increase the current flow. When a large current flows on the stem of the Hertzian
dipole, the stem starts to act like inductor. Thus, the end cap capacitances and the stem
inductance together can act like a resonator enhancing the current flow on the antenna.

Some antennas are deliberately built to resonate with its structure to enhance its radiation.
A half-wave dipole is such an antenna as shown in Figure 28.1 [124]. One can think that these
antennas are using resonance tunneling to enhance their radiation efficiencies. A half-wave
dipole can also be thought of as a flared open transmission line in order to make it radiate.
It can be gradually morphed from a quarter-wavelength transmission line as shown in Figure
28.1. A transmission is a poor radiator, because the electromagnetic energy is trapped between
two pieces of metal. But a flared transmission line can radiate its field to free space. The
dipole antenna, though a simple device, has been extensively studied by King [129]. He has
reputed to have produced over 100 PhD students studying the dipole antenna.
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Figure 28.1: A half-wave dipole can be thought of as a resonator. It can be thought of as
a quarter-wavelength transmission line that is gradually opened up (courtesy of electronics-
notes.com).

The disadvantage of a half-wave dipole is that it has to be at least about half a wavelength
before it radiates well. Engineers are creative, and they invent the folded dipole. For antennas
of the same size, a folded dipole can resonate at a lower frequency because the current does
not stop abruptly at its two ends. Figure 28.2 shows a Yagi-Uda antenna driven by a folded
dipole.
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Figure 28.2: In a Yagi-Uda antenna, when a wire antenna is less than half a wavelength,
it acts as a waveguide, or a director. Then the wire antenna is slightly more than half a
wavelength, it acts as a reflector [130]. Therefore, the antenna radiates predominantly in one
direction (courtesy of Wikipedia [131]).

A Yagi-Uda antenna is also another interesting invention. It was invented in 1926 by
Yagi and Uda in Japan by plainly using physical intuition [130]. Physical intuition was a
tool of engineers of yesteryears while modern engineers tend to use sophisticated computer
design software. Surprisingly, the elements of dipoles in front of the driver element are acting
like a waveguide in space, while the element at the back acts like a reflector. Therefore, the
field radiated by the driver element will be directed toward the front of the antenna. Thus,
this antenna has higher directivity than just a stand alone dipole. Due to its simplicity, this
antenna has been made into nano-antennas which can radiate at optical frequencies.
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Figure 28.3: A cavity-backed slot antenna radiates well because when the small dipole radiates
close to the resonant frequency of the cavity, the field strength is strong inside the cavity, and
hence around the slot (courtesy of antenna-theory.com).

Slot antenna is a simple antenna to make [132]. To improve the radiation efficiency of
slot antenna, it is made to radiate via a cavity. A cavity-backed slot antenna that uses such
a concept and this is shown in Figure 28.3. A small dipole with poor radiation efficiency is
places inside the cavity. When the operating frequency is close to the resonant frequency of
the cavity, the field strength inside the cavity becomes strong, and much of the energy can
leak from the cavity via the slot on its side. This makes the antenna radiate more efficiently
into free space compared to just the small dipole alone.

Another antenna that resembles a cavity backed slot antenna is the patch antenna, or
microstrip patch antenna. This is shown in in Figure 28.4. This antenna also radiates
efficiently by resonant tunneling. The resonant frequency of the patch antenna (top of Figure
28.4) is roughly when L is half a wavelength. This is similar to the resonant frequency of a
transmission line with open circuit at both ends. The current sloshes back and forth across
the length of the patch antenna along the L direction. The second design (bottom of Figure
28.4) has an inset feed. This allows the antenna to resonate at a lower frequency because the
current has a longer path to slosh through when it is at resonance.
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Figure 28.4: A patch antenna also radiates well when it resonates. The patch antenna
resembles a cavity resonator with magnetic wall (courtesy of emtalk.com).

28.1.2 Horn Antennas

The impedance of space is 377 ohms while that of most transmission line is 50 ohms. This
mismatch can be mitigated by using a flared horn (see Figure 28.5) [133].

One can think that the characteristic impedance of a transmission line made of two pieces
of metal as Z0 =

√
L/C. As the horn flares, C becomes smaller, increasing its characteristic

impedance to get close to that of free space. This allows for better impedance matching from
the source to free space.

A corrugated horn, as we have discussed previously in a circular waveguide, discourages
current flows in the non-axial symmetric mode. It encourages the propagation of the TE01

mode in the circular waveguide and hence, the circular horn antenna. This mode is axially
symmetric. Hence, this antenna can radiate fields that are axially symmetric [134,135].
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Figure 28.5: A horn antenna works with the same principle as the biconical antenna. Its
flared horn changes the waveguide impedance so as to match from that of a waveguide to
that of free space. The lower figure is that of a corrugated circular horn antenna. The
corrugation enhances the propagation of the TE01 mode in the circular waveguide, and hence,
the cylindrical symmetry of the mode (courtesy of tutorialpoints.com and comsol.com).

A Vivaldi antenna (invented by P. Gibson in 1978 [136]), is shown in Figure 28.6. It is also
called a notch antenna. It works by the same principle to gradually match the impedance of
the source to that of free space. But such a gradually flared horn has the element of a frequency
independent antenna. The low frequency component of the signal will radiate from the wide
end of the flared notch, while the high frequency component will radiate from the narrow end
of the notch. Thus, this antenna can radiate well over a broad range of frequencies, and this
gives the antenna a broad bandwidth performance. It is good for transmitting a pulsed signal
which has a broad frequency spectrum.
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Figure 28.6: A Vivaldi antenna works iike a horn antenna, but uses very little metal. Hence,
it is cheap to build (courtesy of Wikipedia [137]).

28.1.3 Quasi-Optical Antennas

High-frequency or short wavelength electromagnetic field behaves like light ray as in optics.
Therefore, many high-frequency antennas are designed based on the principle of ray optics.
A reflector antenna is such an antenna as shown in Figure 28.7. The reflector antenna in this
case is a Cassegrain design [138]1 where a sub-reflector is present. This allows the antenna
to be fed from behind the parabolic dish where the electronics can be stored and isolated as
well. Reflector antennas [140] is used a lot in radio astronomy and space exploration due to
their high directivity and sensitivity.

1The name came from an optical telescope of similar design [139]
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Figure 28.7: The top picture of an NRAO radio telescope antenna of Cassegrain design
(courtesy of Britannica.com). The bottom is the detail of the Cassegrain design (courtesy of
rev.com).

Another recent invention is the reflectarray antenna [141,142] which is very popular. One
of them is as shown in Figure 28.8. Due to recent advent in simulation technology, complicated
structures can be simulated on a computer, including one with a complicated surface design.
Patch elements can be etched onto a flat surface as shown, giving it effective impedance that
is spatially varying, making it reflect like a curved surface. Such a surface is known as a
meta-surface [143,144]. It can greatly economize on the space of a reflector antenna.
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Figure 28.8: A reflectarray where the reflector is a flat surface. Patches are unequally spaced
to give the array the focussing effect (courtesy of antenna-theory.com).

Another quasi-optical antenna is the lens antenna as shown in Figure 28.9 [145]. The
design of this antenna follows lens optics, and is only valid when the wavelength is very short
compared to the curvature of the surfaces. In this case, reflection and transmission at a curve
surface is similar to that of a flat surface. This is called the tangent-plane approximation of
a curve surface, and is valid at high frequencies.
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Figure 28.10: A PIFA (planar inverted F antenna) is compact, broadband, and easy to
fabricate. It is good for cell phone antennas due to its small size (courtesy of Mathworks).

An interesting small antenna is the U-slot antenna shown in Figure 28.11 [147, 148]. Be-
cause the current is forced to follow a longer path by the U-slot, it has a lower resonant
frequency and hence, can be made smaller. In order to give the antenna a larger bandwidth,
its Q is made smaller by etching it on a thick dielectric substrate (shown as the dielectric
material region in the figure). But feeding it with a longer probe will make the bandwidth
of the antenna smaller, due to the larger inductance of the probe. An ingenious invention
is to use an L probe [149]. The L probe has an inductive part as well as a capacitive part.
Their reactance cancel each other, allowing the electromagnetic energy to tunnel through the
antenna, making it a better radiator.
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Figure 28.11: The top figure shows a U slot patch antenna design. The bottom figure shows
a patch antenna fed by an L probe with significant increase in bandwidth (courtesy of K.M.
Luk) [149].

Another area where small antennas are needed is in RFID (radio frequency identification)
tag [150]. Since tags are placed outside the packages of products, an RFID tag has a transmit-
receive antenna which can talk to a small computer chip where data about the package can be
stored. An RFID reader can quickly communicate with the RFID tag to retrieve information
about the package. Such a small antenna design for RFID tag is shown in Figure 28.12. It
uses image theorem so that the antenna can be made half as small. Then slots are cut into the
radiating patch, so that the current follows a longer path. This lowers the resonant frequency
of the antenna, allowing it to be made smaller.
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Figure 28.12: Some RFID antennas designed at The University of Hong Kong (courtesy of P.
Yang, Y. Li, J. Huang, L.J. Jiang, S.Q. He, T. Ye, and W.C. Chew).

An RFID reader can be designed to read the information from a batch of vials or tubes
containing different chemicals. Hence, a large loop antenna is needed at a sufficiently high
frequency (for large bandwidth). However, driving a loop antenna at a sufficiently high
frequency will result in a non-constant current around the loop. (Fundamentally, this comes
from the retardation effect of electromagnetic field.) This will result in a non-uniform field
inside the loop defeating the design of the RFID reader.

One way to view how the non-uniform current come about is that a piece of wire becomes
a tiny inductor. Across an inductor, V = jωLI, implying a 90◦ phase shift between the
voltage and the current. In other words, the voltage drop is always nonzero, and hence, the
voltage cannot be constant around the loop. Since the voltage and current are locally related
by the local inductance, the current cannot be constant also.

To solve the problem of the current and voltage being non-constant around the loop, the
local inductor is connected in series with a capacitor [151]. This causes them to resonate.
At resonance, the current-voltage relationship across the tank circuit is such that there is no
voltage drop across the tank circuit. In this case, the voltage becomes uniform across the
loop so is the current. Therefore, one way to enable a uniform current in a large loop is
to capacitively load the loop. This will ensure a constant phase, or a more uniform current
around the loop, and hence, a more efficient reader. Such a design is shown in Figure 28.13.
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Figure 28.13: The top figure shows a RFID reader designed by [152]. The bottom figure
shows simulation and measurement done at The University of Hong Kong (courtesy of Z.N.
Chen [152] and P. Yang, Y. Li, J. Huang, L.J. Jiang, S.Q. He, T. Ye, and W.C. Chew).
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