Rationaaliluku
Rationaalilukujen joukko (ℚ) on reaalilukujen joukon osajoukko, jonka jäsenet voidaan esittää kahden kokonaisluvun osamääränä eli murtolukuna muodossa :
- .[1]
Tässä lukua m kutsutaan osoittajaksi ja lukua n nimittäjäksi. Murtoluku on siis kaikille rationaaliluvuille yhteinen esitysmuoto. Samaa rationaalilukua voi esittää useilla erilaisilla murtoluvuilla; yhtäsuuruuden k/l = m/n välttämättömänä ja riittävänä ehtona on yhtälö kn = lm edellyttäen ettei ln ole 0 (ristiin kertominen). Kaikki kokonaisluvut kuuluvat rationaalilukujen joukkoon, sillä kun n=1, niin m/n=m.
Rationaalilukujen joukkoa merkitään merkillä ℚ. Se on lukukunta eli reaalilukujen ja samalla myös kompleksilukujen kunnan ℂ sellainen osajoukko, joka sisältää kaikkien alkioidensa käänteisalkiot ja on suljettu yhteen- ja kertolaskun suhteen. ℚ on kaikkein suppein lukukunta.
Reaalilukuja, jotka eivät ole rationaalilukuja, sanotaan irrationaaliluvuiksi.
Jos murtoluvun nimittäjällä on vähintään kaksi erisuurta positiivista alkutekijää, niin murtoluku voidaan hajottaa osamurtoluvuiksi, joiden nimittäjät ovat yksinkertaisempia (alkuluvun potensseja). Esimerkiksi: .
Nollan ja yhden välillä oleva rationaaliluku voidaan hajottaa myös niin sanotuiksi egyptiläisiksi murtoluvuiksi. Rationaalilukuja on numeroituvasti ääretön määrä.
Katso myös
muokkaaLähteet
muokkaa- ↑ Yngve Lehtosaari – Jarkko Leino: Matematiikka 10. Lukion laajempi kurssi. (s. 20) Helsinki: Kirjayhtymä, 1971.
Kirjallisuutta
muokkaa- Rikkonen, Harri: Matematiikan pitkä peruskurssi II – Reaalimuuttujan funktioiden differentiaalilasku. Helsinki: Otakustantamo, 1969. ISBN 951-671-022-0
- Pitkäranta, Juhani: Calculus Fennicus – TKK:n 1. lukuvuoden laaja matematiikka (2000–2013) (pdf) Helsinki: Avoimet oppimateriaalit ry. ISBN 978-952-7010-12-9 ISBN 978-952-7010-6 (pdf). Viitattu 8.7.2019.
Aiheesta muualla
muokkaa- Kuvia tai muita tiedostoja aiheesta Rationaaliluku Wikimedia Commonsissa
Numeroituvia joukkoja: |
|
---|---|
Reaaliluvut ja niiden laajennokset: |
|
Muita: |