Euklidinen geometria
Euklidinen geometria on geometrian osa-alue, jolla tarkoitetaan yleensä tasoa ja kolmiulotteista avaruutta tutkivaa geometriaa. Euklidisiksi kutsutaan myös useampiulotteisia avaruuksia, joilla on samat ominaisuudet.[1]
Euklidinen geometria on nimetty kreikkalaisen matemaatikon Eukleides Aleksandrialaisen mukaan. Se on edelleen koulugeometrian pohjana, vaikkakin lähestymistapa geometrian opetukseen on erityisesti Suomessa muuttunut vähemmän deduktiiviseen päättelyyn nojaavaksi.
Aksioomaattinen lähestymistapa
muokkaaEukleideen teosta Alkeet pidetään aksiomaattisen matematiikan eräänä perusteoksena. Teoksessa Eukleides esittää viisi aksioomaa, joista hän johtaa loogisella päättelyllä satoja lähinnä geometrisia teoreemoja ja todistaa ne.
- Mitkä tahansa kaksi pistettä voidaan yhdistää suoralla.
- Mikä tahansa jana voidaan jatkaa äärettömäksi.
- Mille tahansa janalle voidaan piirtää ympyrä siten, että jana on ympyrän säde ja janan toinen päätepiste on ympyrän keskipiste.
- Kaikki suorat kulmat ovat yhtä suuria.
- Jos kaksi viivaa leikkaa kolmannen siten, että sisempien kahden kulman summa on vähemmän kuin kaksi suoraa kulmaa niin nämä kaksi suoraa leikkaavat väistämättä toisensa kolmannen viivan sillä puolella, jolla ko. kulmat ovat, mikäli suoria jatketaan riittävän pitkiksi.
Viidettä aksioomaa kutsutaan yleensä paralleeliaksioomaksi. Sen tasolle pätevä muotoilu on: Pisteen, joka ei ole annetulla suoralla, läpi voidaan piirtää ainoastaan yksi suora joka ei leikkaa annettua suoraa. Epäeuklidisissa geometrioissa mahdollisten suorien määrä on muu kuin yksi.
Eukleideen aksioomista on sittemmin luovuttu matematiikan täsmällisyyden kehittyessä. David Hilbert kehitti nykyään käytössä olevat euklidisen geometrian aksioomat, Hilbertin aksioomat.
Paralleeliaksiooma
muokkaaViidennen eli paralleeliaksiooman epäiltiin pitkään olevan muiden Eukleideen aksioomien seurausta, jolloin sen voisi poistaa aksioomaluettelosta. Yrityksiä johtaa se muista aksioomista tehtiin paljon. Vasta 1800-luvulla pystyttiin osoittamaan, ettei paralleeliaksiooma seuraa muista Eukleideen aksioomista, ts. että on mahdollista muodostaa epäeuklidinen geometria, jossa kaikki muut Eukleideen aksioomat ovat voimassa, mutta paralleeliaksiooma ei. Asian voi nykyisin todistaa luomalla äärimmäisen yksinkertaisen, muutamasta pisteestä koostuvan tasogeometrian, jossa neljä ensimmäistä aksioomaa pätevät, mutta paralleeliaksiooma ei. Tällöin tulos yleistyy kaikkiin Eukleideen neljää ensimmäistä aksioomaa käyttäviin geometrioihin. Todistus on yksinkertainen, mutta tällainen ajattelu oli ennen modernin matematiikan syntyä vierasta – ajateltiin että euklidisen geometrian tulokset voi todistaa vain perinteisessä euklidisessa geometriassa.
Euklidinen etäisyys
muokkaaEuklidisessa koordinaattigeometriassa tason pisteiden ja välinen etäisyys, ns. euklidinen etäisyys, lasketaan Pythagoran lausetta hyödyntäen:
Lähteet
muokkaa- ↑ Thompson, Jan & Martinsson, Thomas: Matematiikan käsikirja, s. 96. Helsinki: Tammi, 1994. ISBN 951-31-0471-0
Kirjallisuutta
muokkaa- Thompson, Jan & Martinsson, Thomas: Matematiikan käsikirja. Helsinki: Tammi, 1994. ISBN 951-31-0471-0
- Kivelä, Simo K.: Algebra ja geometria. Espoo: Otatieto, 1989. ISBN 951-672-103-6
- Rikkonen, Harri: Matematiikan pitkä peruskurssi I – Vektorialgebra ja analyyttinen geometria. Helsinki: Otakustantamo, 1969. ISBN 951-671-067-0
- Pitkäranta, Juhani: Calculus Fennicus – TKK:n 1. lukuvuoden laaja matematiikka (2000–2013) (pdf) Helsinki: Avoimet oppimateriaalit ry. ISBN 978-952-7010-12-9 ISBN 978-952-7010-6 (pdf).