Reissner eta Nordströmen metrika

Reissner-Nordströmen metrika» orritik birbideratua)

Fisika eta astronomian, Reissner eta Nordström-en metrika Einstein-Maxwell-en eremu ekuazioen soluzio estatikoa da. M masa estatiko, q karga eta simetría esferikodun zulo beltz batek sortzen duen grabitazio-eremu baten kasuan. Soluzio hau Kerr eta Newman-en metrikaren kasu partikularra da non masa biratzen ari den.

1916an eta 1921ean Hans Reissner[1], Hermann Weyl[2], Gunnar Nordström[3] eta George Barker Jeffery[4]-k deskubritu zuten era independentean[5].

Metrika

aldatu

Metrika lortzeko Einstein-Maxwellen eremu ekuazioen soluzio estatiko, asintotikoki lau eta esferikoki simetrikoa bilatzen da. Einsteinen ekuazioak ondorengoak dira;

 

non   energia-momentu tentsorea den. Karga gabeko eremu batean honela definitzen dena;

 

Tentsore honen heina zero denez Ricciren eskalarra nulua izango da eta ondorioz Einsteinen ekuazioen baliokidearekin lan egin dezakegu;

 

Gainera,   Maxwell-en tentsoreak karga gabeko Maxwell-en ekuazioak bete behar ditu

 

 

Simetria esferikoa betetzen dela onartu denez (t,r,θ,Φ) koordinatu sistema erabili daiteke eta estatikotasuna kontuan hartuz hurrengoa da metrika;

 

non   angelu solidoaren infinitesimala den.

 

Maxwellen lehen ekuazio identikoki betetzen da eta bigarren ekuazioa aplikatuz

 

Asintotikoki laua izatea eskatzen denez infinituan   eta   q kargako partikula baten eremu Coulomb-dar klasikoa berreskuratu nahi izanez gero   aukeratu behar da.

Azken emaitza Einsteinen ekuazioetan ordezkatuz,   ezabatu ondoren, geratzen diren baldintzen artean   dago. Ondorioz   eta infinituan  . Beraz, r guztietarako,

 

Baldintza hauekin hurrengo aukeraketa egin dezakegu:

 

 [6][7][8]

non   Schwarzschilden erradioa eta   diren,   gorputzaren karga elektriko osoa izanik. Q karga (edota  ) desagertzen den limitean Schwarzschilden metrika berreskuratzen da. Gainera, Newtonen grabitateren teoria klasikoa berruskuratu dezakegu   limitean.   eta   limitean erlatibitate bereziko Minkowskiren metrika berreskuratzen dugu.[6]

Masa r koordenatuaren funtzioan aldatzen da. Masa efektiboa M infinituko masa baino txikiagoa da. Izan ere, eremu elektrikoak masa dauka baliokidetasunaren printzipioaren arabera.[9]

 

Horizonteak

aldatu

Izan bedi hurrengo koefizientea;

 

non

 

Q kuadratikoaren diskriminantea   da.[6]

 

aldatu

Kuadratikoak ez du soluzio errealik eta ondorioz positiboa da r-ren balio guztietarako. Honek esan nahi du ez dagoela gertaeren mugarik. Ondorioz, singularitate bakarra   jatorrian dago eta biluzia dela esaten da[10]. Emaitza hau ez da harritzekoa, izan ere, hemen dago kokatuta eremua sortzen duen q karga. Singularitate biluziek arazoak sortzen dituzte kausalitatearekin, hori dela eta, normalean Penrose-n zentsura kosmikoaren hipotesian oinarrituz ez da soluzio fisiko bezela onartzen.[11][12][13]

  planoa aztertuz, honela idazten da geodesiko nulu baten ekuazioa:

 

 [7]

 

aldatu

Geodesiko nulu erradiala hurrengo eran idazten da;

 

 

 [7]

Ondorioz, hurrengo moduan idazten da metrika Eddington Finkelsteinen koordenatueatan;

 

  • I eremua,    gertaera-horizontea da eta ondorioz ezin da zeharkatu.
  • II eremua,   eskualde honetan dauden partikula eta fotoiek   gainazala zeharka dezakete.
  • III eremua,   eremu hau ez da zertan   singularitatera iritsi behar.

 

aldatu

Aurreko kasuaren limite bat da non gertaeren horizontea degeneratua den,   gertaeren-horizontean izan ezik, r koordenatua espazio motakoa da.   puntua Schwartzilden   kasuaren antzekoa da. Geodesika nulu erradialen ekuazioa honako hau da;

 [7]

eta metrika Eddington Finkelsteinen koordenatueatan;

 

Denboraren zabalkuntza grabitazionala

aldatu

Denboraren zabalkuntza grabitazionala hurrengo moduan adierazten da gorputzaren inguruan;

 

ihes abiadura lokalarekin hurrengo eran erlazionatzen dena;

 

Christoffel-en ikurrak

aldatu

Christofellen ikurrak

 

hurrengo adierazpenak dakarzkite[14]

 

Ikur hauen bidez proba partikula baten geodesikoa lor daiteke.[15][16]

Higidura ekuazioak

aldatu

Simetria esferikoa dela eta, beti hautatu daiteke koordinatu sistema proba-partikula plano batean aurkitzeko moduan. Hori dela eta, θ erabiliko dugu φ-ren ordez. Dimentsio gabeko unitate naturaletan   q kargako partikula baten higidura

 

da eta ondorioz,

 

 

 

Kontuan hartu deribatu guztiak denbora propioarekiko direla,  

Higidura konstanteak  -rekin lortzen dira, hurrengo ekuazio diferentzialaren soluzioa dena,[17]

 

Lehenago aipatutako bigarren deribatuak ordezkatu ondoren metrika bera ekuazio diferentzialaren soluzioa da,

 

 

Ekuazio banangarriak momentua angeluar erlatibista ematen digu,

 

Hirugarren konstantea energia espezifikoa (energia geldiuneko masaran unitateko) da[18]

 

 

  eta  ,  -en ordezkatuz ekuazio erradiala lortzen da,

 

Berriro ere  -rekin biderkatuz eta integratuz

 

Proba partikularen eta infinituan kokatuta dagoen behatzailearen arteko denboraren dilatazioa

 

da.

  3-abiadura lokalaren osagai kontrabarianteak eta  lehen deribatuak  -ren bidez erlazionatzen dira eta honela ezartzen dira hasierako baldintzak;

 

 

Proba-partikularen energia orbital espezifikoa

 

eta momentu angeluar erlatibo espezifikoa

 

higiduraran konstatnte mantentzen diren kantitateak dira.   eta  abiadura lokalaren osagai erradial eta tangentziala dira, hurrenez hurren, beraz, abiadura lokala

 

izango da,

Zuzenketa kuantikoak

aldatu

Grabitazio kuantikoaren zenbait alderditan, Reissner-Nordströmen metrikak zuzenketa kuantikoak behar ditu. Honen adibide da, Barvinsky eta Vilkovisky-k eremuen teorien hubilketa.[19][20][21][22] Bigarren ordeneko kurbaduran, Einstein-Hilberten akzio klasikoa termino lokal eta ez-lokalekin batzen da:

 

non   energia eskala den. Alde batetik,   eta   koefizienteen balio zehatza ezezaguna da, izan ere, grabitazio kuantikoaren teoria ultra-morearen naturan oinarritzen dira. Bestalde,   eta   koefizienteak kalkulagarriak dira.[23]   operadorea integral baten bidez adierazi daiteke

 

Akzioaren termino berriek soluzio klasikoaren aldaketa bat dakarkate. Kuantukoki zuzendutako Reissner–Nordström metrika,   ordeneraino, Campos Delgado-k aurkeztu zuen:[24]

 

non

 
 

Erreferentziak

aldatu
  1. Reissner, H.. (1916-01-01). «Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie» Annalen der Physik 355: 106–120.  doi:10.1002/andp.19163550905. ISSN 0003-3804. (Noiz kontsultatua: 2022-04-18).
  2. Weyl, Hermann. (1917-01-01). «Zur Gravitationstheorie» Annalen der Physik 359: 117–145.  doi:10.1002/andp.19173591804. ISSN 0003-3804. (Noiz kontsultatua: 2022-04-18).
  3. Nordström, G.. (1918-01-01). «On the Energy of the Gravitation field in Einstein's Theory» Koninklijke Nederlandse Akademie van Wetenschappen Proceedings Series B Physical Sciences 20: 1238–1245. (Noiz kontsultatua: 2022-04-18).
  4. Jeffery, G. B.. (1921-05-01). «The Field of an Electron on Einstein's Theory of Gravitation» Proceedings of the Royal Society of London Series A 99: 123–134.  doi:10.1098/rspa.1921.0028. ISSN 0080-4630. (Noiz kontsultatua: 2022-04-18).
  5. (Ingelesez) «Surprise: the Big Bang isn't the beginning of the universe anymore» Big Think (Noiz kontsultatua: 2022-04-18).
  6. a b c (Ingelesez) d'Inverno, Ray A.. (1998). Introducing Einstein's relativity. Oxford University Press Inc., 239-240 or. ISBN 019859653..
  7. a b c d Aguirregabiria, Juan M.. (2017). Grabitazioa eta Kosmologia. Euskal Herriko Unibertsitatea (UPV/EHU), 141-146 or. ISBN 9788498607109..
  8. (Ingelesez) «(PDF) Reissner-Nordström metric» ResearchGate (Noiz kontsultatua: 2022-04-22).
  9. (Ingelesez) «Charged Black Holes: The Reissner-Nordström Geometry» jila.colorado.edu (Noiz kontsultatua: 2022-04-27).
  10. (Ingelesez) Carter, Brandon. (1968-10-25). «Global Structure of the Kerr Family of Gravitational Fields» Physical Review 174 (5): 1559–1571.  doi:10.1103/PhysRev.174.1559. ISSN 0031-899X. (Noiz kontsultatua: 2022-04-19).
  11. Hubeny, Veronika E.. (1999-02-11). «Overcharging a Black Hole and Cosmic Censorship» Physical Review D 59 (6): 064013.  doi:10.1103/PhysRevD.59.064013. ISSN 0556-2821. (Noiz kontsultatua: 2022-04-19).
  12. Hod, Shahar. (2008-03-26). «Weak Cosmic Censorship: As Strong as Ever» Physical Review Letters 100 (12): 121101.  doi:10.1103/PhysRevLett.100.121101. ISSN 0031-9007. (Noiz kontsultatua: 2022-04-19).
  13. Chesler, Paul M.; Narayan, Ramesh; Curiel, Erik. (2019-11-29). «Singularities in Reissner-Nordstr\"om black holes» arXiv:1902.08323 [gr-qc] (Noiz kontsultatua: 2022-04-19).
  14. (Ingelesez) Nordebo, Jonatan. The Reissner-Nordström metric. .
  15. Leonard Susskind: The Theoretical Minimum: Geodesics and Gravity, (General Relativity Lecture 4, timestamp: 34m18s)
  16. Eva Hackmann, Hongxiao Xu: Charged particle motion in Kerr–Newmann space-times
  17. Smith, B. R.. (2009-12-01). «First-order partial differential equations in classical dynamics» American Journal of Physics 77 (12): 1147–1153.  doi:10.1119/1.3223358. ISSN 0002-9505. (Noiz kontsultatua: 2022-04-21).
  18. Misner, Charles W.. (1973). Gravitation. ISBN 0-7167-0334-3. PMC 585119. (Noiz kontsultatua: 2022-04-21).
  19. (Ingelesez) Barvinsky, A. O.; Vilkovisky, G. A.. (1983-11-17). «The generalized Schwinger-DeWitt technique and the unique effective action in quantum gravity» Physics Letters B 131 (4): 313–318.  doi:10.1016/0370-2693(83)90506-3. ISSN 0370-2693. (Noiz kontsultatua: 2022-04-21).
  20. (Ingelesez) Barvinsky, A. O.; Vilkovisky, G. A.. (1985-03-01). «The generalized Schwinger-Dewitt technique in gauge theories and quantum gravity» Physics Reports 119 (1): 1–74.  doi:10.1016/0370-1573(85)90148-6. ISSN 0370-1573. (Noiz kontsultatua: 2022-04-21).
  21. (Ingelesez) Barvinsky, A. O.; Vilkovisky, G. A.. (1987-01-01). «Beyond the Schwinger-DeWitt technique: Converting loops into trees and in-in currents» Nuclear Physics B 282: 163–188.  doi:10.1016/0550-3213(87)90681-X. ISSN 0550-3213. (Noiz kontsultatua: 2022-04-21).
  22. (Ingelesez) Barvinsky, A. O.; Vilkovisky, G. A.. (1990-03-26). «Covariant perturbation theory (II). Second order in the curvature. General algorithms» Nuclear Physics B 333 (2): 471–511.  doi:10.1016/0550-3213(90)90047-H. ISSN 0550-3213. (Noiz kontsultatua: 2022-04-21).
  23. Donoghue, John F.; El-Menoufi, Basem Kamal. (2014-05-29). «Nonlocal quantum effects in cosmology: Quantum memory, nonlocal FLRW equations, and singularity avoidance» Physical Review D 89 (10): 104062.  doi:10.1103/PhysRevD.89.104062. (Noiz kontsultatua: 2022-04-21).
  24. (Ingelesez) Campos Delgado, Ruben. (2022-03-29). «Quantum gravitational corrections to the entropy of a Reissner–Nordström black hole» The European Physical Journal C 82 (3): 272.  doi:10.1140/epjc/s10052-022-10232-0. ISSN 1434-6052. (Noiz kontsultatua: 2022-04-21).

Kanpo estekak

aldatu
  NODES
Idea 1
idea 1