Fat and fatty acids – a scoping review for Nordic Nutrition Recommendations 2023

  • Kjetil Retterstøl Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
  • Fredrik Rosqvist Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
Keywords: fatty acids, lipids, cardiovascular disease, type 2 diabetes, recommendations

Abstract

Two de novo NNR2022 systematic reviews (SRs) as well as 21 qualified SRs (qSRs) were available. A literature search yielded an additional ~70 SRs, meta-analyses and biomarker papers. Diets lower in total fat are associated with reductions in body weight and blood pressure compared with diets higher in total fat in adults. Partial replacement of saturated fatty acid (SFA) with n-6 polyunsaturated fatty acid (PUFA) improves blood lipid profile, decreases the risk of cardiovascular disease (CVD), improves glucose-insulin homeostasis and may decrease the risk of total mortality. Long-chain n-3 PUFAs (eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) decrease triglycerides and are associated with lower risk of CVD. Dietary PUFAs, both n-3 and n-6, may be associated with reduced risk of type 2 diabetes (T2D). There is inconclusive evidence to suggest that the type of dietary fat is associated with blood pressure, risk of hypertension or musculoskeletal health. Higher intake of total PUFA is associated with lower mortality from any cancer. Long-chain n-3 PUFA is associated with reduced risk of breast cancer, whereas biomarker levels of n-6 PUFA are associated with lower risk of any cancer. Intake of long-chain n-3 PUFA during pregnancy increases length of gestation and child birth weight and reduces the risk of preterm delivery, but there is inconclusive evidence to suggest that it may influence child neurodevelopment, growth or development of allergic disease. In studies with higher versus lower dietary cholesterol intake levels, total blood cholesterol increased or were unaffected by the dietary cholesterol, resulting in inconclusive results. Trans fatty acid (TFA), regardless of source, impairs blood lipid profile compared to unsaturated fat. In observational studies, TFA is positively associated with CVD and total mortality but whether associations differ by source is inconclusive. Ruminant TFA, as well as biomarker levels of odd-chain fatty acids, might be associated with lower risk of T2D.

Downloads

Download data is not yet available.

References


1.
Blomhoff R, Andersen R, Arnesen EK, Christensen JJ, Eneroth H, Erkkola M, et al. Nordic nutrition recommendations 2023. Copenhagen: Nordic Council of Ministers; 2023.


2.
Christensen JJ, Arnesen EK, Andersen R, Eneroth H, Erkkola M, Høyer A, et al. The Nordic nutrition recommendations 2022 – principles and methodologies. Food Nutr Res 2020; 64: 4402. doi: 10.29219/fnr.v64.4402


3.
Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. BMJ 2017; 358: j4008. doi: 10.1136/bmj.j4008


4.
Koletzko B, Reischl E, Tanjung C, Gonzalez-Casanova I, Ramakrishnan U, Meldrum S, et al. FADS1 and FADS2 polymorphisms modulate fatty acid metabolism and dietary impact on health. Annu Rev Nutr 2019; 39: 21–44. doi: 10.1146/annurev-nutr-082018-124250


5.
Metherel AH, Bazinet RP. Updates to the n-3 polyunsaturated fatty acid biosynthesis pathway: DHA synthesis rates, tetracosahexaenoic acid and (minimal) retroconversion. Prog Lipid Res 2019; 76: 101008. doi: 10.1016/j.plipres.2019.101008


6.
Vessby B, Gustafsson IB, Tengblad S, Boberg M, Andersson A. Desaturation and elongation of fatty acids and insulin action. Ann N Y Acad Sci 2002; 967: 183–95. doi: 10.1111/j.1749-6632.2002.tb04275.x


7.
Lankinen MA, de Mello VD, Meuronen T, Sallinen T, Ågren J, Virtanen KA, et al. The FADS1 genotype modifies metabolic responses to the linoleic acid and alpha-linolenic acid containing plant oils-genotype based randomized trial FADSDIET2. Mol Nutr Food Res 2021; 65(7): e2001004. doi: 10.1002/mnfr.202001004


8.
Weitkunat K, Schumann S, Nickel D, Hornemann S, Petzke KJ, Schulze MB, et al. Odd-chain fatty acids as a biomarker for dietary fiber intake: a novel pathway for endogenous production from propionate. Am J Clin Nutr 2017; 105(6): 1544–51. doi: 10.3945/ajcn.117.152702


9.
Venäläinen TM, Lankinen MA, Schwab US. Odd-chain fatty acids as dietary biomarkers for fiber and fish intake. Am J Clin Nutr 2017; 106(3): 954. doi: 10.3945/ajcn.117.162347


10.
Bethancourt HJ, Schmidt KA, Cromer G, Burhans MS, Kuzma JN, Hagman DK, et al. Assessing the validity of plasma phospholipid fatty acids as biomarkers of dairy fat intake using data from a randomized controlled intervention trial. Am J Clin Nutr 2022; 115(6): 1577–88. doi: 10.1093/ajcn/nqac029


11.
Lemming EW, Pitsi T. The Nordic nutrition recommendations 2022 – food consumption and nutrient intake in the adult population of the Nordic and Baltic countries. Food Nutr Res 2022; 66. doi: 10.29219/fnr.v66.8572


12.
Gramlich L, Meddings L, Alberda C, Wichansawakun S, Robbins S, Driscoll D, et al. Essential fatty acid deficiency in 2015: the impact of novel intravenous lipid emulsions. JPEN J Parenter Enteral Nutr 2015; 39(1 Suppl): 61s–6s. doi: 10.1177/0148607115595977


13.
Eritsland J. Safety considerations of polyunsaturated fatty acids. Am J Clin Nutr 2000; 71(1 Suppl): 197s–201s. doi: 10.1093/ajcn/71.1.197S


14.
Fats and fatty acids in human nutrition. Report of an expert consultation. FAO Food Nutr Paper 2010; 91: 1–166.


15.
EFSA Panel on Dietetic Products NaAN. Scientific opinion related to the tolerable upper intake level of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA). EFSA J 2012; 10(7): 2815. doi: 10.2903/j.efsa.2012.2815


16.
Hooper L, Abdelhamid AS, Jimoh OF, Bunn D, Skeaff CM. Effects of total fat intake on body fatness in adults. Cochrane Database Syst Rev 2020; 6(6): Cd013636. doi: 10.1002/14651858.Cd013636


17.
Naude CE, Visser ME, Nguyen KA, Durao S, Schoonees A. Effects of total fat intake on bodyweight in children. Cochrane Database Syst Rev 2018; 7(7): Cd012960. doi: 10.1002/14651858.CD012960.pub2


18.
Borén J, Chapman MJ, Krauss RM, Packard CJ, Bentzon JF, Binder CJ, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease: pathophysiological, genetic, and therapeutic insights: a consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2020; 41(24): 2313–30. doi: 10.1093/eurheartj/ehz962


19.
Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J 2017; 38(32): 2459–72. doi: 10.1093/eurheartj/ehx144


20.
Lusis AJ. Atherosclerosis. Nature 2000; 407(6801): 233–41. doi: 10.1038/35025203


21.
Mensink RP, Zock PL, Kester AD, Katan MB. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 2003; 77(5): 1146–55. doi: 10.1093/ajcn/77.5.1146


22.
Mensink RP. Effects of saturated fatty acids on serum lipids and lipoproteins: a systematic review and regression analysis. Geneva: World Health Organization; 2016.


23.
Mozaffarian D, Aro A, Willett WC. Health effects of trans-fatty acids: experimental and observational evidence. Eur J Clin Nutr 2009; 63 Suppl 2: S5–21. doi: 10.1038/sj.ejcn.1602973


24.
Schwingshackl L, Bogensberger B, Benčič A, Knüppel S, Boeing H, Hoffmann G. Effects of oils and solid fats on blood lipids: a systematic review and network meta-analysis. J Lipid Res 2018; 59(9): 1771–82. doi: 10.1194/jlr.P085522


25.
Al-Khudairy L, Hartley L, Clar C, Flowers N, Hooper L, Rees K. Omega 6 fatty acids for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 2015(11): Cd011094. doi: 10.1002/14651858.CD011094.pub2


26.
Schwab U, Lauritzen L, Tholstrup T, Haldorssoni T, Riserus U, Uusitupa M, et al. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Food Nutr Res 2014; 58. doi: 10.3402/fnr.v58.25145


27.
DGAC. Types of dietary fat and cardiovascular disease: a systematic review. Department of Agriculture, Food and Nutrition Service, Center for Nutrition Policy and Promotion; 2020. Available from: https://nesrusdagov/2020-dietary-guidelines-advisory-committee-systematic-reviews [cited 02 January 2023].


28.
Abdelhamid AS, Martin N, Bridges C, Brainard JS, Wang X, Brown TJ, et al. Polyunsaturated fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11(11): Cd012345. doi: 10.1002/14651858.CD012345.pub3


29.
Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ, et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2020; 3(3): Cd003177. doi: 10.1002/14651858.CD003177.pub5


30.
Balk EM, Adams GP, Langberg V, Halladay C, Chung M, Lin L, et al. Omega-3 fatty acids and cardiovascular disease: an updated systematic review. Evid Rep Technol Assess 2016; 223: 1–1252. doi: 10.23970/ahrqepcerta223


31.
Wolfram G, Bechthold A, Boeing H, Ellinger S, Hauner H, Kroke A, et al. Evidence-based guideline of the German Nutrition Society: fat intake and prevention of selected nutrition-related diseases. Ann Nutr Metab 2015; 67(3): 141–204. doi: 10.1159/000437243


32.
Casula M, Olmastroni E, Gazzotti M, Galimberti F, Zambon A, Catapano AL. Omega-3 polyunsaturated fatty acids supplementation and cardiovascular outcomes: do formulation, dosage, and baseline cardiovascular risk matter? An updated meta-analysis of randomized controlled trials. Pharmacol Res 2020; 160: 105060. doi: 10.1016/j.phrs.2020.105060


33.
Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular risk reduction with icosapent ethyl for hypertriglyceridemia. N Engl J Med 2019; 380(1): 11–22. doi: 10.1056/NEJMoa1812792


34.
Nicholls SJ, Lincoff AM, Garcia M, Bash D, Ballantyne CM, Barter PJ, et al. Effect of high-dose omega-3 fatty acids vs corn oil on major adverse cardiovascular events in patients at high cardiovascular risk: the STRENGTH randomized clinical trial. JAMA 2020; 324(22): 2268–80. doi: 10.1001/jama.2020.22258


35.
Kalstad AA, Myhre PL, Laake K, Tveit SH, Schmidt EB, Smith P, et al. Effects of n-3 fatty acid supplements in elderly patients after myocardial infarction: a randomized, controlled trial. Circulation 2021; 143(6): 528–39. doi: 10.1161/circulationaha.120.052209


36.
Lombardi M, Chiabrando JG, Vescovo GM, Bressi E, Del Buono MG, Carbone S, et al. Impact of different doses of omega-3 fatty acids on cardiovascular outcomes: a pairwise and network meta-analysis. Curr Atheroscler Rep 2020; 22(9): 45. doi: 10.1007/s11883-020-00865-5


37.
Marklund M, Wu JHY, Imamura F, Del Gobbo LC, Fretts A, de Goede J, et al. Biomarkers of dietary omega-6 fatty acids and incident cardiovascular disease and mortality. Circulation 2019; 139(21): 2422–36. doi: 10.1161/circulationaha.118.038908


38.
Harris WS, Tintle NL, Imamura F, Qian F, Korat AVA, Marklund M, et al. Blood n-3 fatty acid levels and total and cause-specific mortality from 17 prospective studies. Nat Commun 2021; 12(1): 2329. doi: 10.1038/s41467-021-22370-2


39.
Ueno Y, Miyamoto N, Yamashiro K, Tanaka R, Hattori N. Omega-3 polyunsaturated fatty acids and stroke burden. Int J Mol Sci 2019; 20(22): 5549. doi: 10.3390/ijms20225549


40.
Kim Y, Je Y, Giovannucci EL. Association between dietary fat intake and mortality from all-causes, cardiovascular disease, and cancer: a systematic review and meta-analysis of prospective cohort studies. Clin Nutr 2021; 40(3): 1060–70. doi: 10.1016/j.clnu.2020.07.007


41.
Gencer B, Djousse L, Al-Ramady OT, Cook NR, Manson JE, Albert CM. Effect of long-term marine ɷ-3 fatty acids supplementation on the risk of atrial fibrillation in randomized controlled trials of cardiovascular outcomes: a systematic review and meta-analysis. Circulation 2021; 144(25): 1981–90. doi: 10.1161/circulationaha.121.055654


42.
Sekikawa A, Cui C, Sugiyama D, Fabio A, Harris WS, Zhang X. Effect of high-dose marine omega-3 fatty acids on atherosclerosis: a systematic review and meta-analysis of randomized clinical trials. Nutrients 2019; 11(11). doi: 10.3390/nu11112599


43.
Lotfi K, Salari-Moghaddam A, Yousefinia M, Larijani B, Esmaillzadeh A. Dietary intakes of monounsaturated fatty acids and risk of mortality from all causes, cardiovascular disease and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Ageing Res Rev 2021; 72: 101467. doi: 10.1016/j.arr.2021.101467


44.
Manson JE, Cook NR, Lee IM, Christen W, Bassuk SS, Mora S, et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med 2019; 380(1): 23–32. doi: 10.1056/NEJMoa1811403


45.
Bowman L, Mafham M, Wallendszus K, Stevens W, Buck G, Barton J, et al. Effects of Aspirin for primary prevention in persons with diabetes mellitus. N Engl J Med 2018; 379(16): 1529–39. doi: 10.1056/NEJMoa1804988


46.
Budoff MJ, Bhatt DL, Kinninger A, Lakshmanan S, Muhlestein JB, Le VT, et al. Effect of icosapent ethyl on progression of coronary atherosclerosis in patients with elevated triglycerides on statin therapy: final results of the EVAPORATE trial. Eur Heart J 2020; 41(40): 3925–32. doi: 10.1093/eurheartj/ehaa652


47.
Gaba P, Bhatt DL, Mason RP, Miller M, Verma S, Steg PG, et al. Benefits of icosapent ethyl for enhancing residual cardiovascular risk reduction: a review of key findings from REDUCE-IT. J Clin Lipidol 2022; 16(4): 389–402. doi: 10.1016/j.jacl.2022.05.067


48.
Yan J, Liu M, Yang D, Zhang Y, An F. Efficacy and safety of omega-3 fatty acids in the prevention of cardiovascular disease: a systematic review and meta-analysis. Cardiovasc Drugs Ther 2022. doi: 10.1007/s10557-022-07379-z


49.
Hooper L, Martin N, Jimoh OF, Kirk C, Foster E, Abdelhamid AS. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst Rev 2020; 8: Cd011737. doi: 10.1002/14651858.CD011737.pub3


50.
de Souza RJ, Mente A, Maroleanu A, Cozma AI, Ha V, Kishibe T, et al. Intake of saturated and trans unsaturated fatty acids and risk of all cause mortality, cardiovascular disease, and type 2 diabetes: systematic review and meta-analysis of observational studies. BMJ 2015; 351: h3978. doi: 10.1136/bmj.h3978


51.
Panth N, Abbott KA, Dias CB, Wynne K, Garg ML. Differential effects of medium- and long-chain saturated fatty acids on blood lipid profile: a systematic review and meta-analysis. Am J Clin Nutr 2018; 108(4): 675–87. doi: 10.1093/ajcn/nqy167


52.
Trieu K, Bhat S, Dai Z, Leander K, Gigante B, Qian F, et al. Biomarkers of dairy fat intake, incident cardiovascular disease, and all-cause mortality: a cohort study, systematic review, and meta-analysis. PLoS Med 2021; 18(9): e1003763. doi: 10.1371/journal.pmed.1003763


53.
Brouwer IA. Effect of trans-fatty acid intake on blood lipids and lipoproteins: a systematic review and meta-regression analysis. World Health Organization; 2016. Available from: https://appswhoint/iris/handle/10665/246109 [cited 02 January 2023].


54.
Reynolds A HL, de Souza R, Tran Diep Pham H, Vlietstra L, Mann J. Saturated fat and trans-fat intakes and their replacement with other macronutrients: a systematic review and meta-analysis of prospective observational studies. World Health Organization; 2022. Available from: https://apps.who.int/iris/bitstream/handle/10665/366301/9789240061668-eng.pdf?sequence=1&isAllowed=y [cited 02 January 2023].


55.
Te Morenga L, Montez JM. Health effects of saturated and trans-fatty acid intake in children and adolescents: systematic review and meta-analysis. PLoS One 2017; 12(11): e0186672. doi: 10.1371/journal.pone.0186672


56.
Bendsen NT, Christensen R, Bartels EM, Astrup A. Consumption of industrial and ruminant trans fatty acids and risk of coronary heart disease: a systematic review and meta-analysis of cohort studies. Eur J Clin Nutr 2011; 65(7): 773–83. doi: 10.1038/ejcn.2011.34


57.
Verneque BJF, Machado AM, de Abreu Silva L, Lopes ACS, Duarte CK. Ruminant and industrial trans-fatty acids consumption and cardiometabolic risk markers: a systematic review. Crit Rev Food Sci Nutr 2022; 62(8): 2050–60. doi: 10.1080/10408398.2020.1836471


58.
Schwingshackl L, Strasser B, Hoffmann G. Effects of monounsaturated fatty acids on cardiovascular risk factors: a systematic review and meta-analysis. Ann Nutr Metab 2011; 59(2–4): 176–86. doi: 10.1159/000334071


59.
Brown TJ, Brainard J, Song F, Wang X, Abdelhamid A, Hooper L. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. BMJ 2019; 366: l4697. doi: 10.1136/bmj.l4697


60.
Imamura F, Micha R, Wu JH, de Oliveira Otto MC, Otite FO, Abioye AI, et al. Effects of saturated fat, polyunsaturated fat, monounsaturated fat, and carbohydrate on glucose-insulin homeostasis: a systematic review and meta-analysis of randomised controlled feeding trials. PLoS Med 2016; 13(7): e1002087. doi: 10.1371/journal.pmed.1002087


61.
Qian F, Ardisson Korat AV, Imamura F, Marklund M, Tintle N, Virtanen JK, et al. n-3 fatty acid biomarkers and incident type 2 diabetes: an individual participant-level pooling project of 20 prospective cohort studies. Diabetes Care 2021; 44(5): 1133–42. doi: 10.2337/dc20-2426


62.
Neuenschwander M, Barbaresko J, Pischke CR, Iser N, Beckhaus J, Schwingshackl L, et al. Intake of dietary fats and fatty acids and the incidence of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective observational studies. PLoS Med 2020; 17(12): e1003347. doi: 10.1371/journal.pmed.1003347


63.
Mousavi SM, Jalilpiran Y, Karimi E, Aune D, Larijani B, Mozaffarian D, et al. Dietary intake of linoleic acid, its concentrations, and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of prospective cohort studies. Diabetes Care 2021; 44(9): 2173–81. doi: 10.2337/dc21-0438


64.
Imamura F, Fretts A, Marklund M, Ardisson Korat AV, Yang WS, Lankinen M, et al. Fatty acid biomarkers of dairy fat consumption and incidence of type 2 diabetes: a pooled analysis of prospective cohort studies. PLoS Med 2018; 15(10): e1002670. doi: 10.1371/journal.pmed.1002670


65.
Aronis KN, Khan SM, Mantzoros CS. Effects of trans fatty acids on glucose homeostasis: a meta-analysis of randomized, placebo-controlled clinical trials. Am J Clin Nutr 2012; 96(5): 1093–9. doi: 10.3945/ajcn.112.040576


66.
Lai HTM, Imamura F, Korat AVA, Murphy RA, Tintle N, Bassett JK, et al. Trans fatty acid biomarkers and incident type 2 diabetes: pooled analysis of 12 prospective cohort studies in the Fatty Acids and Outcomes Research Consortium (FORCE). Diabetes Care 2022; 45(4): 854–63. doi: 10.2337/dc21-1756


67.
Liu X, Zhang Y, Wu H, Zhu P, Mo X, Ma X, et al. Intake of polyunsaturated fatty acids and risk of preclinical and clinical type 1 diabetes in children-a systematic review and meta-analysis. Eur J Clin Nutr 2019; 73(1): 1–8. doi: 10.1038/s41430-018-0185-z


68.
Kim Y, Kim J. N-6 polyunsaturated fatty acids and risk of cancer: accumulating evidence from prospective studies. Nutrients 2020; 12(9). doi: 10.3390/nu12092523


69.
Alexander DD, Bassett JK, Weed DL, Barrett EC, Watson H, Harris W. Meta-analysis of long-chain omega-3 polyunsaturated fatty acids (LCω-3PUFA) and prostate cancer. Nutr Cancer 2015; 67(4): 543–54. doi: 10.1080/01635581.2015.1015745


70.
Aucoin M, Cooley K, Knee C, Fritz H, Balneaves LG, Breau R, et al. Fish-derived omega-3 fatty acids and prostate cancer: a systematic review. Integr Cancer Ther 2017; 16(1): 32–62. doi: 10.1177/1534735416656052


71.
Fu YQ, Zheng JS, Yang B, Li D. Effect of individual omega-3 fatty acids on the risk of prostate cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. J Epidemiol 2015; 25(4): 261–74. doi: 10.2188/jea.JE20140120


72.
Liu J, Li X, Hou J, Sun J, Guo N, Wang Z. Dietary intake of N-3 and N-6 polyunsaturated fatty acids and risk of cancer: meta-analysis of data from 32 studies. Nutr Cancer 2021; 73(6): 901–13. doi: 10.1080/01635581.2020.1779321


73.
Xu C, Han FF, Zeng XT, Liu TZ, Li S, Gao ZY. Fat intake is not linked to prostate cancer: a systematic review and dose-response meta-analysis. PLoS One 2015; 10(7): e0131747. doi: 10.1371/journal.pone.0131747


74.
Noel SE, Stoneham AC, Olsen CM, Rhodes LE, Green AC. Consumption of omega-3 fatty acids and the risk of skin cancers: a systematic review and meta-analysis. Int J Cancer 2014; 135(1): 149–56. doi: 10.1002/ijc.28630


75.
Ruan L, Cheng SP, Zhu QX. Dietary fat intake and the risk of skin cancer: a systematic review and meta-analysis of observational studies. Nutr Cancer 2020; 72(3): 398–408. doi: 10.1080/01635581.2019.1637910


76.
Shen QW, Yao QY. Total fat consumption and pancreatic cancer risk: a meta-analysis of epidemiologic studies. Eur J Cancer Prev 2015; 24(4): 278–85. doi: 10.1097/cej.0000000000000073


77.
Yao X, Tian Z. Saturated, monounsaturated and polyunsaturated fatty acids intake and risk of pancreatic cancer: evidence from observational studies. PLoS One 2015; 10(6): e0130870. doi: 10.1371/journal.pone.0130870


78.
Qiu W, Lu H, Qi Y, Wang X. Dietary fat intake and ovarian cancer risk: a meta-analysis of epidemiological studies. Onco_target 2016; 7(24): 37390–406. doi: 10.18632/onco_target.8940


79.
Sadeghi A, Shab-Bidar S, Parohan M, Djafarian K. Dietary fat intake and risk of ovarian cancer: a systematic review and dose-response meta-analysis of observational studies. Nutr Cancer 2019; 71(6): 939–53. doi: 10.1080/01635581.2019.1595049


80.
Han TJ, Li JS, Luan XT, Wang L, Xu HZ. Dietary fat consumption and non-Hodgkin’s lymphoma risk: a meta-analysis. Nutr Cancer 2017; 69(2): 221–28. doi: 10.1080/01635581.2017.1263753


81.
Gao M, Sun K, Guo M, Gao H, Liu K, Yang C, et al. Fish consumption and n-3 polyunsaturated fatty acids, and risk of hepatocellular carcinoma: systematic review and meta-analysis. Cancer Causes Control 2015; 26(3): 367–76. doi: 10.1007/s10552-014-0512-1


82.
Han J, Jiang Y, Liu X, Meng Q, Xi Q, Zhuang Q, et al. Dietary Fat intake and risk of gastric cancer: a meta-analysis of observational studies. PLoS One 2015; 10(9): e0138580. doi: 10.1371/journal.pone.0138580


83.
Wang J, Wang C. Dietary fat intake and risk of bladder cancer: evidence from a meta-analysis of observational studies. Cell Mol Biol 2019; 65(7): 5–9. doi: 10.14715/cmb/2019.65.7.2


84.
Zhao J, Lyu C, Gao J, Du L, Shan B, Zhang H, et al. Dietary fat intake and endometrial cancer risk: a dose response meta-analysis. Medicine 2016; 95(27): e4121. doi: 10.1097/md.0000000000004121


85.
Jiang L, Hou R, Gong TT, Wu QJ. Dietary fat intake and endometrial cancer risk: dose-response meta-analysis of epidemiological studies. Sci Rep 2015; 5: 16693. doi: 10.1038/srep16693


86.
Wu QJ, Gong TT, Wang YZ. Dietary fatty acids intake and endometrial cancer risk: a dose-response meta-analysis of epidemiological studies. Onco_target 2015; 6(34): 36081–97. doi: 10.18632/onco_target.5555


87.
Nguyen S, Li H, Yu D, Cai H, Gao J, Gao Y, et al. Dietary fatty acids and colorectal cancer risk in men: a report from the Shanghai Men’s Health Study and a meta-analysis. Int J Cancer 2021; 148(1): 77–89. doi: 10.1002/ijc.33196


88.
Kim M, Park K. Dietary fat intake and risk of colorectal cancer: a systematic review and meta-analysis of prospective studies. Nutrients 2018; 10(12). doi: 10.3390/nu10121963


89.
Liu L, Zhuang W, Wang RQ, Mukherjee R, Xiao SM, Chen Z, et al. Is dietary fat associated with the risk of colorectal cancer? A meta-analysis of 13 prospective cohort studies. Eur J Nutr 2011; 50(3): 173–84. doi: 10.1007/s00394-010-0128-5


90.
Shen XJ, Zhou JD, Dong JY, Ding WQ, Wu JC. Dietary intake of n-3 fatty acids and colorectal cancer risk: a meta-analysis of data from 489 000 individuals. Br J Nutr 2012; 108(9): 1550–6. doi: 10.1017/s0007114512003546


91.
Chen GC, Qin LQ, Lu DB, Han TM, Zheng Y, Xu GZ, et al. N-3 polyunsaturated fatty acids intake and risk of colorectal cancer: meta-analysis of prospective studies. Cancer Causes Control 2015; 26(1): 133–41. doi: 10.1007/s10552-014-0492-1


92.
Anjom-Shoae J, Sadeghi O, Larijani B, Esmaillzadeh A. Dietary intake and serum levels of trans fatty acids and risk of breast cancer: a systematic review and dose-response meta-analysis of prospective studies. Clin Nutr 2020; 39(3): 755–64. doi: 10.1016/j.clnu.2019.03.024


93.
Cao Y, Hou L, Wang W. Dietary total fat and fatty acids intake, serum fatty acids and risk of breast cancer: a meta-analysis of prospective cohort studies. Int J Cancer 2016; 138(8): 1894–904. doi: 10.1002/ijc.29938


94.
Brennan SF, Woodside JV, Lunny PM, Cardwell CR, Cantwell MM. Dietary fat and breast cancer mortality: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2017; 57(10): 1999–2008. doi: 10.1080/10408398.2012.724481


95.
Zheng JS, Hu XJ, Zhao YM, Yang J, Li D. Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ 2013; 346: f3706. doi: 10.1136/bmj.f3706


96.
Nindrea RD, Aryandono T, Lazuardi L, Dwiprahasto I. Association of dietary intake ratio of n-3/n-6 polyunsaturated fatty acids with breast cancer risk in western and Asian countries: a meta-analysis. Asian Pac J Cancer Prev 2019; 20(5): 1321–27. doi: 10.31557/apjcp.2019.20.5.1321


97.
Lv D, Wang R, Chen M, Li Y, Cao C. Fish intake, dietary polyunsaturated fatty acids, and lung cancer: systematic review and dose-response meta-analysis of 1.7 million men and women. Nutr Cancer 2022; 74(6): 1976–1985. doi: 10.1080/01635581.2021.1982995


98.
Hanson S, Thorpe G, Winstanley L, Abdelhamid AS, Hooper L. Omega-3, omega-6 and total dietary polyunsaturated fat on cancer incidence: systematic review and meta-analysis of randomised trials. Br J Cancer 2020; 122(8): 1260–70. doi: 10.1038/s41416-020-0761-6


99.
Orchard TS, Pan X, Cheek F, Ing SW, Jackson RD. A systematic review of omega-3 fatty acids and osteoporosis. Br J Nutr 2012; 107 Suppl 2(02): S253–60. doi: 10.1017/s0007114512001638


100.
Shen D, Zhang X, Li Z, Bai H, Chen L. Effects of omega-3 fatty acids on bone turnover markers in postmenopausal women: systematic review and meta-analysis. Climacteric 2017; 20(6): 522–27. doi: 10.1080/13697137.2017.1384952


101.
Sadeghi O, Djafarian K, Ghorabi S, Khodadost M, Nasiri M, Shab-Bidar S. Dietary intake of fish, n-3 polyunsaturated fatty acids and risk of hip fracture: a systematic review and meta-analysis on observational studies. Crit Rev Food Sci Nutr 2019; 59(8): 1320–33. doi: 10.1080/10408398.2017.1405908


102.
Abdelhamid A, Hooper L, Sivakaran R, Hayhoe RPG, Welch A. The relationship between omega-3, omega-6 and total polyunsaturated fat and musculoskeletal health and functional status in adults: a systematic review and meta-analysis of RCTs. Calcif Tissue Int 2019; 105(4): 353–72. doi: 10.1007/s00223-019-00584-3


103.
Mozaffari H, Djafarian K, Mofrad MD, Shab-Bidar S. Dietary fat, saturated fatty acid, and monounsaturated fatty acid intakes and risk of bone fracture: a systematic review and meta-analysis of observational studies. Osteoporos Int 2018; 29(9): 1949–61. doi: 10.1007/s00198-018-4540-7


104.
Brainard JS, Jimoh OF, Deane KHO, Biswas P, Donaldson D, Maas K, et al. Omega-3, omega-6, and polyunsaturated fat for cognition: systematic review and meta-analysis of randomized trials. J Am Med Dir Assoc 2020; 21(10): 1439–50.e21. doi: 10.1016/j.jamda.2020.02.022


105.
Nwaru BI, Dierkes J, Ramel A, Arnesen EK, Thorisdottir B, Lamberg-Allardt C, et al. Quality of dietary fat and risk of Alzheimer’s disease and dementia in adults aged ≥50 years: a systematic review. Food Nutr Res 2022; 66. doi: 10.29219/fnr.v66.8629


106.
Deane KHO, Jimoh OF, Biswas P, O’Brien A, Hanson S, Abdelhamid AS, et al. Omega-3 and polyunsaturated fat for prevention of depression and anxiety symptoms: systematic review and meta-analysis of randomised trials. Br J Psychiatry 2021; 218(3): 135–42. doi: 10.1192/bjp.2019.234


107.
Ajabnoor SM, Thorpe G, Abdelhamid A, Hooper L. Long-term effects of increasing omega-3, omega-6 and total polyunsaturated fats on inflammatory bowel disease and markers of inflammation: a systematic review and meta-analysis of randomized controlled trials. Eur J Nutr 2021; 60(5): 2293–316. doi: 10.1007/s00394-020-02413-y


108.
Winters-van Eekelen E, Verkouter I, Peters HPF, Alssema M, de Roos BG, Schrauwen-Hinderling VB, et al. Effects of dietary macronutrients on liver fat content in adults: a systematic review and meta-analysis of randomized controlled trials. Eur J Clin Nutr 2020; 75: 588–601. doi: 10.1038/s41430-020-00778-1


109.
Bjermo H, Iggman D, Kullberg J, Dahlman I, Johansson L, Persson L, et al. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am J Clin Nutr 2012; 95(5): 1003–12. doi: 10.3945/ajcn.111.030114


110.
Rosqvist F, Iggman D, Kullberg J, Jonathan Cedernaes J, Johansson HE, Larsson A, et al. Overfeeding polyunsaturated and saturated fat causes distinct effects on liver and visceral fat accumulation in humans. Diabetes 2014. doi: 10.2337/db13-1622


111.
Rosqvist F, Kullberg J, Stahlman M, Cedernaes J, Heurling K, Johansson HE, et al. Overeating saturated fat promotes fatty liver and ceramides compared with polyunsaturated fat: a randomized trial. J Clin Endocrinol Metab 2019; 104(12): 6207–19. doi: 10.1210/jc.2019-00160


112.
Kaikkonen JE, Wurtz P, Suomela E, Lehtovirta M, Kangas AJ, Jula A, et al. Metabolic profiling of fatty liver in young and middle-aged adults: cross-sectional and prospective analyses of the Young Finns Study. Hepatology 2017; 65(2): 491–500. doi: 10.1002/hep.28899


113.
Mäkelä TNK, Tuomainen TP, Hantunen S, Virtanen JK. Associations of serum n-3 and n-6 polyunsaturated fatty acids with prevalence and incidence of non-alcoholic fatty liver disease. Am J Clin Nutr 2022; 116(3): 759–770. doi: 10.1093/ajcn/nqac150


114.
Falsig AL, Gleerup CS, Knudsen UB. The influence of omega-3 fatty acids on semen quality markers: a systematic PRISMA review. Andrology 2019; 7(6): 794–803. doi: 10.1111/andr.12649


115.
Pase MP, Grima NA, Sarris J. Do long-chain n-3 fatty acids reduce arterial stiffness? A meta-analysis of randomised controlled trials. Br J Nutr 2011; 106(7): 974–80. doi: 10.1017/s0007114511002819


116.
Wang Q, Liang X, Wang L, Lu X, Huang J, Cao J, et al. Effect of omega-3 fatty acids supplementation on endothelial function: a meta-analysis of randomized controlled trials. Atherosclerosis 2012; 221(2): 536–43. doi: 10.1016/j.atherosclerosis.2012.01.006


117.
Li K, Huang T, Zheng J, Wu K, Li D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor α: a meta-analysis. PLoS One 2014; 9(2): e88103. doi: 10.1371/journal.pone.0088103


118.
Heshmati J, Morvaridzadeh M, Maroufizadeh S, Akbari A, Yavari M, Amirinejad A, et al. Omega-3 fatty acids supplementation and oxidative stress parameters: a systematic review and meta-analysis of clinical trials. Pharmacol Res 2019; 149: 104462. doi: 10.1016/j.phrs.2019.104462


119.
Rett BS, Whelan J. Increasing dietary linoleic acid does not increase tissue arachidonic acid content in adults consuming Western-type diets: a systematic review. Nutr Metab 2011; 8: 36. doi: 10.1186/1743-7075-8-36


120.
Johnson GH, Fritsche K. Effect of dietary linoleic acid on markers of inflammation in healthy persons: a systematic review of randomized controlled trials. J Acad Nutr Diet 2012; 112(7): 1029–41, 41.e1–15. doi: 10.1016/j.jand.2012.03.029


121.
Kdekian A, Alssema M, Van Der Beek EM, Greyling A, Vermeer MA, Mela DJ, et al. Impact of isocaloric exchanges of carbohydrate for fat on postprandial glucose, insulin, triglycerides, and free fatty acid responses-a systematic review and meta-analysis. Eur J Clin Nutr 2020; 74(1): 1–8. doi: 10.1038/s41430-019-0534-6


122.
Cândido TLN, da Silva LE, Tavares JF, Conti ACM, Rizzardo RAG, Gonçalves Alfenas RC. Effects of dietary fat quality on metabolic endotoxaemia: a systematic review. Br J Nutr 2020; 124(7): 654–67. doi: 10.1017/s0007114520001658


123.
Huang YH, Chiu WC, Hsu YP, Lo YL, Wang YH. Effects of omega-3 fatty acids on muscle mass, muscle strength and muscle performance among the elderly: a meta-analysis. Nutrients 2020; 12(12). doi: 10.3390/nu12123739.


124.
Bird JK, Troesch B, Warnke I, Calder PC. The effect of long chain omega-3 polyunsaturated fatty acids on muscle mass and function in sarcopenia: a scoping systematic review and meta-analysis. Clin Nutr ESPEN 2021; 46: 73–86. doi: 10.1016/j.clnesp.2021.10.011


125.
Zhang Y, Guo H, Liang J, Xiao W, Li Y. Relationship between dietary omega-3 and omega-6 polyunsaturated fatty acids level and sarcopenia. a meta-analysis of observational studies. Front Nutr 2021; 8: 738083. doi: 10.3389/fnut.2021.738083


126.
Fonseca Wald ELA, van den Borst B, Gosker HR, Schols A. Dietary fibre and fatty acids in chronic obstructive pulmonary disease risk and progression: a systematic review. Respirology 2014; 19(2): 176–84. doi: 10.1111/resp.12229


127.
Newberry SJ, Chung M, Booth M, Maglione MA, Tang AM, O’Hanlon CE, et al. Omega-3 fatty acids and maternal and child health: an updated systematic review. Evid Rep Technol Assess 2016(224): 1–826. doi: 10.23970/ahrqepcerta224


128.
Delgado-Noguera MF, Calvache JA, Bonfill Cosp X, Kotanidou EP, Galli-Tsinopoulou A. Supplementation with long chain polyunsaturated fatty acids (LCPUFA) to breastfeeding mothers for improving child growth and development. Cochrane Database Syst Rev 2015; 2015(7): Cd007901. doi: 10.1002/14651858.CD007901.pub3


129.
DGAC. Omega-3 fatty acids from supplements consumed before and during Pregnancy and lactation and developmental milestones, including neurocognitive development in the child: a systematic review. Available from: https://nesrusdagov/2020-dietary-guidelines-advisory-committee-systematic-reviews [cited 02 January 2023].


130.
Verfuerden ML, Dib S, Jerrim J, Fewtrell M, Gilbert RE. Effect of long-chain polyunsaturated fatty acids in infant formula on long-term cognitive function in childhood: a systematic review and meta-analysis of randomised controlled trials. PLoS One 2020; 15(11): e0241800. doi: 10.1371/journal.pone.0241800


131.
Kar S, Wong M, Rogozinska E, Thangaratinam S. Effects of omega-3 fatty acids in prevention of early preterm delivery: a systematic review and meta-analysis of randomized studies. Eur J Obstet Gynecol Reprod Biol 2016; 198: 40–6. doi: 10.1016/j.ejogrb.2015.11.033


132.
Li GL, Chen HJ, Zhang WX, Tong Q, Yan YE. Effects of maternal omega-3 fatty acids supplementation during pregnancy/lactation on body composition of the offspring: a systematic review and meta-analysis. Clin Nutr 2018; 37(5): 1462–73. doi: 10.1016/j.clnu.2017.08.002


133.
Ren X, Vilhjálmsdóttir BL, Rohde JF, Walker KC, Runstedt SE, Lauritzen L, et al. Systematic literature review and meta-analysis of the relationship between polyunsaturated and trans fatty acids during pregnancy and offspring weight development. Front Nutr 2021; 8: 625596. doi: 10.3389/fnut.2021.625596


134.
Amirani E, Asemi Z, Asbaghi O, Milajerdi A, Reiner Ž, Mansournia MA, et al. The effects of omega-3 fatty acids supplementation on metabolic status in pregnant women: a systematic review and meta-analysis of randomized controlled trials. J Diabetes Metab Disord 2020; 19(2): 1685–99. doi: 10.1007/s40200-020-00558-5


135.
Gunaratne AW, Makrides M, Collins CT. Maternal prenatal and/or postnatal n-3 long chain polyunsaturated fatty acids (LCPUFA) supplementation for preventing allergies in early childhood. Cochrane Database Syst Rev 2015; 2015(7): Cd010085. doi: 10.1002/14651858.CD010085.pub2


136.
Muley P, Shah M, Muley A. Omega-3 fatty acids supplementation in children to prevent asthma: is it worthy?-a systematic review and meta-analysis. J Allergy 2015; 2015: 312052. doi: 10.1155/2015/312052


137.
Bärebring L, Nwaru BI, Lamberg-Allardt C, Thorisdottir B, Ramel A, Söderlund F, et al. Supplementation with long chain n-3 fatty acids during pregnancy, lactation, or infancy in relation to risk of asthma and atopic disease during childhood: a systematic review and meta-analysis of randomized controlled clinical trials. Food Nutr Res 2022; 66. doi: 10.29219/fnr.v66.8842


138.
Waidyatillake NT, Dharmage SC, Allen KJ, Lodge CJ, Simpson JA, Bowatte G, et al. Association of breast milk fatty acids with allergic disease outcomes-A systematic review. Allergy 2018; 73(2): 295–312. doi: 10.1111/all.13300


139.
Wu W, Lin L, Shi B, Jing J, Cai L. The effects of early life polyunsaturated fatty acids and ruminant trans fatty acids on allergic diseases: a systematic review and meta-analysis. Crit Rev Food Sci Nutr 2019; 59(11): 1802–15. doi: 10.1080/10408398.2018.1429382


140.
Ambrożej D, Dumycz K, Dziechciarz P, Ruszczyński M. Milk fat globule membrane supplementation in children: systematic review with meta-analysis. Nutrients 2021; 13(3). doi: 10.3390/nu13030714


141.
EU. Commission directive on infant formulae and follow-on formulae; (EU) nr 609/2013 and (EU) 2016/127. 2013. Available from: https://eur-lexeuropaeu/legal-content/EN/TXT/?uri=CELEX%3A02006L0141-20130918 [cited 02 January 2023].


142.
EFSA. Scientific Opinion on Dietary Reference Values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. EFSA J 2010; 8(3): 1461. doi: 10.2903/j.efsa.2010.1461


143.
Medicine Io. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. 2005. Available from: https://wwwnalusdagov/sites/default/files/fnic_uploads/energy_full_reportpdf [cited 02 January 2023].


144.
Agostoni C, Decsi T, Fewtrell M, Goulet O, Kolacek S, Koletzko B, et al. Complementary feeding: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 2008; 46(1): 99–110. doi: 10.1097/01.mpg.0000304464.60788.bd


145.
de Goede J, Geleijnse JM, Ding EL, Soedamah-Muthu SS. Effect of cheese consumption on blood lipids: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 2015; 73(5): 259–75. doi: 10.1093/nutrit/nuu060


146.
Mozaffarian D. Dairy foods, obesity, and metabolic health: the role of the food matrix compared with single nutrients. Adv Nutr 2019; 10(5): 917s–23s. doi: 10.1093/advances/nmz053


147.
Brassard D, Tessier-Grenier M, Allaire J, Rajendiran E, She Y, Ramprasath V, et al. Comparison of the impact of SFAs from cheese and butter on cardiometabolic risk factors: a randomized controlled trial. Am J Clin Nutr 2017; 105(4): 800–9. doi: 10.3945/ajcn.116.150300


148.
Chen M, Li Y, Sun Q, Pan A, Manson JE, Rexrode KM, et al. Dairy fat and risk of cardiovascular disease in 3 cohorts of US adults. Am J Clin Nutr 2016; 104(5): 1209–17. doi: 10.3945/ajcn.116.134460
Published
2024-01-12
How to Cite
Retterstøl K., & Rosqvist F. (2024). Fat and fatty acids – a scoping review for Nordic Nutrition Recommendations 2023. Food & Nutrition Research, 68. https://doi.org/10.29219/fnr.v68.9980
Section
Nordic Nutrition Recommendations