MAPK3

gen de la especie Homo sapiens

La MAP quinasa 3 (MAPK3) es una enzima codificada en humanos por el gen mapk3.[1]

MAP quinasa 3
Estructuras disponibles
PDB

Buscar ortólogos: PDBe, RCSB

 Lista de códigos PDB
2ZOQ
 Estructuras enzimáticas
Identificadores
Símbolos MAPK3 (HGNC: 6877) ERK1, HS44KDAP, HUMKER1A, MGC20180, P44ERK1, P44MAPK, PRKM3
Identificadores
externos
Número EC 2.7.11.24
Locus Cr. 16 p11.2
Patrón de expresión de ARNm
ancho=250px
Más información
Ortólogos
Especies
Humano Ratón
Entrez
5595 26417
Ensembl
Véase HS Véase MM
UniProt
P27361 Q63844
RefSeq
(ARNm)
NM_001040056 NM_011952
RefSeq
(proteína) NCBI
NP_001035145 NP_036082
Ubicación (UCSC)
Cr. 16:
30.13 – 30.13 Mb
Cr. 7:
126.76 – 126.77 Mb
PubMed (Búsqueda)
[1]


[2]

La MAPK3 pertenece a la familia de las MAP quinasas. Las MAP quinasas actúan como punto de integración de múltiples señales bioquímicas, y están implicadas en una amplia variedad de procesos celulares tales como proliferación celular, diferenciación celular y progresión del ciclo celular en respuesta a gran variedad de señales extracelulares. Esta quinasa es fosforilada a su vez por otras quinasas, lo que permite su traslocación al núcleo celular, donde fosforilará dianas nucleares. Se han descrito diversas variantes transcripcionales de este gen, que codifican diferentes isofromas de la proteína.[2]

Interacciones

editar

La proteína MAPK3 ha demostrado ser capaz de interaccionar con:

Véase también

editar

Referencias

editar
  1. Garcia F, Zalba G, Paez G, Encio I, de Miguel C (Apr de 1999). «Molecular cloning and characterization of the human p44 mitogen-activated protein kinase gene». Genomics 50 (1): 69-78. PMID 9628824. 
  2. «Entrez Gene: MAPK3 mitogen-activated protein kinase 3». 
  3. Pettiford, S M; Herbst R (Feb. de 2000). «The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP». Oncogene (ENGLAND) 19 (7): 858-69. ISSN 0950-9232. PMID 10702794. doi:10.1038/sj.onc.1203408. 
  4. Saxena, M; Williams S, Taskén K, Mustelin T (Sep. de 1999). «Crosstalk between cAMP-dependent kinase and MAP kinase through a protein tyrosine phosphatase». Nat. Cell Biol. (ENGLAND) 1 (5): 305-11. ISSN 1465-7392. PMID 10559944. doi:10.1038/13024. 
  5. Saxena, M; Williams S; Brockdorff J; Gilman J; Mustelin T (Apr. de 1999). «Inhibition of T cell signaling by mitogen-activated protein kinase-_targeted hematopoietic tyrosine phosphatase (HePTP)». J. Biol. Chem. (UNITED STATES) 274 (17): 11693-700. ISSN 0021-9258. PMID 10206983. 
  6. Mao, C; Ray-Gallet D, Tavitian A, Moreau-Gachelin F (Feb. de 1996). «Differential phosphorylations of Spi-B and Spi-1 transcription factors». Oncogene (ENGLAND) 12 (4): 863-73. ISSN 0950-9232. PMID 8632909. 
  7. Kim, D W; Cochran B H (Feb. de 2000). «Extracellular signal-regulated kinase binds to TFII-I and regulates its activation of the c-fos promoter». Mol. Cell. Biol. (UNITED STATES) 20 (4): 1140-8. ISSN 0270-7306. PMID 10648599. 
  8. Todd, J L; Tanner K G, Denu J M (mayo. de 1999). «Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway». J. Biol. Chem. (UNITED STATES) 274 (19): 13271-80. ISSN 0021-9258. PMID 10224087. 
  9. Zhou, X; Richon V M, Wang A H, Yang X J, Rifkind R A, Marks P A (Dec. de 2000). «Histone deacetylase 4 associates with extracellular signal-regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic Ras». Proc. Natl. Acad. Sci. U.S.A. (UNITED STATES) 97 (26): 14329-33. ISSN 0027-8424. PMID 11114188. doi:10.1073/pnas.250494697. 
  10. Roux, Philippe P; Richards Stephanie A, Blenis John (Jul. de 2003). «Phosphorylation of p90 ribosomal S6 kinase (RSK) regulates extracellular signal-regulated kinase docking and RSK activity». Mol. Cell. Biol. (United States) 23 (14): 4796-804. ISSN 0270-7306. PMID 12832467. 
  11. Zhao, Y; Bjorbaek C, Moller D E (Nov. de 1996). «Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases». J. Biol. Chem. (UNITED STATES) 271 (47): 29773-9. ISSN 0021-9258. PMID 8939914. 
  12. a b Marti, A; Luo Z, Cunningham C, Ohta Y, Hartwig J, Stossel T P, Kyriakis J M, Avruch J (Jan. de 1997). «Actin-binding protein-280 binds the stress-activated protein kinase (SAPK) activator SEK-1 and is required for tumor necrosis factor-alpha activation of SAPK in melanoma cells». J. Biol. Chem. (UNITED STATES) 272 (5): 2620-8. ISSN 0021-9258. PMID 9006895. 
  13. a b Butch, E R; Guan K L (Feb. de 1996). «Characterization of ERK1 activation site mutants and the effect on recognition by MEK1 and MEK2». J. Biol. Chem. (UNITED STATES) 271 (8): 4230-5. ISSN 0021-9258. PMID 8626767. 
  14. Schaeffer, H J; Catling A D, Eblen S T, Collier L S, Krauss A, Weber M J (Sep. de 1998). «MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade». Science (UNITED STATES) 281 (5383): 1668-71. ISSN 0036-8075. PMID 9767029. 
  15. Yung, Y; Yao Z; Hanoch T; Seger R (mayo. de 2000). «ERK1b, a 46-kDa ERK isoform that is differentially regulated by MEK». J. Biol. Chem. (UNITED STATES) 275 (21): 15799-808. ISSN 0021-9258. PMID 10748187. doi:10.1074/jbc.M910060199. 
  16. a b Zheng, C F; Guan K L (Nov. de 1993). «Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases». J. Biol. Chem. (UNITED STATES) 268 (32): 23933-9. ISSN 0021-9258. PMID 8226933. 
  17. Muda, M; Theodosiou A; Gillieron C; Smith A; Chabert C; Camps M; Boschert U; Rodrigues N; Davies K; Ashworth A; Arkinstall S (Apr. de 1998). «The mitogen-activated protein kinase phosphatase-3 N-terminal noncatalytic region is responsible for tight substrate binding and enzymatic specificity». J. Biol. Chem. (UNITED STATES) 273 (15): 9323-9. ISSN 0021-9258. PMID 9535927. 
  NODES