
SCRAPE: Scalable Randomness Attested by
Public Entities

Ignacio Cascudo1? and Bernardo David23??

1 Aalborg University, Denmark
2 Aarhus University, Denmark

3 IOHK, Hong Kong

Abstract. Uniform randomness beacons whose output can be publicly
attested to be unbiased are required in several cryptographic protocols.
A common approach to building such beacons is having a number par-
ties run a coin tossing protocol with guaranteed output delivery (so that
adversaries cannot simply keep honest parties from obtaining random-
ness, consequently halting protocols that rely on it). However, current
constructions face serious scalability issues due to high computational
and communication overheads. We present a coin tossing protocol for an
honest majority that allows for any entity to verify that an output was
honestly generated by observing publicly available information (even af-
ter the execution is complete), while achieving both guaranteed output
delivery and scalability. The main building block of our construction is
the first Publicly Verifiable Secret Sharing scheme for threshold access
structures that requires only O(n) exponentiations. Previous schemes re-
quired O(nt) exponentiations (where t is the threshold) from each of the
parties involved, making them unfit for scalable distributed randomness
generation, which requires t = n/2 and thus O(n2) exponentiations.

1 Introduction

The problem of obtaining a reliable source of randomness has been studied since
the early days of cryptography. Whereas individual parties can choose to trust
locally available randomness sources, it has been shown that local randomness
sources can be subverted [BLN16,DPSW16] and many applications require a
common public randomness source that is guaranteed to be unbiased by a po-
tential adversary. This necessity inspired the seminal work on Coin Tossing by
Blum [Blu81], which allows two or more parties to generate an output that is
guaranteed to be uniformly random as long as at least one of the parties is honest
(and given that the protocol terminates).

? Ignacio Cascudo acknowledges support from the Danish Council for Independent
Research, grant no. DFF-4002-00367.

?? This project has received funding from the European research Council (ERC) under
the European Unions’s Horizon 2020 research and innovation programme (grant
agreement No 669255).

The concept of a public randomness beacon that periodically issues fresh un-
predictable and unbiased random values was proposed by Rabin [Rab83] in the
context of contract signing and has found several other applications such as vot-
ing protocols [Adi08], generating public parameters for cryptographic schemes
[BDF+15,LW15], privacy preserving instant messaging [WCGFJ12,vdHLZZ15],
and anonymous browsing [DMS04,GRFJ14]. More recently, blockchain [Nak08,GKL15]
applications such as smart contracts [KMS+16,B+14], sharding [CDE+16] and
Proof-of-Stake based consensus protocols [KKR+16] have increased the need for
randomness sources [BCG15].

Rabin’s concept of randomness beacons fits the above applications very nicely
but the proposed implementation in [Rab83] relies on a trusted third party. The
goal of this paper is to construct a distributed randomness beacon guaranteeing
output delivery and uniformly distributed randomness for the parties that use
the beacon as long as a majority of these parties are honest. Moreover, in many
of the aforementioned applications, parties that do not necessarily participate
in randomness generation but wish to audit the protocol execution must be
able to attest a posteriori that the randomness source is reliable and unbiased.
Hence, we aim at constructing a publicly verifiable randomness beacon and not
only a protocol that outputs randomness to the parties actively involved in its
execution.

1.1 Related Works

A natural solution for obtaining randomness beacons consists in using a coin
tossing protocol as proposed by Blum [Blu81] with its messages posted to a
public bulletin board for later verification (or broadcast among the parties).
However, it is known that in case half or more of the parties are corrupted, the
adversary can bias the output of the protocol or even prevent the honest parties
from obtaining any output at all by aborting protocol execution at a given point
[Cle86]. Assuming that a majority of the players are honest, it is possible to
guarantee output delivery [RBO89] through threshold verifiable secret sharing
(VSS) [CGMA85] given that a broadcast channel is available. Basically, given
that a majority of n parties are honest, each party can secret share its input
into n shares such that n/2 are enough to reconstruct the secret, sending one
share to each involved party before starting the coin tossing protocol. While the
adversary cannot recover any input (since it has at most n/2− 1 shares of each
input), the honest parties collective know at least n/2 shares, which they can
use to reconstruct the inputs of parties who abort and then finish the protocol.

While a coin tossing protocol with guaranteed output delivery (G.O.D.) with
a honest majority based on VSS provides a reliable source of randomness, this
approach still has two main issues: 1. most VSS schemes require interaction be-
tween the dealer and the other parties, which hinders scalability and 2. only
parties who actively participate in the protocol can verify that it was executed
correctly. While non-interactive VSS [Fel87] solves the interaction problem, it
does not allow the protocol execution to be independently verified by entities
that did not actively participate. A natural way to allow for any entity to verify

2

that the outputs produced by such protocols is indeed honestly generated is to
substitute traditional VSS by publicly verifiable secret sharing (PVSS) schemes
[Sta96], which allow for anybody to verify the validity of shares and reconstructed
secrets through information that can be made publicly available without requir-
ing direct interaction between any of the parties. Variations of this approach
have been proposed in [KKR+16,SJK+16].

While [KKR+16] instantiates a plain [RBO89]-style G.O.D. coin tossing pro-
tocol requiring communication among all parties (through a public ledger),
[SJK+16] reduces the communication complexity by partitioning parties into
committees that internally run a protocol with publicly verifiable outputs. Later
on, a client that only communicates to the leader of each committee (instead
of talking to all parties) can aggregate these outputs to obtain publicly veri-
fiable randomness. However, while the vanilla approach of [KKR+16] achieves
security assuming only an honest majority (meaning that the adversary corrupts
less than half of all parties), the communication efficient approach of [SJK+16]
only achieves security against an adversary that corrupts less than a third of
all parties. Moreover, provided that there is an honest majority, the protocol of
[KKR+16] guarantees that all parties get output regardless of which parties are
corrupted, while in the protocols of [SJK+16], even if only the client is corrupted,
it can abort and prevent all other parties from receiving randomness.

Even though coin tossing with G.O.D. built through PVSS can potentially
achieve scalability and public verifiability, current PVSS constructions
[Sta96,FO98,Sch99,BT99,RV05,HV09,Jha11,JVSN14] suffer from high compu-
tational overhead. In general, the parties are required to each compute O(nt)
exponentiations to verify n shares of a secret with threshold t, which translates
into O(n2) exponentiations since t = n/2 in our randomness beacon applica-
tion 4. This computational overhead arises because the main idea behind these
schemes is to commit to the coefficients of a polynomial used for a Shamir Se-
cret Sharing [Sha79] and encrypt the shares, later using the commitments to
the coefficients to independently compute commitments to the shares, which are
proven in zero-knowledge to correspond to the encrypted shares. This approach
was originally put forth in [Sch99], which uses the Fiat-Shamir heuristic (and
consequently the random oracle model) to obtain the necessary non-interactive
zero-knowledge proofs. Later on, variations of this protocol in the plain model
were proposed in [RV05,JVSN14], which substitute the zero-knowledge proofs by
checks based on Paillier Encryption [Pai99], and in [HV09,Jha11], which propose
a pairing based method for checking share validity.

Other approaches for constructing public randomness beacons have been con-
sidered in [BCG15,BDF+15,LW15,BLMR14,BGM16]. Public verifiability (or au-

4 In fact [Jha11] provides an alternative solution where only O(n) exponentiations
and a constant number of pairings are required for verification but O(n) pairings are
required for setup and O(n2) exponentiations in the target group of a bilinear map
(more expensive than the other exponentiations performed in the source groups) are
required for reconstruction.

3

ditability) in the context of general multiparty computation protocol has been
previously considered in [BDO14,SV15].

1.2 Our Contributions

We introduce SCRAPE, a protocol that implements a publicly verifiable random-
ness beacon given an honest majority through a PVSS based guaranteed output
delivery coin tossing protocol. Our main result lies at the core of SCRAPE:
the first threshold PVSS scheme that only requires a linear number of expo-
nentiations for sharing, verifying and reconstruction, whereas previous schemes
only achieve quadratic complexity. This PVSS scheme can be instantiated both
under the Decisional Diffie Hellman (DDH) assumption in the Random Ora-
cle Model (ROM) and in the plain model under the Decisional Bilinear Square
(DBS) assumption [HV09]. While improving on the computational complexity
of previous schemes, our PVSS scheme retains a similarly low communication
overhead, making it fit for applications with large amounts of users. We remark
that our new PVSS schemes can also be used to improve the performance of
[SJK+16].

Model: As in previous works [BDO14], we assume that the parties can use a
“public bulletin board” to publish information that will be used for posterior
verification. In fact, in the applications we are interested in, a ledger where
messages can be posted for posterior verification is readily available, since the
Bitcoin Backbone protocol itself implements such a mechanism (i.e. the dis-
tributed ledger analysed in [GKL15]). Nevertheless, our protocols are compatible
with any public ledger, not only with that of [GKL15]. Scalability is also a con-
cern since hundreds of thousands of users are usually involved in randomness
generation, making it simpler to post messages in a publicly accessible ledger
rather than requiring all parties to communicate among themselves.

Our Techniques: We improve on Schoenmakers’ PVSS scheme [Sch99] and its
variants (which require O(nt) exponentiations to verify n shares) by designing
a share verification procedure that only requires O(n) exponentiations (or pair-
ings). Our procedure explores the fact that sharing a secret with Shamir Secret
Sharing [Sha79] is equivalent to encoding the secret (plus randomness) with a
Reed Solomon error correcting code, a fact which was first observed by McEliece
et al. in [MS81]. Since shares from Shamir Secret Sharing form a codeword of
a Reed Solomon code, computing the inner product of a share vector with a
codeword from the corresponding dual code should yield 0 if the shares are cor-
rectly computed. As in [Sch99], the dealer in our scheme shares the secret using
Shamir Secret sharing, encrypts the shares s1, . . . , sn in ciphertexts of the form
hskisi (where hski is a public key and ski is a secret key) but also commits to all
shares by computing vi = gsi , where g, h are two independently chosen genera-
tors of a group where the DLOG problem is assumed to be hard. The dealer also
provides evidence that the shares in the ciphertexts are the same as the shares
in the commitments. To verify the validity of the shares, anybody can sample a

4

random codeword c⊥ = (c⊥1 , . . . , c
⊥
n) of the dual code of the Reed Solomon code

corresponding to the instance of Shamir Secret sharing that was used, compute
the inner product of c⊥ with the share vectors in the exponents of g (by com-

puting
∏
i v

c⊥
i
i = g

∑
i sic

⊥
i) and check that it is equal to g0 = 1. If the shares are

not valid, this check fails with large probability. To prove that the shares in the
ciphertexts and in the commitments are the same, the dealer can either use a
non-interactive zero-knowledge (NIZK) proof constructed using the Fiat-Shamir
heuristic as in [Sch99] (resulting in a construction in the ROM under the DDH
assumption) or have the parties do pairing based checks as in [HV09] (resulting
in a construction in the plain model under the DBS assumption).

Concrete Efficiency: In the DDH based construction in the ROM, the dealer is
required to compute 4n exponentiations in the sharing phase, while verification
and reconstruction respectively require 4n and 5t + 3 exponentiations (given
that all n shares are verified but only t shares are used in reconstruction). In the
DBS based construction in the plain model, the dealer is required to compute
2n exponentiations in the sharing phase, while verification requires 2n pairings
and reconstruction requires 2n pairings and t + 1 exponentiations (given that
n decrypted shares are verified but only t shares are used in reconstruction).
Previous results [Sch99,HV09] required roughly nt extra exponentiations in the
verification phase, resulting in n2/2 extra exponentiations in the randomness
beacon application, which requires t = n/2. In the random oracle model con-
struction, extra NIZK data is needed, amounting to a total of 2n group elements
and n+ 1 ring elements published by the dealer. In the construction in the plain
model, the dealer saves on the NIZK data and only posts 2n group elements,
while requiring more expensive computation (i.e. pairings).

1.3 Organization

In Section 2 we introduce notation and definitions that will be used through-
out the paper. In Section 3, we present our PVSS protocol based on the DDH
assumption in the ROM. In Section 4, we introduce our PVSS protocol in the
plain mode based on the DBS assumption. In Section 5, we construct a random
beacon based on our PVSS protocols. In Section 6, we analyse the concrete com-
plexity and performance of our protocols and present benchmarks based on a
prototype implementation. Finally, in Section 7, we conclude with directions for
future work.

2 Preliminaries

In this section, we establish notation and introduce definitions that will be used
throughout the paper. We denote uniformly sampling a random element x from
a finite set D by x ← D. We denote vectors as x = (x1, . . . , xn). We denote
the inner product of two vectors x,y as 〈x,y〉 =

∑
1≤i≤n xi · yi. For the sake of

notation, the integer n will always be considered to be even, so that n/2 is an

5

integer. In this paper q will always denote a prime number. We denote by Zq
the ring of integers modulo q and by G a finite multiplicative group of order q.
Since q is prime, Zq is a finite field and G is a cyclic group where every element
g 6= 1 is a generator. We denote by Zq[x] the ring of polynomials in one variable
with coefficients in Zq. We denote by logge the discrete logarithm of an element
e ∈ G with respect to generator g ∈ G.

2.1 Coding Theory

We define a [n, k, d] code C to be a linear error correcting code over Zq of length
n, dimension k and minimum distance d. Its dual code C⊥ is the vector space
which consists of all vectors c ∈ Znq such that 〈c, c⊥〉 = 0 for all c in C. The

dual code C⊥ of an [n, k, d] code C is an [n, n − k, d⊥] code (for some d⊥). In
this work, we will use the following basic linear algebra fact.

Lemma 1. If v ∈ Znq \ C, and c⊥ is chosen uniformly at random in C⊥ then

the probability that 〈v, c⊥〉 = 0 is exactly 1/q.

Proof. By linearity, a c⊥ ∈ C⊥ is orthogonal to v if only if it is also orthogonal
to every vector in the code D spanned by v and C, i.e., if and only if c⊥ ∈ D⊥.
Since v /∈ C, then the dimension of D is k + 1 and hence the space D⊥ has
dimension n − k − 1. Therefore if c⊥ is chosen uniformly at random in C⊥ the
probability that 〈v, c⊥〉 = 0 is

#(D⊥)

#(C⊥)
=
qn−k−1

qn−k
=

1

q
.

Moreover, in this work we will always be under the assumption n < q and
we will use Reed-Solomon codes C of the following form

C = {(p(1), p(2), . . . , p(n)) : p(x) ∈ Zq[x],deg p(x) ≤ k − 1}

where p(x) ranges over all polynomials in Zq[x] of degree at most k − 1. This is
an [n, k, n − k + 1]-code. Its dual C⊥ is an [n, n − k, k + 1]-code, which can be
defined as follows

C⊥ = {(v1f(1), v2f(2), . . . , vnf(n)) : f(x) ∈ Zq[x],deg f(x) ≤ n− k − 1}

for the coefficients vi =
∏n
j=1,j 6=i

1
i−j .

2.2 Shamir Secret Sharing

An (n, t) threshold secret sharing scheme allows a dealer D to split a secret s
into n shares S = (s1, . . . , sn) distributed among n parties P1, . . . , Pn such that
it is possible to reconstruct the secret given t of the shares but no information at
all is revealed if less shares are known. We refer to S as the share vector of the
secret sharing scheme. The first threshold secret sharing scheme was introduced

6

by Shamir in [Sha79]. In order to split a secret s ∈ Zq, the dealer samples
t− 1 random coefficients c1, . . . , ct−1 ← Zq and constructs a polynomial p(x) =
s+c1x+c2x

2+· · ·+ct−1xt−1. The shares are computed as si = p(i) for 1 ≤ i ≤ n.
A party who possesses t shares can use Lagrange interpolation to recover the
polynomial p(x) and thus obtain s. On the other hand, a party who knows less
than t shares has no information about the secret. McEliece et al. first observed
that sharing a secret into n shares with Shamir Secret Sharing is equivalent to
encoding the message (x, c1, . . . , ct−1) under a [n, t, n−t+1] Reed Solomon code,
implying that the share vector S is a codeword of such Reed Solomon code.

2.3 Assumptions

One of our constructions is proven in the Random Oracle Model [BR93], where
it is assumed that the parties are given access to a function H(x) that takes
inputs of any size and returns unique uniformly random outputs of fixed size
(returning the same output every time the input is the same). Such a function
can be instantiated in practice by a cryptographic hash function. In this model
we prove security of our protocols under the DDH assumption, that states given
g, gα, gβ it is hard for a PPT adversary to distinguish between gαβ from gr,
where g is a generator of a group G of order q and α, β, r ← Zq.

Bilinear Groups and the Decisional Bilinear Square assumption As in previous
works [HV09] we have chosen to present our scheme over a symmetric bilinear
group (e.g. Type-I in the terminology of [GPS06]). However, we remark that our
construction can also be easily converted to asymmetric bilinear groups (e.g.
Type-III in the terminology of [GPS06]) [AHO16], for which state-of-the-art
pairing friendly curves [BN06] for which more efficient algorithms for computing
pairings [AKL+11] are known.

Definition 1. Bilinear Group A bilinear group is described by a tuple Λ :=
(q,G,GT , e) where G and GT are groups of prime order q and e is a bilinear
map G×G→ GT with the following properties:

– Bilinearity e(gα, gβ) = e(g, g)αβ for every g ∈ G and α, β ∈ Zq.
– Non-degeneration e(g, g) 6= 1 unless g = 1.
– Efficiency There exist efficient algorithms to compute group operations in

G,GT and to evaluate e(x, y) for x, y ∈ G.

We prove our pairings based protocol secure under the Decisional Bilinear
Square (DBS) assumption [HV09] that was shown in that paper to be equiva-
lent to the Decisional Bilinear Quotient assumption [LV08] and related to the
Decisional Bilinear Diffie Hellman assumption.

Assumption 1 Decisional Bilinear Square (DBS) [HV09] Let Λ := (q,G,GT , e)
be a bilinear group. For a generator g ∈ G, random values µ, ν, s← Zq and given
u = gµ and v = gν , the following probability distributions are computationally
indistinguishable: D0 = (g, u, v, T0 = e(u, u)ν) and D1 = (g, u, v, T1 = e(u, u)s).

7

Adversarial Model We prove the security of our protocols in the stand alone
setting against malicious adversaries, who may deviate from the protocol in any
arbitrary way. We consider static adversaries, who have to choose which parties
to corrupt before protocol execution begins.

Public Ledger and Broadcast Channel We assume that the parties have access to
a public ledger with Liveness, meaning that an adversary cannot prevent honest
parties from adding information and agreeing on it, and Persistence, meaning
that the information cannot be modified or removed a posteriori. It is known that
such a ledger can be implemented by the Bitcoin backbone protocol assuming an
honest majority, digital signatures and a Random Oracle [GKL15]. However, we
remark that our protocols do not rely on any properties that are unique to the
ledger of [GKL15], meaning that our constructions can also be instantiated over
public ledgers in the plain model. Notice that access to a broadcast protocol is
commonly assumed in multiparty protocols for an honest majority [RBO89] and
that the same effect of broadcasting a messages can be achieved by writing it
to the ledger. We also remark that the availability of a public bulletin board has
been assumed in previous works on public verifiability for multiparty protocols
[BDO14,SV15].

2.4 Publicly Verifiable Secret Sharing

We adopt the general model for PVSS schemes of [Sch99] and the security defini-
tions of [RV05,HV09] (with some differences that we remark below). We consider
a set of n parties P = {P1, . . . , Pn} and a dealer D who shares a secret among
all the parties in P. We will construct schemes for (n, t)-threshold access struc-
tures, meaning that the secret is split in n shares in such a way that knowing at
most t − 1 shares reveals no information but a collection of t shares allows for
secret reconstruction. Additionally, any external verifier V can check that the D
is acting honest without learning any information about the shares or the secret.
A PVSS protocol has four phases described below:

– Setup The dealer D generates and publishes the parameters of the scheme.
Every party Pi publishes a public key pki and withholds the corresponding
secret key ski.

– Distribution The dealer creates shares s1, . . . , sn for the secret s, encrypts
share si with the public key pki for i = 1, . . . , n and publishes these encryp-
tions ŝi, together with a proof PROOFD that these are indeed encryptions
of a valid sharing of some secret.

– Verification In this phase, any external V (not necessarily being a par-
ticipant in the protocol) can verify non-interactively, given all the public
information until this point, that the values ŝi are encryptions of a valid
sharing of some secret.

– Reconstruction This phase is divided in two.
Decryption of the shares: This phase can be carried out by any set Q of t or
more parties. Every party Pi inQ decrypts the share si from the ciphertext ŝi

8

by using its secret key ski, and publishes si together with a (non-interactive)
zero-knowledge proof PROOFi that this value is indeed a correct decryption
of ŝi.
Share pooling: Any external verifier V (not necessarily being a participant in
the protocol) can now execute this phase. V first checks whether the proofs
PROOFi are correct. If the check passes for less than t parties in Q then
V aborts; otherwise V applies a reconstruction procedure to the set si of
shares corresponding to parties Pi that passed the checks.

A PVSS scheme must provide three security guarantees: Correctness, Verifi-
ability and IND1-Secrecy. These properties are defined below:

– Correctness If the dealer and all players in Q are honest, then all verifica-
tion checks in the verification and reconstruction phases pass and the secret
can be reconstructed from the information published by the players in Q in
the reconstruction phase.

– Verifiability If the check in the verification step passes, then with high
probability the values ŝi are encryptions of a valid sharing of some secret.
Furthermore if the check in the Reconstruction phase passes then the com-
municated values si are indeed the shares of the secret distributed by the
dealer.

– IND1-Secrecy Prior to the reconstruction phase, the public information
together with the secret keys ski of any set of at most t − 1 players gives
no information about the secret. Formally this is stated as in the following
indistinguishability based definition adapted from [RV05,HV09]:

Definition 2. Indistinguishability of secrets (IND1-secrecy) We say that
the PVSS is IND1-secret if for any polynomial time adversary APriv corrupting
at most t−1 parties, APriv has negligible advantage in the following game played
against a challenger.

1. The challenger runs the Setup phase of the PVSS as the dealer and sends all
public information to APriv. Moreover, it creates secret and public keys for
all uncorrupted parties, and sends the corresponding public keys to APriv.

2. APriv creates secret keys for the corrupted parties and sends the correspond-
ing public keys to the challenger.

3. The challenger chooses values x0 and x1 at random in the space of secrets.
Furthermore it chooses b ← {0, 1} uniformly at random. It runs the Dis-
tribution phase of the protocol with x0 as secret. It sends APriv all public
information generated in that phase, together with xb.

4. APriv outputs a guess b′ ∈ {0, 1}.

The advantage of APriv is defined as |Pr[b = b′]− 1/2|.

The IND1-secrecy definition is the one used in [RV05,HV09], except for the
fact that we do not impose any privacy requirement after the Reconstruction
phase. The difference stems from the fact that in [RV05,HV09] it was required

9

that nobody learns the secret but the parties interacting during the reconstruc-
tion, while in our random beacon application the secret must be publicly re-
constructed and published. We remark that our scheme can achieve both the
relaxed definition required by the random beacon application and the stronger
secrecy guarantees of [RV05,HV09] (through the use of private channels between
parties or through the technique of [HV09] that requires extra data to be posted
to the ledger). We also remark that our schemes can achieve the stronger secrecy
notion formalized as IND2-secrecy in [RV05,HV09], which allows the adversary
to choose arbitrary secrets. This is done by a black box transformation to the
protocols that allows for sharing arbitrary secrets instead of random ones by
using the random shared secret as a ”one time pad” to encrypt an arbitrary
secret, which is formally proven in [RV05,HV09].

2.5 Commitments

Commitment schemes [Blu81] are a fundamental cryptographic primitive that
function as a digital safe deposit box. Basically, a sender commits to a message
m by putting it inside the box, locking the box and sending the box to a receiver.
Later on, the sender can open the commitment by giving the receiver the key to
the box, revealing m. Notice that the sender cannot change the message after it
gives the locked box to the receiver (a property called binding) while the receiver
cannot learn the message before he receives the key (a property called hiding).
For formal definitions and constructions of commitment schemes with various
security guarantees and very good efficiency we refer the readers to the following
works for the stand alone [Nao91] and the Universal Composability [CDD+16]
models. We define a general syntax for commitments as follows:

– Com(m, r) takes as input a message m and randomness r, outputting a
commitment Com to message m.

– Open(m, r) takes as input a message m and randomness r, outputting the
opening information necessary for checking whether a corresponding com-
mitment Com is valid with respect to m and r.

2.6 Zero-Knowledge Proofs of Discrete Logarithm Knowledge

In our construction based on the DDH assumption in the random oracle model
we will need a zero-knowledge proof of knowledge of a value α ∈ Zq such that
x = gα and y = hα given g, x, h, y. We denote this proof by DLEQ(g, x, h, y).
Chaum and Pedersen constructed a sigma protocol to perform this proof in
[CP93], their protocol works as follows:

1. The prover computes a1 = gw and a2 = hw where w ← Zq and sends a1, a2
to the verifier.

2. The verifier sends a challenge e← Zq to the prover.
3. The prover sends a response z = w − αe to the verifier.

10

4. The verifier checks that a1 = gzxe and a2 = hzye and accepts the proof if
this holds.

This proof has the properties of completeness, soundness and zero-knowledge.
In our proofs, we will specifically reference the soundness property, which means
that a prover cannot convince a verifier of a fake statement except with a negli-
gible soundness error ε. Notice that this sigma protocol can be transformed into
a non-interactive zero-knowledge proof of knowledge of α in the random oracle
model through the Fiat-Shamir heuristic [FS87,PS96]. We remark that, as in
[Sch99], we need to compute this proof in parallel for n distinct pairs of values
(x1, y1), . . . , (xn, yn). In this case, a single challenge e is computed by the prover
as e = H(x1, y1, . . . , xn, yn, a1,1, a2,1, . . . , a1,n, a2,n), where the values a1,i, a2,i
are computed according to xi, yi as described above and H(·) is a random oracle
(that can be of course substituted by a cryptographic hash function). The proof
then consists of the challenge e along with responses zi computed according to
each xi, yi. The verifier can check the proof by computing a′1,i = gzixei and a′2,i =
hziyei , and verifying that H(x1, y1, . . . , xn, yn, a

′
1,1, a

′
2,i, . . . , a

′
1,n, a

′
2,n) = e.

3 PVSS based on the DDH assumption in the ROM

In this section, we construct a PVSS protocol secure under the DDH assump-
tion in the Random Oracle Model. Our general approach is similar to that of
Schoenmakers [Sch99] but differs significantly in the procedure used for share
verification, which represents the main overhead in Schoenmakers’ scheme. In
a setup phase, each party Pi is required to register in the ledger (or broadcast)
public keys pki of the form pki = hski , where h is a generator of group Gq of
order p and ski ← Zq is a secret key stored by each party. In the Distribu-
tion phase, the dealer starts by sharing a secret s ← Zq with Shamir Secret
Sharing and encrypting the shares s1, . . . , sn under the parties registered public
keys by computing ŝi = pksii , aiming at sharing a random secret of the form
hs. However, instead of committing to the coefficients of the polynomial used
for Shamir Secret Sharing, we commit to all the shares using an independently
chosen generator g of Gq by publishing vi = gsi . Moreover, the dealer publishes
non-interactive zero knowledge proofs that the ciphertexts ŝi contain the same
shares as the commitments vi (using DLEQ as described in Section 2.6). No-
tice that since g is chosen independently from h, knowing gs does not help an
adversary retrieve the secret hs unless it can compute the discrete log loghg.
In the Verification phase, anybody observing the public encrypted shares ŝi,
commitments to shares vi and NIZKs can check that the encrypted shares were
correctly generated by first verifying that the shares in ŝi indeed are the same
in vi and then performing an information theoretical check that only requires n
exponentiations. This check consists in selecting a codeword c⊥ = (c⊥1 , . . . , c

⊥
n)

from the dual code C⊥ corresponding to the Reed Solomon code C to which
the Shamir Secret Sharing procedure used in Distribution is equivalent, com-
puting the inner product of c⊥ with the shares vector (s1, . . . , sn) by computing

11

Protocol πDDH

Let g and h be two independently chosen generators of a group Gq of order q. Let
H(·) be a random oracle. Let C be the linear error correcting code corresponding
to the (n, t)-threshold Shamir Secret Sharing scheme and let C? be its dual code.
Protocol πDDH is run between n parties P1, . . . , Pn, a dealer D and an external
verifier V (in fact any number of external verifiers) who have access to a public
ledger where they can post information for later verification. The protocol proceeds
as follows:

1. Setup: Party Pi generates a secret key ski ← Zq, a public key pki = hski and
registers the public key pki by posting it to the public ledger, for 1 ≤ i ≤ n.

2. Distribution The dealer D first samples s ← Zq. The secret is defined to
be S = hs. D chooses t − 1 coefficients c1, . . . , ct�1 ← Zq. D constructs
a polynomial p(x) = s + c1x + c2x

2 + · · · + ct�1x
t�1 and computes shares

si = p(i) for 1 ≤ i ≤ n. D encrypts the shares as ŝi = pksii , computes com-
mitments vi = gsi and computes DLEQ(g, vi, pki, ŝi), for 1 ≤ i ≤ n from
a single challenge e as described in Section 2.6, obtaining (e, z1, . . . , zn). D
publishes in the public ledger the encrypted shares (ŝ1, . . . , ŝn) along with
PROOFD = (v1, . . . , vn, e, z1, . . . , zn).

3. Verification: The verifier V first checks that the DLEQ(g, vi, pki, ŝi) provided
by D is valid as described in Section 2.6. If the proof is valid, V samples a
random codeword c? = (c?1 , . . . , c

?
n) of the dual code C? corresponding to the

instance of Shamir’s (n, t)-threshold secret sharing used by D and considers the
shares valid if and only if the following expression is true:

n∏
i=1

v
c⊥i
i = 1.

4. Reconstruction: If a set of t or more parties Q wishes to reconstruct the
secret, each party Pi ∈ Q starts by publishing in the public ledger its decrypted

share s̃i = ŝ
1

ski
i = hsi and PROOFi = DLEQ(h, pki, s̃i, ŝi) (showing that the

decrypted share s̃i corresponds to ŝi). Once every party in Q publishes their
decrypted shares and PROOFi, they first verify that the proofs are valid and,
if this check succeeds, reconstruct the secret S = hs by Lagrange interpolation:∏

Pi2Q

(s̃i)
λi =

∏
Pi2Q

hp(i)λi = hp(0) = hs,

where λi =
∏
j 6=i

j
j�i are the Lagrange coefficients.

Fig. 1. Protocol πDDH

∏
i v

c⊥
i
i = g

∑
i sic

⊥
i and checking the result is g0 = 1. The Reconstruction phase

proceeds as in [Sch99], with each party Pi ”decrypting” its share to obtain hsi ,
which it published along with a proof that it corresponds to the encrypted share
ŝi. Once t decrypted shares are available, the parties can check that they are

12

valid and use Lagrange interpolation to reconstruct the secret hs. The protocol
is described in Figure 1.

3.1 Security Analysis

Notice that the Setup and Reconstruction phases are exactly equal to those of
[Sch99], while our protocol differs in the Distribution and Verification phases,
where we apply our new technique. The key observation is that maliciously
generated encrypted shares ŝ1, . . . , ŝn will only pass the verification procedure
with probability 1/q plus the soundness error of the DLEQ proof, while v1, . . . , vn
reveal no information about the secret hs under the DDH assumption (by an
argument similar to that of [Sch99]).

We formalize these observations below. First we consider IND1-secrecy. We
remark that while we use our relaxed IND1-secrecy notion or our randomness
beacon application (where no secrecy is preserved after reconstruction), Proto-
col πDDH achieves the original stronger IND1-secrecy notion of [RV05,HV09]
(where secrecy against parties outside the qualified set is guaranteed even after
the reconstruction) if the reconstruction is carried out through private channels
between the parties in the qualified set.

Theorem 1. Under the decisional Diffie-Hellman assumption, the protocol πDDH
is IND1-secret against a static PPT adversary.

Proof. We show that, if there exists an adversary APriv which can break the
IND1-secrecy property of protocol πDDH , then there exists an adversary ADDH

which can use APriv to break the decisional Diffie-Hellman assumption with the
same advantage. Without loss of generality we assume APriv corrupts the t− 1
first parties.

Let (g, gα, gβ , gγ) be an instance of the DDH problem. Obviously if α = 0 or
β = 0 then the problem is trivial, so we assume these values are nonzero. Now
ADDH, using APriv, can simulate an IND1 game as follows:

1. The challenger sets h = gα and runs the Setup phase of πDDH . For t ≤ i ≤ n,
ADDH selects uniformly random values ui ← Zp (these can be thought of
implicitly defining ski as ski = ui/α) and sends the values pki = gui to
APriv.

2. For 1 ≤ i ≤ t− 1, APriv chooses uniformly random values ski ← Zq and sets
pki = hski and sends this to the challenger.

3. For 1 ≤ i ≤ t− 1, the challenger chooses uniformly random values si ← Gq
and sets vi = gsi and ŝi = pksii .
For t ≤ i ≤ n, it generates the values vi = gp(i) where p(x) is the unique
polynomial of degree at most t determined by p(0) = β and p(i) = si for
i = 1, . . . , t−1. Note thatADDH does not know β, but it does know gβ = gp(0)

and gsi = gp(i) for 1 ≤ i ≤ t− 1, so it can use Lagrange interpolation in the
exponent to compute the adequate vi. It also creates the values ŝi = vui

i .

Note that then ŝi = gui·p(i) = pk
p(i)
i . From all the computed values, the

13

challenger now creates the DLEQ proofs as the dealer does in the PVSS
protocol. Finally it sends all this information together with the value gγ

(which plays the role of xb in the IND game) to APriv.
4. APriv makes a guess b′.

If b′ = 0, ADDH guesses that γ = α · β. If b′ = 1, ADDH guesses that γ is a
random element in Zp.

The information that APriv receives in step 3. is distributed exactly like a
sharing of the value hβ = gα·β with the PVSS. Consequently, γ = α · β if and
only if the value gγ sent to APriv is the secret shared by the PVSS. It is now
easy to see that the guessing advantage of ADDH is the same as the advantage
of APriv.

The following two theorems guarantee the verifiability property of πDDH .

Theorem 2. If the dealer does not construct values (vi, ŝi) of the right form
in the Distribution phase (i.e. either loggvi 6= logpki ŝi for some i, or loggvi =
logpki ŝi = si for all i but the values si do not constitute a valid sharing of some
secret in Zq with the (n, t)-threshold Shamir secret sharing scheme), then this is
detected in the verification step with probability at least 1 − ε − 1/q, where ε is
the soundness error of the proof DLEQ.

Proof. If the verification of DLEQ passes, then we have that, except with prob-
ability ε, for every 1 ≤ i ≤ n, there exists si with vi = gsi and ŝi = pksii . Now
the values si are a valid sharing with the (n, t)-threshold Shamir secret sharing
scheme if and only if the vector v = (s1, . . . , sn) ∈ C. Suppose that (s1, . . . , sn) /∈
C. Then by Lemma 1, since c⊥ is sampled uniformly at random then 〈v, c⊥〉 6= 0

except with probability 1/q. But then
∏n
i=1 v

c⊥
i
i =

∏n
i=1 g

si·c⊥
i = g〈v,c

⊥〉 6= 1.
Hence if the values si are not a valid Shamir sharing, then the check fails with
probability 1− 1/q.

Theorem 3. If a party in Q communicates an erroneous decryption share s̃i
in the Reconstruction phase, then this is detected by the verifier with probability
1− ε, where ε is the soundness error of the DLEQ proof.

Proof. This is straightforward by definition since an adversary that succeeds in
providing a DLEQ proof for an invalid decrypted share breaks DLEQ’s soundness
property.

4 PVSS based on pairings in the plain model

In this section, we construct a PVSS scheme based on the DBS assumption
in the plain model (without requiring random oracles). This scheme uses the
techniques of [HV09] to eliminate the need for the random oracle based NIZKs
and instead use pairings to check that the encrypted shares ŝi correspond to the
committed shares vi and, later on, check that the decrypted shares correspond
to ŝi. We use the same information theoretical verification procedure as in the
DDH based scheme. The protocol is described in Figure 2.

14

Protocol πDBS

Let Λ := (q,G,GT , e) be a description of a bilinear group and g, h be two
independently chosen generators of G. Let C be the linear error correcting code
equivalent to the (n, t)-threshold Shamir Secret Sharing scheme and C? its dual
code. Protocol πDBS is run between n parties P1, . . . , Pn, a dealer D and an
external verifier V (in fact any number of external verifiers) who have access to a
public ledger where they can post information for later verification. The protocol
proceeds as follows:

1. Setup: Party Pi generates a secret key ski ← Zq, a public key pki = hski and
registers the public key pki by posting it to the public ledger, for 1 ≤ i ≤ n.

2. Distribution The dealer D first samples s ← Zq. The secret is defined to
be S = e(h, h)s. D chooses t− 1 coefficients c1, . . . , ct�1 ← Zq. D constructs a
polynomial p(x) = s+c1x+c2x

2 + · · ·+ct�1x
t�1 and computes shares si = p(i)

for 1 ≤ i ≤ n. D encrypts the shares as ŝi = pksii and computes commitments
vi = gsi , for 1 ≤ i ≤ n. D posts in the public ledger the encrypted shares
ŝ1, . . . , ŝn and PROOFD = (v1, . . . , vn).

3. Verification: The verifier V first checks that e(ŝi, g) = e(pki, vi), for 1 ≤ i ≤ n.
If this check succeeds, V samples a random codeword c? = (c?1 , . . . , c

?
n) of the

dual code C? corresponding to the instance of Shamir’s (n, t)-threshold secret
sharing used by D and considers the shares valid if and only if the following
expression is true:

n∏
i=1

v
c⊥i
i = 1.

4. Reconstruction: If a set of t or more parties Q wishes to reconstruct the
secret, each party Pi ∈ Q starts publishing in the public ledger its decrypted

share s̃i = ŝ
1

ski
i = hsi (here PROOFi is an empty string). Once every party in

Q publishes their decrypted shares, they first verify that e(pki, s̃i) = e(ŝi, h) for
every Pi ∈ Q. If this check succeeds, they reconstruct the value hs by Lagrange
interpolation: ∏

Pi2Q

(s̃i)
λi =

∏
Pi2Q

hp(i)λi = hp(0) = hs,

where λi =
∏
j 6=i

j
j�i are the Lagrange coefficients. The secret is then computed

as S = e(hs, h).

Fig. 2. Protocol πDBS

4.1 Security Analysis

As in the DDH based protocol, notice that the Setup and Reconstruction phases
are exactly equal to those of [HV09], while our protocol differs in the Distribution
and Verification phases. Maliciously generated encrypted shares ŝ1, . . . , ŝn will
only pass the verification procedure with probability of 1/q, while v1, . . . , vn
again reveal no information about the secret e(h, h)s but this time under the BDS
assumption. Again we remark that Protocol πDBS achieves the original stronger

15

IND1-secrecy notion of [RV05,HV09] (where secrecy against parties outside the
qualified set is guaranteed even after the reconstruction) if the reconstruction is
carried out through private channels between the parties in the qualified set.

Theorem 4. Under the DBS assumption, protocol πDBS is IND1-secret against
a static PPT adversary.

Proof. The proof is similar to that of Theorem 1. We want to show that, if there
exists an adversaryAPriv which can break the privacy property of protocol πDBS ,
then there exists an adversary ABDS that breaks the decisional Diffie-Hellman
assumption with the same advantage.

Suppose that we are given an instance (g, gα, gβ , T) and the task of ABDS

is to guess whether T = e(gα, gα)β or T = e(gα, gα)γ for a random γ ← Zq.
ABDS now simulates an IND1 game for πDBS between a challenger an APriv

following exactly the same steps as ADDH did for protocol πDDH in the proof
of Theorem 1, except the secret is now e(h, h)β = e(gα, gα)β and at the end of
step 3. the challenger sends the value T (rather than gγ).

Now if the guess of APriv is b′ = 0, then ABDS guesses that T = e(gα, gα)β .
If b′ = 1, it guesses that T = e(gα, gα)γ or a random γ ← Zq.

It is now easy to see that the advantage of ABDS is the same as that of APriv.

Theorem 5. If the dealer does not construct values (vi, ŝi) of the right form
in the Distribution phase (i.e. either loggvi 6= logpki ŝi for some i, or loggvi =
logpki ŝi = si for all 1 ≤ i ≤ n but the values si do not constitute a valid sharing
of some secret in Zq with the (n, t)-threshold Shamir secret sharing scheme),
then this is detected in the verification step with probability at least 1− 1/q.

Proof. The only difference between this proof and the one for the protocol πDDH
is that here we do not use DLEQ proofs to guarantee that loggivi = logpki ŝi for
all i. Instead this is verified by checking that e(ŝi, g) = e(pki, vi), for 1 ≤ i ≤ n.
Note that if a = loggvi 6= logpki ŝi = b for some i, then e(ŝi, g) = e(pki, g)b 6=
e(pki, g)a = e(pki, vi) and the check fails with probability 1. The rest of the
proof works exactly as in the case of πDDH .

Theorem 6. If a party in Q communicates an erroneous decryption share s̃i in
the Reconstruction phase, then this is detected by the verifier with probability 1

Proof. If s̃i = ha with a 6= si then e(pki, s̃i) = e(pki, h)a 6= e(pki, h)si = e(ŝi, h).

5 Building the SCRAPE Randomness Beacon

Publicly verifiable secret sharing schemes have a multitude of applications as
discussed in [Sch99], among them universally verifiable elections, threshold ver-
sions of El Gamal encryption and threshold software key escrow. However, we
are specially interested in constructing SCRAPE, a protocol that implements a
distributed randomness beacon that is guaranteed to be secure given an honest

16

Protocol πSCRAPE

Protocol πDDH is run between n parties P1, . . . , Pn who have access to a public
ledger where they can post information for later verification. A PVSS protocol is
used as a sub protocol and it is assumed that the Setup phase is already done
and the public keys pki of each party Pi are already registered in the ledger.The
protocol proceeds as follows:

1. Commit: For 1 ≤ j ≤ n, party Pj executes the Distribution phase of the
PVSS sub protocol as the Dealer with threshold t = n

2
, publishing the en-

crypted shares ŝj1, . . . , ŝ
j
n and the verification information PROOF jD on the

public ledger, and also learning the random secret hs
j

and sj . Pj also pub-
lishes a commitment to the secret exponent Com(sj , rj) (with fresh randomness
rj ← Zq), for 1 ≤ j ≤ n.

2. Reveal: For every set of encrypted shares ŝj1, . . . , ŝ
j
n and the verification in-

formation PROOF jD published in the public ledger, all parties run the Veri-
fication phase of the PVSS sub protocol. Let C be the set of all parties who
published commitments and valid shares. Once n

2
parties have posted their

commitments and valid shares on the ledger, party Pj opens its commitment,
posting Open(sj , rj) on the ledger, for j ∈ C.

3. Recovery: For every party Pa ∈ C that does not publish Open(sa, ra) in the
Reveal phase, party Pj runs the Reconstruction phase of the PVSS protocol
posting s̃aj and PROOF aj to the public ledger, for 1 ≤ j ≤ n. Once n

2
valid

decrypted shares are published, every party reconstructs hs
a

.

The final randomness is computed as ρ =
∏
j2C h

sj .

Fig. 3. Protocol πSCRAPE

majority, a PVSS scheme and a public ledger. SCRAPE is basically a coin tossing
protocol with guaranteed output delivery (G.O.D.), meaning that an adversary
cannot prevent honest parties from obtaining a correct output (e.g. by abort-
ing before the execution is finished). Moreover, SCRAPE is publicly verifiable,
meaning that anybody can analyse past (and current) protocol transcripts to
verify that the protocol is being correctly executed. The reason we aim at guar-
anteed output delivery is twofold: 1. protecting against particularly adversarial
behavior and 2. Tolerating non-byzantine failures in users after the commitment
phase (e.g. power outage). When used to bootstrap blockchain based consensus
protocols such as in [KKR+16], πSCRAPE has to tolerate adversaries that can
force a temporary loss of consensus making the users end up with conflicting ran-
dom outputs or temporarily ”disconnecting” users from the network or public
ledger.

We follow the general approach of [RBO89] to obtain guaranteed output
delivery based on verifiable secret sharing, building on our PVSS schemes to
achieve public verifiability for the final coin tossing protocol. More specifically,
we use our PVSS protocols to instantiate the construction of [KKR+16], which
proposed to combine a PVSS scheme with a public ledger to obtain publicly

17

verifiable G.O.D. coin tossing. The protocol is described in Figure 3. The security
of πSCRAPE follows from the security of the general construction of [KKR+16]
and the security of our protocols that was proven in the previous sections. We
refer the reader to [KKR+16] for a detailed discussion on the general protocol.

6 Concrete Complexity and Experiments

In this section, we discuss the concrete efficiency of our protocols. First, we
present the concrete computational and communication complexity of our schemes,
comparing them with the protocols of Schoenmakers [Sch99] and of Heidervand
and Villar [HV09]. Next, we present experimental data from prototype imple-
mentations of our proposed protocols, comparing our protocols’ performance to
that of Schoenmakers protocol [Sch99].

Distribution Verification Reconstruction
Exp. Exp. Pair. Exp. Pair.

[HV09] n+ t nt 2n t+ 1 2t+ 1

Protocol πDBS 2n n 2n t+ 1 2t+ 1

[Sch99] 4n+ t nt+ 4n - 5t+ 3 -

Protocol πDDH 4n 5n - 5t+ 3 -
Table 1. Concrete computational complexity in terms of numbers of exponentiations
(Exp.) and pairings (Pair.) needed for each phase, considering that n shares are gen-
erated and t shares are used in reconstruction.

Computational Complexity: We first start by discussing the computational
complexity of our PVSS protocols, which is compared to that of the protocols
of [Sch99,HV09] in terms of numbers of exponentiations and pairings required
for each phase in Table 6. Notice that the main improvement of our protocols
in comparison with previous works lies in the verification phase, where πDBS
requires n(t − 1) less exponentations than the protocol of [HV09] and πDDH
requires nt less exponentiations than the protocol of [Sch99], where n is the
number of shares and t is the threshold.

The distribution phase of πDBS requires n− t more exponentiations than the
distribution phase of the protocol of [HV09] and 2n+ t less exponentiations than
the protocol of [Sch99]. Protocol πDDH requires t less exponentiations than the
protocol of [Sch99]. The smaller number of exponentiations required by πDBS
has a strong impact in improving the efficiency of this protocol (as we shall see
in the experimental data). The reconstruction phases of πDBS (resp. πDDH) and
the protocol of [HV09] (resp. the protocol of [Sch99]) are identical.

Notice that for our randomness beacon application we need t = n/2, which
translates into an extra overhead of n2/2 exponentiations required for the ver-
ification phase of previous protocols. Our protocols eliminate this quadratic

18

overhead, resulting in much better scalability. For example, if 10000 users run
SCRAPE based on [Sch99], 50004000 exponentiations are required in the verifi-
cation phase, while our instantiation of SCRAPE would require only 50000 expo-
nentiations, achieving a theoretical performance gain of over 100 times (though
the practical performance gain is smaller due to the overhead of other operations
such as polynomial arithmetics and I/O).

Communication Complexity: In Table 2, we present a comparison of the
communication complexity of our schemes communication complexity with the
protocols of [Sch99,HV09] in terms of number of group and ring elements required
for each phase. Our DDH based scheme requires 2n group elements and n + 1
ring elements to be published by the dealer while our pairings based construction
requires 2n source group elements. In previous DDH based constructions n + t
group elements and n+1 ring elements are required, while previous pairing based
constructions require n+ t source group elements. We argue that this difference
is not significant for our randomness beacon application, since n = t/2 in this
scenario, meaning that our schemes require an extra communication overhead of
only 0.5n group elements.

Distribution Reconstruction
G Zp G Zp

[HV09] n+ t 0 t 0

Protocol πDBS 2n 0 t 0

[Sch99] n+ t n+ 1 t t+ 1

Protocol πDDH 2n n+ 1 t t+ 1
Table 2. Concrete communication complexity in terms of numbers of elements of G
and elements of Zp needed for each phase, considering that n shares are generated and
t shares are used in reconstruction (notice that no communication is needed for the
reconstruction phase).

6.1 Experiments

In order to evaluate the concrete performance of our proposed protocols, we have
conducted experiments with prototype Haskell implementations [Han17,Ryb17]
of πDDH , πDBS and the PVSS scheme of [Sch99]. The implementations of πDDH
and the protocol of [Sch99] are based on curve P256R1 while the implementation
of πDBS is based on the mcl library [Mit15], which implements pairings based
on the 256-bit Barreto-Naehrig curve [BN06] Fp254BNb using parameters and
algorithms proposed in [AKL+11].

Notice that a version of πDBS over asymmetric pairings was implemented in
order to achieve better efficiency while preserving security guarantees. It is possi-
ble to instantiate πDBS over an asymmetric bilinear group Λ := (q,G1,G2,GT , e)
under the co-DBS assumption (i.e. assuming that the DBS assumption holds in

19

both source groups). This can be done by sampling h ← G1, g, g′ ← G2 such
that pki = hski ∈ G1 and vi ∈ G2, adding pk′i = gski ∈ G2 to the setup phase
and defining the secret as e(hs, g′). Now the check of validity of decrypted shares
in the reconstruction phase can be done using pk′i instead of pki by checking that
e(s̃i, pk

′
i) = e(ŝi, g). Alternatively, this check can also be done using vi without

the need for pk′i by checking that e(s̃i, g) = e(h, vi), though requiring each party
to save all vi until the reconstruction phase.

We analyze the execution time of each phase of Protocol πDDH , Proto-
col πDBS and the protocol of [Sch99] when processing n shares, for n from
1000 to 10000. We set t = n

2 , since that’s the threshold used in the SCRAPE
randomness beacon application. In the case of the Generation and Verification
phases, we analyze the execution time of generating and verifying n shares, while
for the Reconstruction phase we analyze the execution time for decrypting and
verifying validity of t shares and then using them for reconstructing the secret.
The experiments were run on a machine with a Intel(R) Core(TM) i7-7500U
CPU @ 2.70GHz and 16 GB of RAM running the 4.4.0-22-generic #40-Ubuntu
SMP Linux kernel.

0.2 0.4 0.6 0.8 1

·104

0

20

40

60

80

Number of shares n

D
is

tr
ib

u
ti

o
n

ru
n
ti

m
e

(s
ec

o
n
d
s)

Distribution runtime of πDDH vs. πDBS vs. [Sch99]

πDDH
πDBS
[Sch99]

Fig. 4. Execution time of the Distribution phases of πDDH vs. πDBS vs. Schoenmakers’
PVSS [Sch99] for a number of shares n from 1000 to 10000 and threshold t = n

2
.

Distribution Phase: Even though the distribution phases of πDDH , πDBS and
the protocol of [Sch99] are very similar, πDDH requires t less exponentiations
than the protocol of [Sch99] and πDBS requires 2n+ t less exponentiations than

20

the protocol of [Sch99]. Our experimental data shows that the small number of
exponentiations saved by πDDH does not have a high impact in concrete per-
formance while the much smaller number of exponentiations of πDBS results in
a clear efficiency improvement. The execution time of the distribution phases of
πDDH , πDBS and the protocol of [Sch99] are compared in Figure 4.

0.2 0.4 0.6 0.8 1

·104

0

1,000

2,000

3,000

4,000

Number of shares n

V
er

ifi
ca

ti
o
n

ru
n
ti

m
e

(s
ec

o
n
d
s)

Verification runtime of πDDH vs. πDBS vs. [Sch99]

πDDH
πDBS
[Sch99]

Fig. 5. Execution time of the Verification phases of πDDH vs. πDBS vs. Schoenmakers’
PVSS [Sch99] for a number of shares n from 1000 to 10000 and threshold t = n

2
.

Verification Phase: The main improvement of πDDH and πDBS over the pro-
tocol of [Sch99] is the verification phase that saves on nt exponentations, which

amounts to saving n2

2 exponentiations when t = n
2 , as in our experiments. Fig-

ure 5 compares the execution time of the verification phases of πDDH , πDBS and
the protocol of [Sch99]. Notice that in the case of n = 10000 and t = 5000, our
schemes are more than 20 times faster than the scheme of [Sch99]. The scale in
Figure 5 makes it look like πDDH and πDBS have the same execution time in
the verification phase. However, πDBS does have an overhead in comparison to
πDDH because it is based on pairings. Interestingly, this overhead is under 30%
for n ≥ 3000 and under 20% for n > 5000. We illustrate the overhead of πDBS in
comparison to πDDH in Figure 6, where the verification pahse execution times
of only our protocols are compared.

Reconstruction Phase: The reconstruction phase of πDDH and the protocol
of [Sch99] are exactly the same, while the reconstruction phase of πDBS requires

21

0.2 0.4 0.6 0.8 1

·104

0

50

100

150

200

250

Number of shares n

V
er

ifi
ca

ti
o
n

ru
n
ti

m
e

(s
ec

o
n
d
s)

Verification runtime of πDDH vs. πDBS

πDDH
πDBS

Fig. 6. Execution time of the Verification phases of πDDH vs. πDBS for a number of
shares n from 1000 to 10000 and threshold t = n

2
.

2n pairing operation in comparison to generating and checking n DLEQ proofs.
In these experiments, we consider the execution time of decrypting t shares,
generating and verifying proofs that these t decrypted shares are valid and using
them to interpolate the final secret. We can see in the experimental data that
the pairing operations do have an overhead but that this overhead between 40%
and 60% in comparison to πDDH and the protocol of [Sch99]. The experimental
data is compared in Figure 7.

7 Conclusion

We have introduced the first (n, t)-threshold PVSS scheme where only O(n)
public key operations are required throughout the protocol. Our main technique
is a new information theoretical verification phase and we can use it to construct
schemes in the ROM secure under the DDH assumption and in the plain model
with pairings under the DBS assumption. This efficient PVSS scheme enables
SCRAPE, a scalable protocol that implements a random beacon given an honest
majority. Requiring O(n) public key operations for verification still translates
into O(n2) public operations per party in SCRAPE (when verifying all n shares
from all n parties). Thus it is an interesting open problem to construct a similar
PVSS scheme that requires only a sublinear number of public key operations.
Moreover, our verification technique requires the dealer to publish at least 2n
group elements per n shares, which could potentially be reduced to n+ t group

22

1,000 2,000 3,000 4,000 5,000

0

20

40

60

Threshold t

R
ec

o
n
st

ru
ct

io
n

ru
n
ti

m
e

(s
ec

o
n
d
s)

Reconstruction runtime of πDDH vs. πDBS vs. [Sch99]

πDDH
πDBS
[Sch99]

Fig. 7. Execution time of the Reconstruction phases of πDDH vs. πDBS vs. Schoenmak-
ers’ PVSS [Sch99] comprising decryption, decrypted share verification and interpolation
using t shares as input for a threshold t from 500 to 5000.

elements as in previous works. We analyse our schemes in the stand-alone setting,
leaving a composable construction as a future work.

Acknowledgements

We thank Vincent Hanquez for implementing πDDH and Schoenmakers’ proto-
col [Sch99] and Andrzej Rybczak for implementing πDBS . We also thank them
both for their assistance during the benchmark process.

References

Adi08. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van Oorschot,
editor, Proceedings of the 17th USENIX Security Symposium, July 28-
August 1, 2008, San Jose, CA, USA, pages 335–348. USENIX Association,
2008.

AHO16. Masayuki Abe, Fumitaka Hoshino, and Miyako Ohkubo. Design in type-I,
run in type-III: Fast and scalable bilinear-type conversion using integer
programming. In Robshaw and Katz [RK16], pages 387–415.

AKL+11. Diego F. Aranha, Koray Karabina, Patrick Longa, Catherine H. Gebotys,
and Julio López. Faster explicit formulas for computing pairings over
ordinary curves. In Kenneth G. Paterson, editor, EUROCRYPT 2011,
volume 6632 of LNCS, pages 48–68. Springer, Heidelberg, May 2011.

23

B+14. Vitalik Buterin et al. A next-generation smart contract and decentralized
application platform. white paper, 2014.

BCG15. Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a
public randomness source. Cryptology ePrint Archive, Report 2015/1015,
2015. http://eprint.iacr.org/2015/1015.

BDF+15. Thomas Baignères, Cécile Delerablée, Matthieu Finiasz, Louis Goubin,
Tancrède Lepoint, and Matthieu Rivain. Trap me if you can – million
dollar curve. Cryptology ePrint Archive, Report 2015/1249, 2015. http:

//eprint.iacr.org/2015/1249.
BDO14. Carsten Baum, Ivan Damg̊ard, and Claudio Orlandi. Publicly auditable se-

cure multi-party computation. In Michel Abdalla and Roberto De Prisco,
editors, SCN 14, volume 8642 of LNCS, pages 175–196. Springer, Heidel-
berg, September 2014.

BGM16. Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without
proof of work. In Clark et al. [CMR+16], pages 142–157.

BLMR14. Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of
activity: Extending bitcoin’s proof of work via proof of stake [extended
abstract]y. SIGMETRICS Performance Evaluation Review, 42(3):34–37,
2014.

BLN16. Daniel J Bernstein, Tanja Lange, and Ruben Niederhagen. Dual ec: a stan-
dardized back door. In The New Codebreakers, pages 256–281. Springer,
2016.

Blu81. Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor,
CRYPTO’81, volume ECE Report 82-04, pages 11–15. U.C. Santa Bar-
bara, Dept. of Elec. and Computer Eng., 1981.

BN06. Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic
curves of prime order. In Bart Preneel and Stafford Tavares, editors, SAC
2005, volume 3897 of LNCS, pages 319–331. Springer, Heidelberg, August
2006.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In V. Ashby, editor, ACM CCS
93, pages 62–73. ACM Press, November 1993.

BT99. Fabrice Boudot and Jacques Traoré. Efficient publicly verifiable secret
sharing schemes with fast or delayed recovery. In Vijay Varadharajan and
Yi Mu, editors, ICICS 99, volume 1726 of LNCS, pages 87–102. Springer,
Heidelberg, November 1999.

CDD+16. Ignacio Cascudo, Ivan Damg̊ard, Bernardo David, Nico Döttling, and Jes-
per Buus Nielsen. Rate-1, linear time and additively homomorphic UC
commitments. In Robshaw and Katz [RK16], pages 179–207.

CDE+16. Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,
Ahmed E. Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün
Sirer, Dawn Song, and Roger Wattenhofer. On scaling decentralized
blockchains - (A position paper). In Clark et al. [CMR+16], pages 106–125.

CGMA85. Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Ver-
ifiable secret sharing and achieving simultaneity in the presence of faults
(extended abstract). In 26th FOCS, pages 383–395. IEEE Computer So-
ciety Press, October 1985.

Cle86. Richard Cleve. Limits on the security of coin flips when half the processors
are faulty (extended abstract). In Juris Hartmanis, editor, Proceedings of
the 18th Annual ACM Symposium on Theory of Computing, May 28-30,
1986, Berkeley, California, USA, pages 364–369. ACM, 1986.

24

http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2015/1249
http://eprint.iacr.org/2015/1249

CMR+16. Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach,
Michael Brenner, and Kurt Rohloff, editors. FC 2016 Workshops, vol-
ume 9604 of LNCS. Springer, Heidelberg, February 2016.

CP93. David Chaum and Torben P. Pedersen. Wallet databases with observers.
In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages
89–105. Springer, Heidelberg, August 1993.

DMS04. Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th Conference on USENIX
Security Symposium - Volume 13, SSYM’04, pages 21–21, Berkeley, CA,
USA, 2004. USENIX Association.

DPSW16. Jean Paul Degabriele, Kenneth G. Paterson, Jacob C. N. Schuldt, and
Joanne Woodage. Backdoors in pseudorandom number generators: Possi-
bility and impossibility results. In Matthew Robshaw and Jonathan Katz,
editors, CRYPTO 2016, Part I, volume 9814 of LNCS, pages 403–432.
Springer, Heidelberg, August 2016.

Fel87. Paul Feldman. A practical scheme for non-interactive verifiable secret
sharing. In 28th FOCS, pages 427–437. IEEE Computer Society Press,
October 1987.

FO98. Eiichiro Fujisaki and Tatsuaki Okamoto. A practical and provably secure
scheme for publicly verifiable secret sharing and its applications. In Kaisa
Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 32–46.
Springer, Heidelberg, May / June 1998.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987.

GKL15. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin back-
bone protocol: Analysis and applications. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS,
pages 281–310. Springer, Heidelberg, April 2015.

GPS06. S.D. Galbraith, K.G. Paterson, and N.P. Smart. Pairings for cryptog-
raphers. Cryptology ePrint Archive, Report 2006/165, 2006. http:

//eprint.iacr.org/2006/165.
GRFJ14. Mainak Ghosh, Miles Richardson, Bryan Ford, and Rob Jansen. A torpath

to torcoin: proof-of-bandwidth altcoins for compensating relays. Technical
report, DTIC Document, 2014.

Han17. Vincent Hanquez. pvss-haskell, 2017. https://github.com/

input-output-hk/pvss-haskell.
HV09. Somayeh Heidarvand and Jorge L. Villar. Public verifiability from pairings

in secret sharing schemes. In Roberto Maria Avanzi, Liam Keliher, and
Francesco Sica, editors, SAC 2008, volume 5381 of LNCS, pages 294–308.
Springer, Heidelberg, August 2009.

Jha11. Mahabir Prasad Jhanwar. A practical (non-interactive) publicly verifiable
secret sharing scheme. In Feng Bao and Jian Weng, editors, Information
Security Practice and Experience - 7th International Conference, ISPEC
2011, Guangzhou, China, May 30 - June 1, 2011. Proceedings, volume 6672
of Lecture Notes in Computer Science, pages 273–287. Springer, 2011.

JVSN14. Mahabir Prasad Jhanwar, Ayineedi Venkateswarlu, and Reihaneh Safavi-
Naini. Paillier-based publicly verifiable (non-interactive) secret sharing.
Designs, Codes and Cryptography, 73(2):529–546, 2014.

25

http://eprint.iacr.org/2006/165
http://eprint.iacr.org/2006/165
https://github.com/input-output-hk/pvss-haskell
https://github.com/input-output-hk/pvss-haskell

KKR+16. Aggelos Kiayias, Ioannis Konstantinou, Alexander Russell, Bernardo
David, and Roman Oliynykov. A provably secure proof-of-stake blockchain
protocol. Cryptology ePrint Archive, Report 2016/889, 2016. http:

//eprint.iacr.org/2016/889.

KMS+16. Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts. In 2016 IEEE Symposium on Security and
Privacy, pages 839–858. IEEE Computer Society Press, May 2016.

LV08. Benôıt Libert and Damien Vergnaud. Unidirectional chosen-ciphertext
secure proxy re-encryption. In Ronald Cramer, editor, PKC 2008, volume
4939 of LNCS, pages 360–379. Springer, Heidelberg, March 2008.

LW15. Arjen K. Lenstra and Benjamin Wesolowski. A random zoo: sloth, unicorn,
and trx. Cryptology ePrint Archive, Report 2015/366, 2015. http://

eprint.iacr.org/2015/366.

Mau96. Ueli M. Maurer, editor. EUROCRYPT’96, volume 1070 of LNCS.
Springer, Heidelberg, May 1996.

Mit15. Shigeo Mitsunari. mcl, 2015. https://github.com/herumi/mcl.

MS81. Robert J. McEliece and Dilip V. Sarwate. On sharing secrets and reed-
solomon codes. Commun. ACM, 24(9):583–584, 1981.

Nak08. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

Nao91. Moni Naor. Bit commitment using pseudorandomness. Journal of Cryp-
tology, 4(2):151–158, 1991.

Pai99. Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Jacques Stern, editor, EUROCRYPT’99, volume 1592
of LNCS, pages 223–238. Springer, Heidelberg, May 1999.

PS96. David Pointcheval and Jacques Stern. Security proofs for signature
schemes. In Maurer [Mau96], pages 387–398.

Rab83. Michael O. Rabin. Transaction protection by beacons. J. Comput. Syst.
Sci., 27(2):256–267, 1983.

RBO89. Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty
protocols with honest majority (extended abstract). In 21st ACM STOC,
pages 73–85. ACM Press, May 1989.

RK16. Matthew Robshaw and Jonathan Katz, editors. CRYPTO 2016, Part III,
volume 9816 of LNCS. Springer, Heidelberg, August 2016.

RV05. Alexandre Ruiz and Jorge Luis Villar. Publicly verfiable secret sharing
from paillier’s cryptosystem. In Christopher Wolf, Stefan Lucks, and Po-
Wah Yau, editors, WEWoRC 2005 - Western European Workshop on Re-
search in Cryptology, July 5-7, 2005, Leuven, Belgium, volume 74 of LNI,
pages 98–108. GI, 2005.

Ryb17. Andrzej Rybczak. pvss-haskell, 2017. https://github.com/arybczak/

pvss-haskell.

Sch99. Berry Schoenmakers. A simple publicly verifiable secret sharing scheme
and its application to electronic. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 148–164. Springer, Heidelberg,
August 1999.

Sha79. Adi Shamir. How to share a secret. Communications of the Association
for Computing Machinery, 22(11):612–613, November 1979.

SJK+16. Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly,
Linus Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. Scalable

26

http://eprint.iacr.org/2016/889
http://eprint.iacr.org/2016/889
http://eprint.iacr.org/2015/366
http://eprint.iacr.org/2015/366
https://github.com/herumi/mcl
https://github.com/arybczak/pvss-haskell
https://github.com/arybczak/pvss-haskell

bias-resistant distributed randomness. Cryptology ePrint Archive, Re-
port 2016/1067, 2016. http://eprint.iacr.org/2016/1067. To appear
at IEEE Security & Privacy 2017.

Sta96. Markus Stadler. Publicly verifiable secret sharing. In Maurer [Mau96],
pages 190–199.

SV15. Berry Schoenmakers and Meilof Veeningen. Universally verifiable multi-
party computation from threshold homomorphic cryptosystems. In Tal
Malkin, Vladimir Kolesnikov, Allison Bishop Lewko, and Michalis Poly-
chronakis, editors, ACNS 15, volume 9092 of LNCS, pages 3–22. Springer,
Heidelberg, June 2015.

vdHLZZ15. Jelle van den Hooff, David Lazar, Matei Zaharia, and Nickolai Zeldovich.
Vuvuzela: Scalable private messaging resistant to traffic analysis. In Pro-
ceedings of the 25th Symposium on Operating Systems Principles, SOSP
’15, pages 137–152, New York, NY, USA, 2015. ACM.

WCGFJ12. David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron
Johnson. Dissent in numbers: Making strong anonymity scale. In Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design
and Implementation, OSDI’12, pages 179–192, Berkeley, CA, USA, 2012.
USENIX Association.

27

http://eprint.iacr.org/2016/1067

	SCRAPE: Scalable Randomness Attested by Public Entities

