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Abstract

The complexity of financial markets leads to different types of indeterminate asset

returns. For example, asset returns are considered as random variables, when the

available data is enough. When the available data is too small or even no available

data to estimate a probability distribution, we have to invite some domain experts to

evaluate the belief degrees of asset returns. Then, asset returns can be described as

uncertain variables. In this paper, we discuss a multi-period portfolio selection problem

under uncertain environment, which maximizes the final wealth and minimizes the

risk of investment. Unlike the common method to describe the multi-period portfolio

selection problem as a bi-objective optimization model, we formulate this uncertain

multi-period portfolio selection problem by a new method in three steps with two

single objective optimization models. And, we consider the influence of transaction

cost and bankruptcy of investor. Then, the proposed uncertain optimization models are

transformed into the corresponding crisp optimization models and we use the genetic

algorithm combined with penalty function method to solve them. Finally, a numerical

example is given to show the effectiveness and practicability of proposed models and

method.

Keywords: Multi-period portfolio selection; Uncertainty; Optimization; Invest-

ment strategy
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1 Introduction

In financial markets, the investor usually needs to choose an optimal investment strategy to

allocate his/her wealth among different assets for achieving different investment goals, which

is called the portfolio selection problem. The portfolio selection problem was pioneered by

Markowitz [1] with the mean-variance portfolio selection model. Since then, the portfolio

selection problem has been one of the most important optimization problems in financial

markets. Many works have been done to study the single period portfolio selection problems,

such as Sharpe [2], Pang [3], Best and Grauer [4], Simonelli [5], Sawik [6, 7, 8], Sun et al. [9].

However, in real world, most of investors are willing to invest long-term assets for gain-

ing more return. That is, investors should adjust their investment strategies from time to

time. Hence, the multi-period portfolio selection problems have attracted great attention of

researchers. Li and Ng [10] considered an analytical optimal solution to the mean-variance

formulation in multi-period portfolio selection problem. Zhu et al. [11] proposed a generalized

mean-variance formulation from which an optimal investment policy can be generated to help

investors not only achieve an optimal return, but also have a good risk control over bankrupt-

cy. Calafiore [12] concerned with multi-period sequential decision problems for financial asset

allocation and presented a multi-period portfolio optimization model with control policies.

Costa and Araujo [13] dealt with a generalized multi-period mean-variance portfolio selec-

tion problem with market parameters subject to Markov random regime switchings. Wu and

Li [14] investigated a multi-period mean-variance portfolio selection with regime switching

and uncertain exit time. Wu and Li [15] studied a non-self-financing portfolio optimization

problem under the framework of multi-period mean-variance with Markov regime switching

and a stochastic cash flow. Sun et al. [16] developed a minimax model for a multi-period

portfolio selection problem and provided a computationally simple analytical solution.

All the above literature assumes that the asset returns are random variables. The corre-

sponding portfolio selection problems have been solved by probability theory. But, a premise

of applying probability theory is that the available distribution is closed enough to the real

frequency. However, we sometimes have no or not enough samples to estimate the distribu-

tion via statistics. Then, the fuzzy set theory offers an appropriate alternative. The fuzzy

single period and multi-period portfolio selection problems have also been studied by many

scholars. Vercher et al. [17] presented a fuzzy downside risk approach for managing portfolio

selection problems in the framework of risk-return trade-off using interval-valued expectation-

s. Li et al. [18] established a fuzzy mean-variance-skewness model and designed a genetic
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algorithm integrating fuzzy simulation. Sadjadi et al. [19] discussed a fuzzy multi-period

portfolio optimization problem with different rates for borrowing and lending. Liu et al. [20]

considered four fuzzy multi-period portfolio optimization models by using multiple criteria.

Zhang et al. [21] presented a possibilistic mean-semivariance-entropy model for multi-period

portfolio selection with fuzzy returns. Liu and Zhang [22] considered a multi-period fuzzy

portfolio optimization problem with minimum transaction lots. Guo et al. [23] constructed

a fuzzy multi-period portfolio selection problem under the assumption that risky assets have

different investment horizons. Mehlawat [24] studied a fuzzy multi-objective multi-period

portfolio selection problem considering multi-choice aspiration levels for each goal.

However, fuzzy theory suffers from criticism since a paradox will appear when fuzzy

variable is used to describe the asset return (see Huang and Ying [25]). In order to better

describe the subjective imprecise quantity, an uncertainty theory was founded by Liu [26]

in 2007 and refined by Liu [27] in 2010 as another alternative tool to deal with human un-

certainty. Then, many works have been done to develop the uncertainty theory, such as

Liu [28], Yao and Li [29], Gao et al. [30], Yan and Zhu [31], Yao [32], Qin et al. [33]. Up to

now, uncertainty theory has become a branch of axiomatic mathematics and contains many

topics, such as uncertain programming, uncertain process, uncertain calculus, and uncer-

tain differential equation. Meanwhile, many scholars have researched the portfolio selection

problems based on uncertainty theory. For instance, Qin et al. [33] discussed an uncertain

portfolio adjusting problem with risky assets. Zhu [34] introduced and dealt with an uncer-

tain optimal control problem with application to a portfolio selection model. Ning et al. [35]

proposed a new mean-TVaR model for portfolio selection, where the returns of securities are

described as uncertain variables. Yao and Ji [36] proposed a decision-making method based

on the expected utility criterion and used it to solve a portfolio selection problem. Ning

et al. [37] considered a mean-variance portfolio selection problem with triangular entropy

as a constraint. Furthermore, Huang and Qiao [38] employed uncertainty theory to help

solve a multi-period portfolio selection problem, where the asset return rates are regarded

as uncertain variables.

At present, there are few literature that focus on multi-period portfolio selection problem

under the framework of uncertainty theory proposed by Liu [26] because of the complexity

of transformation. Huang and Qiao [38] considered just a special case because they assumed

that each asset return is a normal uncertain variable. In this paper, we will consider a multi-

period portfolio selection problem based on uncertainty theory by mean-variance model

taking into account the transaction cost and bankruptcy of investor. Our paper contributes
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to the literature in the following way. Firstly, we employ the classical mean-variance model to

consider the multi-period portfolio selection problem based on uncertainty theory. Secondly,

the presented problem is formulated by a new method in three steps. Thirdly, our model

holds for arbitrary uncertain variable with regular uncertainty distribution.

The rest of this paper is organized as follows. In Section 2, we review some concepts

and theorems in uncertainty theory. The uncertain multi-period portfolio selection problem

is modeled in three steps in Section 3. In Section 4, two proposed uncertain optimization

models are converted into two crisp optimization models and a method is presented for solving

them. A numerical example is given in Section 5. The last section gives a conclusion.

2 Preliminary

For formulating and discussing the multi-period portfolio selection problem under uncertain

environment, many basic concepts and theorems in uncertainty theory should be used, such

as uncertain variable, uncertainty distribution, and uncertain expected value. In order to

facilitate understanding, in this section, we introduce all the needed concepts and theorems.

Uncertain variable

Let Γ be a nonempty set, and L a σ-algebra over Γ. Each element Λ ∈ L is called an event. A

set functionM defined on the σ-algebra over L is called an uncertain measure if it satisfies the

following axioms: (normality axiom) M{Γ} = 1 for the universal set Γ; (duality axiom)

M{Λ}+M{Λc} = 1 for any event Λ; (subadditivity axiom) M {
∪∞

i=1 Λi} ≤
∑∞

i=1 M{Λi}
for every countable sequence of events Λ1,Λ2, · · · .

The triplet (Γ,L,M) is called an uncertainty space. A product uncertain measure M is

defined by Liu [28] to produce an uncertain measure of compound event: (product axiom)

Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, · · · . Then the product uncertain measure

M is an uncertain measure satisfying

M

{
∞∏
k=1

Λk

}
=

∞∧
k=1

Mk{Λk}, (1)

where Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively.
An uncertain variable is defined by Liu [26], i.e., an uncertain variable is a function ξ

from an uncertainty space (Γ,L,M) to the set of real numbers such that the set {ξ ∈ B} =

{γ ∈ Γ | ξ(γ) ∈ B} is an event for any Borel set of real numbers. The uncertain variables
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ξ1, ξ2, · · · , ξm are said to be independent if

M

{
m∩
i=1

{ξi ∈ Bi}

}
= min

1≤i≤m
M{ξi ∈ Bi} (2)

for any Borel sets B1, B2, · · · , Bm of real numbers.

The uncertainty distribution Φ(x) of an uncertain variable ξ is defined by Liu [26] as

Φ(x) = M{ξ ≤ x}. (3)

Then, Liu [27] presented the concept of regular uncertainty distribution, i.e., an uncertainty

distribution Φ(x) is said to be regular if it is a continuous and strictly increasing function

with respect to x at which 0 < Φ(x) < 1, and

lim
x→−∞

Φ(x) = 0, lim
x→+∞

Φ(x) = 1. (4)

When uncertainty distribution Φ(x) of an uncertain variable ξ is regular, the inverse function

Φ−1(α) is called the inverse uncertainty distribution of ξ.

An uncertain variable ξ is called linear if it has a linear uncertainty distribution

Φ(x) =


0, if x ≤ a

(x− a)/(b− a), if a ≤ x ≤ b

1, if x ≥ b

(5)

denoted by ξ ∼ L(a, b) where a and b are real numbers with a < b. The inverse uncertainty

distribution of linear uncertain variable L(a, b) is

Φ−1(α) = (1− α)a+ αb, (0 < α < 1). (6)

Theorem 1. (Liu [27]) Let ξ1, ξ2, · · · , ξn be independent uncertain variables with regu-

lar uncertainty distributions Φ1,Φ2, · · · ,Φn, respectively. If the function f(x1, x2, · · · , xn)

is strictly increasing with respect to x1, x2, · · · , xm and strictly decreasing with respect to

xm+1, xm+2, · · · , xn, then ξ = f(ξ1, ξ2, · · · , ξn) is an uncertain variable with inverse uncer-

tainty distribution

Ψ−1(α) = f(Φ−1
1 (α), · · · ,Φ−1

m (α),Φ−1
m+1(1− α), · · · ,Φ−1

n (1− α)). (7)
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Expected value and variance

For describing the average value of an uncertain variable ξ, Liu [26] defined the concept of

expected value as

E[ξ] =

∫ +∞

0

M{ξ ≥ x}dx−
∫ 0

−∞
M{ξ ≤ x}dx (8)

provided that at least one of the two integrals is finite.

Theorem 2. (Liu [26]) Let ξ be an uncertain variable. Then for any given numbers a > 0

and p > 0, we have

M{|ξ| > a} ≤ E[|ξ|p]
ap

. (9)

Theorem 3. (Liu [27]) Let ξ be an uncertain variable with regular uncertainty distribution

Φ. Then

E[ξ] =

∫ 1

0

Φ−1(α)dα. (10)

The definition of variance of an uncertain variable is also given by Liu [26] in 2007. Let

ξ be an uncertain variable with finite expected value e. Then the variance of ξ is

V [ξ] = E[(ξ − e)2]. (11)

Because of the subadditivity of uncertain measure, the variance of an uncertain variable

cannot be deduced simply by its uncertainty distribution (see Liu [27]). Hence, Liu [27]

defined

V [ξ] =

∫ ∞

0

(1− Φ(E[ξ] +
√
x) + Φ(E[ξ]−

√
x))dx (12)

as an acceptable stipulation. Based on this stipulation, Yao [32] deduced the following

theorem.

Theorem 4. (Yao [32]) Let ξ be an uncertain variable with regular uncertainty distribution

Φ and finite expected value e. Then

V [ξ] =

∫ 1

0

(Φ−1(α)− e)2dα. (13)

3 Problem formulation

Here, we consider a multi-period portfolio problem with N risky assets and T investment

periods in financial markets, where the return rate ri,t (i = 1, 2, · · · , N, t = 1, 2, · · · , T ) is
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modeled as an uncertain variable with regular uncertainty distribution Φi,t. Assume that

the uncertain return rates ri1,t1 and ri2,t2 are independent for any different i1 and i2 (i1, i2 =

1, 2, · · · , N) or t1 and t2 (t1, t2 = 1, 2, · · · , T ). The investor allocates his/her initial wealth

W0 among N risky assets at beginning of period 1 and the wealth can be reallocated at

every beginning of the following T − 1 consecutive time periods. The purpose of investor is

to maximize the final wealth and minimize the risk of investment. Assume that the whole

investment process is self-financing, i.e., there is no exogenous infusion or withdrawal of

money after the initial time. In order to formulate this mathematical model, we use the

following notations:

ri,t : the uncertain return rate of risky asset i at period t,

xi,t : the investment proportion of risky asset i at the beginning of period t,

xt : the portfolio at the beginning of period t, where xt = (x1,t, x2,t, · · · , xN,t),

Rt : the return rate of portfolio xt at period t,

ci,t : the unit transaction cost of risky asset i at period t,

Wt : the wealth at end of period t,

where i = 1, 2, · · · , N and t = 1, 2, · · · , T .
The return rate of portfolio xt = (x1,t, x2,t, · · · , xN,t) at period t can be expressed as

Rt =
N∑
i=1

ri,txi,t, t = 1, 2, · · · , T. (14)

And, the transaction cost at the beginning of period t is

Ct =
N∑
i=1

ci,t|xi,t − xi,t−1|, t = 1, 2, · · · , T. (15)

Here, we assume that xi,0 = 0, i = 1, 2, · · · , N , which means that the investor held no assets

before investment. Hence, the total wealth at the end of period t is

Wt = Wt−1(1 +Rt − Ct)

= Wt−1

(
1 +

N∑
i=1

ri,txi,t −
N∑
i=1

ci,t|xi,t − xi,t−1|
)
, t = 1, 2, · · · , T.

(16)

Obviously, the final wealth can be written as

WT = W0

T∏
t=1

(
1 +

N∑
i=1

ri,txi,t −
N∑
i=1

ci,t|xi,t − xi,t−1|
)
. (17)
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As it is well known, in stock markets, the circuit-breaker mechanism can be used to

stabilize the stock markets and control the transaction risk. For controlling the risk of

investment, we introduce the concept of bankruptcy, which means the total wealth of an

investor falls below a preset “disaster” level in any period t. We stipulate that when the

bankruptcy happens, the investor will terminate further investment behavior. Let bt, t =

1, 2, · · · , T , be the preset bankruptcy threshold at period t. Then, the bankruptcy event at

period t can be denoted as Λt = {Wt ≤ bt,Wj > bj, j = 1, 2, · · · , t− 1}, t = 1, 2, · · · , T. The
belief degree of uncertain event Λt can be represented by

M{Λt} = M{Wt ≤ bt,Wj > bj, j = 1, 2, · · · , t− 1}, t = 1, 2, · · · , T. (18)

Proposition 1. Assume that E[Wt] > bt and E[(Wt−E[Wt])2]
(E[Wt]−bt)2

≤ θt. Then, it holds that

M{Λt} ≤ θt.

Proof Let ξ = Wt − E[Wt], a = E[Wt]− bt and p = 2 in Theorem 2. Then, we have

M{|Wt − E[Wt]| ≥ E[Wt]− bt} ≤
E
[(
Wt − E[Wt]

)2]
(E[Wt]− bt)2

≤ θt. (19)

Therefore,

M{Λt} = M{Wt ≤ bt,Wj > bj, j = 1, 2, · · · , t− 1}

≤ M{Wt ≤ bt}

≤ M{|Wt − E[Wt]| ≥ E[Wt]− bt}

≤
E
[(
Wt − E[Wt]

)2]
(E[Wt]− bt)2

≤ θt.

(20)

The proof is completed.

According to Proposition 1, the risk of bankruptcy at each period can be restricted by

following equations

E[Wt] > bt, t = 1, 2, · · · , T, (21)

and

E
[(
Wt − E[Wt]

)2] ≤ θt
(
E[Wt]− bt

)2
, t = 1, 2, · · · , T, (22)

where 0 < θt < 1, determined by the risk tolerance level of investor.

Generally, the risk and return of investment are positively related. In financial markets,

it is almost impossible to achieve the maximum final wealth and minimum risk at the same

time. Hence, the common method is to formulate the multi-period selection problem as a

bi-objective optimization model, such as Li and Ng [10], Liu et al. [20], Zhang and Liu [43].
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Then, taking a linear combination of the final wealth and risk functions with a weighting

parameter, the bi-objective optimization model can be converted into a single objective

optimization model. The weighting parameter can be chosen according to different risk

preference. With the chosen weighting parameter, the two objective functions are combined

to form a single objective which is to be optimized. For a conservative investor, he/she will

first find the maximum final wealth that can be achieved without taking into consideration

of the risk of he/she investment. Then the investor will seek to minimize the risk of his/her

investment subject to the final wealth being not less than a specified acceptable final wealth

for which the percentage of reduction from the maximum final wealth is determined by the

investor. Clearly, the approach based on the choice of weighting parameter is inadequate.

Here, we formulate this uncertain multi-period portfolio selection problem in three steps.

The final wealth and risk of investment are measured by uncertain expected value and

variance, respectively.

Step 1: Without considering the risk of investment, we seek to find the maximum final

wealth subject to the constraint equations (21) and (22) being satisfied. This problem is

referred to as problem P1:

max E[WT ] = E
[
W0

T∏
t=1

(
1 +

N∑
i=1

(ri,txi,t − ci,t|xi,t − xi,t−1|)
)]

(23)

s.t. Wt = Wt−1

(
1 +

N∑
i=1

(ri,txi,t − ci,t|xi,t − xi,t−1|)
)
, t = 1, 2, · · · , T,

E
[(
Wt − E[Wt]

)2] ≤ θ(t)
(
E[Wt]− bt

)2
, t = 1, 2, · · · , T,

E[Wt] > bt, t = 1, 2, · · · , T,
N∑
i=1

xi,t = 1, t = 1, 2, · · · , T,

0 ≤ xi,t ≤ qi,t, i = 1, 2, · · · , N, t = 1, 2, · · · , T,

where qi,t is a preset upper bound of investment proportion xi,t. In this step, we can obtain

the maximum final wealth E[WT ]
∗.

Step 2: We set a specified percentage of the maximum final wealth E[WT ]
∗ as an ac-

ceptable final wealth, where the percentage of reduction from the maximum final wealth is

determined by the investor. Then, we seek to minimize the risk of investment such that the

constraints (21) and (22) are satisfied and the final wealth is not less that the acceptable
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final wealth. This problem is named as problem P2:

min V [WT ] = V
[
W0

T∏
t=1

(
1 +

N∑
i=1

(ri,txi,t − ci,t|xi,t − xi,t−1|)
)]

(24)

s.t. Wt = Wt−1

(
1 +

N∑
i=1

(ri,txi,t − ci,t|xi,t − xi,t−1|)
)
, t = 1, 2, · · · , T,

E
[(
Wt − E[Wt]

)2] ≤ θ(t)
(
E[Wt]− bt

)2
, t = 1, 2, · · · , T,

E[Wt] > bt, t = 1, 2, · · · , T,
N∑
i=1

xi,t = 1, t = 1, 2, · · · , T,

0 ≤ xi,t ≤ qi,t, i = 1, 2, · · · , N, t = 1, 2, · · · , T,

E[WT ] ≥ ρE[WT ]
∗,

where 0 < ρ < 1 is to be determined by the investor. In this step, we can obtain the optimal

investment strategies x∗
1,x

∗
2, · · · ,x∗

T and the minimum risk of investment V [WT ]
∗.

Step 3: Substituting x∗
1,x

∗
2, · · · ,x∗

T into equation (23), the final wealth E[WT ] can be

calculated.

Remark 1. For a bold investor, he/she will seek to maximize the final wealth while bearing

an acceptable risk of investment. The corresponding multi-period selection problem can be

formulated conversely, i.e., the first step is to minimize the risk of investment without taking

into consideration of the final wealth. In second step, an acceptable level for the risk of

investment will be set, where the percentage of the increase of the risk of investment is de-

termined by the investor. Then, the investor will seek to maximize his/her investment while

the risk of his/her investment being maintained to be less than or equal to the acceptable

level. In third step, the actual risk of investment can be calculated by using the optimal

investment strategy obtained in Step 2. Clearly, this problem can also be solved by a similar

method proposed in this paper.

4 Deterministic transformation

In this section, we transform the uncertain optimization problems P1 and P2 into the cor-

responding crisp optimization problems such that they can be solved more easily.
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Denote
εt = max {c1,t, c2,t, · · · , cN,t} , t = 1, 2, · · · , T,

ut = 1 +
N∑
i=1

(ri,txi,t − ci,t|xi,t − xi,t−1|), t = 1, 2, · · · , T.
(25)

Theorem 5. Assume that M{ri,t > 2εt − 1} = 1 for i = 1, 2, · · · , N , t = 1, 2, · · · , T . Then,
it holds that M{ut > 0} = 1.

Proof Obviously, we have
∑N

i=1 |xi,t − xi,t−1| ≤ 2. Since εt = max{c1,t, c2,t, · · · , cN,t}, it
follows that

N∑
i=1

ci,t|xi,t − xi,t−1| ≤
N∑
i=1

εt|xi,t − xi,t−1| ≤ 2εt. (26)

From M{ri,t > 2εt − 1} = 1, we obtain

M{
∑N

i=1 ri,txi,t >
∑N

i=1(2εt − 1)xi,t} = 1, i.e., M{
∑N

i=1 ri,txi,t > 2εt − 1} = 1. (27)

Hence, we have M{ut > 0} = 1, t = 1, 2, · · · , T . This completes the proof.

In the following discussion, for reducing the excessive risk of investment, we assume that

for i = 1, 2, · · · , N , t = 1, 2, · · · , T , M{ri,t > 2εt−1} = 1. According to Theorem 5, we know

that uj is a positive uncertain variable with regular uncertainty distribution. It follows from

Theorem 1 that
∏t

j=1 uj is also an uncertain variable with regular uncertainty distribution.

The inverse uncertainty distribution of uncertain variable
∏t

j=1 uj is

Ψ−1
t (α) =

t∏
j=1

(
1 +

N∑
i=1

[
Φ−1

i,j (α)xi,j − ci,j|xi,j − xi,j−1|
])

, (28)

where Φ−1
i,j (α) is the inverse uncertainty distribution of uncertain return rate ri,t. From

equations (10) and (13), for t = 1, 2, · · · , T , we have

E[Wt] = W0

∫ 1

0

Ψ−1
t (α)dα, E[WT ] = W0

∫ 1

0

Ψ−1
T (α)dα,

E
[
(Wt − E[Wt])

2
]
= V [Wt] = W 2

0

∫ 1

0

(
Ψ−1

t (α)−
∫ 1

0

Ψ−1
t (α)dα

)2

dα,

V [WT ] = W 2
0

∫ 1

0

(
Ψ−1

T (α)−
∫ 1

0

Ψ−1
T (α)dα

)2

dα.

(29)
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The uncertain optimization problems P1 and P2 are equivalent to following two models:

max E[WT ] = W0

∫ 1

0

Ψ−1
T (α)dα (30)

s.t. W 2
0

∫ 1

0

(
Ψ−1

t (α)−
∫ 1

0

Ψ−1
t (α)dα

)2

dα ≤ θ(t)
(
W0

∫ 1

0

Ψ−1
t (α)dα− bt

)2

,

t = 1, 2, · · · , T,

W0

∫ 1

0

Ψ−1
t (α)dα > bt, t = 1, 2, · · · , T,

N∑
i=1

xi,t = 1, t = 1, 2, · · · , T, (31)

0 ≤ xi,t ≤ qi,t, i = 1, 2, · · · , N, t = 1, 2, · · · , T,

and

min V [WT ] = W 2
0

∫ 1

0

(
Ψ−1

T (α)−
∫ 1

0

Ψ−1
T (α)dα

)2

dα (32)

s.t. W 2
0

∫ 1

0

(
Ψ−1

t (α)−
∫ 1

0

Ψ−1
t (α)dα

)2

dα ≤ θ(t)
(
W0

∫ 1

0

Ψ−1
t (α)dα− bt

)2

,

t = 1, 2, · · · , T,

W0

∫ 1

0

Ψ−1
t (α)dα > bt, t = 1, 2, · · · , T,

N∑
i=1

xi,t = 1, t = 1, 2, · · · , T,

0 ≤ xi,t ≤ qi,t, i = 1, 2, · · · , N, t = 1, 2, · · · , T,

W0

∫ 1

0

Ψ−1
T (α)dα ≥ ρE[WT ]

∗,

respectively.

Solution method

Obviously, the models (30) and (32) are essentially two nonlinear programming models.

Constraint (31) can be written as:

0 ≤ xN,t = 1−
N−1∑
i=1

xi,t ≤ qN,t, t = 1, 2, · · · , T. (33)

12



Then, the models (30) and (32) can be simplified as the following classical nonlinear con-

straint programming model:

min f(x) (34)

gr(x) ≤ 0, r = 1, 2, · · · , n,

x ∈ ℜm.

Using penalty function method, we construct an auxiliary function as:

F (x, λ) = f(x) + λP (x), (35)

where the weighting parameter λ is to be chosen sufficiently large, and

P (x) =
n∑

r=1

[max{0, gr(x)}]2. (36)

Hence, the nonlinear constraint programming model (34) can be transformed into an ap-

proximate nonlinear unconstraint programming model:

min F (x) (37)

x ∈ ℜm.

The genetic algorithm was proposed by Holland [39] in 1975. Since then, it has always

been recognized as an effective and practical method for solving nonlinear programming

problems. Nowadays, the genetic algorithm has still been used by many researchers for

solving portfolio selection optimization problems, such as Li et al. [18], Huang [40], Yan et

al. [41], Wang et al. [42], Zhang and Liu [43].

By the above penalty function method, the models (30) and (32) can be transformed

into two approximate nonlinear unconstraint programming models. Then, we use genetic

algorithm to solve two transformed models, where the procedures of the genetic algorithm

are summarized as follows:

Step 1: Initialize randomly generated pop size feasible chromosomes;

Step 2: Calculate the evaluation function values for all chromosomes;

Step 3: Perform the selection process by tournament selection method;

Step 4: Update the chromosomes by crossover and mutation operations;

Step 5: Repeat Steps 2− 4 for a given number of generations;

Step 6: Report the best chromosome as the optimal solution.
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5 Numerical simulation

In this section, a numerical example is given to illustrate the practicality of the proposed

models and the effectiveness of the solution method. Assume that an investor selects eight

stocks in stock market market for which he/she wishes to invest for four quarters (one year),

that is, N = 8 and T = 4. Then, the corresponding mathematical model can be formulated

as in Section 3.

Here, the return rate ri,t (i = 1, 2, · · · , 8, t = 1, 2, 3, 4) is modeled as an uncertain linear

variable with ri,t ∼ L(ai,t, bi,t), as shown in Table 1. The initial wealth W0 = 1 and the upper

bound of investment proportion are all set as 0.4, i.e., qi,t = 0.4, i = 1, 2, · · · , 8, t = 1, 2, 3, 4.

The unit transaction costs are c1,t = 0.0010, c2,t = 0.0015, c3,t = 0.0018, c4,t = 0.0020,

c5,t = 0.0025, c6,t = 0.0032, c7,t = 0.0040 and c8,t = 0.0045, for t = 1, 2, 3, 4. We assume that

the bankruptcy will happen when the wealth of investor is zero, i.e., bt = 0, t = 1, 2, 3, 4,

and the belief degree of bankruptcy is no higher than 0.2, i.e., θt = 0.2, t = 1, 2, 3, 4. Also,

the acceptable final wealth is set as 70% of maximum final wealth, i.e., ρ = 0.7.

Since the genetic algorithm is a stochastic search method, the optimal solutions can be

different with different choice of parameters being chosen in the algorithm. Here, we choose

the best solution among the results of 20 times simulation. By using genetic algorithm

(Matlab platform) combined with penalty function method (parameters are given in Table 2),

the maximum final wealth, optimal investment strategy and minimum risk of investment can

be obtained. From Table 3, we can find that, without considering the risk of investment,

the maximum final wealth for investor is 1.2690. After obtaining the maximum final wealth,

we can solve the optimal investment strategy and minimum risk of investment with the

constraint of final wealth, where the acceptable final wealth is set as 70% of maximum final

wealth, i.e., 0.8883. The obtained optimal investment strategies are

x∗
1 = (0.3675, 0.0145, 0.1899, 0.0976, 0.1816, 0.0809, 0.0590, 0.0090),

x∗
2 = (0.3753, 0.0423, 0.1552, 0.1552, 0.1098, 0.1115, 0.0152, 0.0355),

x∗
3 = (0.3946, 0.1802, 0.0119, 0.0771, 0.0805, 0.0133, 0.1437, 0.0987),

x∗
4 = (0.3904, 0.1172, 0.1011, 0.0736, 0.0645, 0.0405, 0.0395, 0.1732),

(38)

as shown in Table 4. When the investor allocates his/her wealth according to the optimal

investment strategy in Table 4, the minimum risk of investment is 0.1320, and the final

wealth is 1.1570, which is more than the specified acceptable final wealth of 0.8883. In

addition, we calculate the maximum final wealth, minimum risk of investment and optimal

investment proportions for five different weighting λ, as shown in Table 5. Obviously, the
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Table 1: The parameters of uncertain return rates of eight assets at each period

Period Asset ai,t bi,t Asset ai,t bi,t

t=1 Asset 1 -0.06 0.07 t=2 Asset 1 -0.03 0.05
Asset 2 -0.05 0.10 Asset 2 -0.07 0.14
Asset 3 -0.07 0.14 Asset 3 -0.09 0.20
Asset 4 -0.09 0.15 Asset 4 -0.13 0.26
Asset 5 -0.13 0.17 Asset 5 -0.15 0.25
Asset 6 -0.19 0.25 Asset 6 -0.27 0.30
Asset 7 -0.25 0.33 Asset 7 -0.30 0.32
Asset 8 -0.27 0.35 Asset 8 -0.32 0.35

t=3 Asset 1 -0.04 0.06 t=4 Asset 1 -0.08 0.10
Asset 2 -0.03 0.08 Asset 2 -0.11 0.20
Asset 3 -0.05 0.09 Asset 3 -0.15 0.23
Asset 4 -0.05 0.10 Asset 4 -0.16 0.28
Asset 5 -0.10 0.20 Asset 5 -0.20 0.37
Asset 6 -0.14 0.20 Asset 6 -0.25 0.40
Asset 7 -0.20 0.26 Asset 7 -0.30 0.41
Asset 8 -0.24 0.34 Asset 8 -0.32 0.38

Table 2: The parameters of genetic algorithm and penalty function method

Population size Iteration Crossover probability Mutation probability λ

50 1000 0.80 0.10 109

Table 3: The optimal investment proportions and final wealth

Period Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8

t=1 0.0013 0.0978 0.2129 0.0394 0.1295 0.1221 0.1668 0.2302
t=2 0.0295 0.2940 0.1273 0.1623 0.0221 0.1226 0.1050 0.1372
t=3 0.0027 0.0285 0.0836 0.2626 0.3618 0.1014 0.1055 0.0539
t=4 0.0024 0.0256 0.1008 0.0591 0.3213 0.1613 0.2912 0.0383

FW 1.2690

bigger the weighting λ is, the bigger the final wealth will become. Because different values

of E[WT ]
∗ lead to different constraints in problem P2, there is no change regulation for the

risk of investment.

As shown in Figs. 1 and 2, the objective values of expected final wealth and risk of invest-

ment are converged to the optimal values after running 480 and 500 iterations, respectively,

indicating that the genetic algorithm combined with penalty function method is an effective

approach to solve the two proposed models.
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Table 4: The optimal investment proportions and final risk

Period Asset 1 Asset 2 Asset 3 Asset 4 Asset 5 Asset 6 Asset 7 Asset 8

t=1 0.3675 0.0145 0.1899 0.0976 0.1816 0.0809 0.0590 0.0090
t=2 0.3753 0.0423 0.1552 0.1552 0.1098 0.1115 0.0152 0.0355
t=3 0.3946 0.1802 0.0119 0.0771 0.0805 0.0133 0.1437 0.0987
t=4 0.3904 0.1172 0.1011 0.0736 0.0645 0.0405 0.0395 0.1732

FR 0.1320
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Figure 1: The convergence of genetic algorithm for optimal expected value.

6 Conclusion

In this paper, we investigated an uncertain multi-period portfolio selection problem in three

steps with the influence of transaction cost and bankruptcy of investor being considered,

where the final wealth and risk of investment are measured by uncertain expected value and

variance, respectively. In view of the risk tolerance of investors, we formulated the uncer-

tain multi-period portfolio selection problem in three steps. Then, two proposed uncertain

optimization models were transformed into two crisp optimization models. And, we used

a genetic algorithm combined with penalty function method to solve them. A numerical

example with eight new stocks and four investment periods was given to demonstrate the

effectiveness of the proposed models and method. The results showed that the proposed mod-

els and method are practical for multi-period portfolio selection problem when the available

data is too small or even no available data to estimate the probability distributions of return
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