En géométrie algorithmique, l'algorithme de Chan[1] nommé d'après son inventeur Timothy M. Chan (en), est un algorithme sensible à la sortie qui calcule l'enveloppe convexe d'un ensemble de points, en dimension 2 ou 3. La complexité temporelle est est le nombre de points dans l'enveloppe convexe. En dimension 2, l'algorithme combine un algorithme en (par exemple le parcours de Graham) et la marche de Jarvis afin d'obtenir un algorithme en . L'algorithme de Chan est important car il est plus simple que l'algorithme de Kirkpatrick-Seidel et s'étend facilement à la dimension 3. Le paradigme utilisé dans l'algorithme s'appuie sur les travaux de Frank Nielsen[2],[3].

Exemple d'une enveloppe convexe d'un ensemble de n = 10 points. L'enveloppe contient k = 5 points.

Algorithme

modifier

Version où le nombre de points h dans l'enveloppe convexe est connu

modifier

Dans un premier temps, nous présentons un algorithme qui utilise la valeur de   et nous appelons ce paramètre  . Cette hypothèse n'est pas réaliste et nous allons la supprimer plus tard. L'algorithme est divisé en deux phases.

Phase 1 : pré-calcul d'enveloppes convexes pour des sous-ensembles

modifier

L'algorithme commence par partitionner   en au plus   sous-ensembles   avec au plus   points dans chaque sous-ensemble. Puis, on calcule l'enveloppe convexe de chacun des sous-ensembles   en utilisant un algorithme en   (par exemple le parcours de Graham). Remarquons que, comme il y a   sous-ensembles de   points chacun, cette phase prend   opérations.

Phase 2 : calcul de l'enveloppe convexe

modifier

La seconde phase consiste à exécuter une marche de Jarvis en utilisant les enveloppes convexes précalculées dans la phase 1 pour accélérer le calcul. À chaque étape de la marche de Jarvis, on considère un point   de l'enveloppe convexe et on cherche à calculer le point   tel que tous les autres points de   sont à droite de la ligne  . Si l'on connait l'enveloppe convexe   de   points, alors on peut calculer   en   en utilisant la recherche dichotomique. On calcule   pour tous les   sous-ensembles   de la phase 1 en  . Puis, on détermine   en utilisant la même technique que celle de la marche de Jarvis, mais en ne considérant que les points    est un sous-ensemble de la phase 1. Comme la marche de Jarvis répète le calcul d'un     fois, la seconde phase prend   opérations. Si  , elle prend   opérations.

Algorithme où h n'est pas connu

modifier

L'algorithme décrit précédemment utilise  . Si  , nous nous en rendons compte dans la marche de Jarvis au bout de   étapes. Ainsi, si  , on prend   pour s'en rendre compte (et on ne calcule pas l'enveloppe convexe jusqu'au bout). Si  , on s'en rend compte aussi puisque l'algorithme s'arrête et calcule l'enveloppe convexe.

L'idée consiste alors à commencer l'algorithme avec une valeur petite pour   (dans l'analyse qui suit on utilise 2, mais des nombres aux alentours de 5 marchent mieux en pratique), puis on augmente la valeur de   jusqu'à ce que  , et dans ce cas, on obtient l'enveloppe convexe.

Si on augmente la valeur de   trop lentement, on a besoin de répéter les phases 1 et 2 trop de fois et le temps de d'exécution est trop grand. A contrario, si on augmente les valeurs de   trop vite, on risque d'atteindre une valeur de   beaucoup trop grande par rapport à  , et le temps d'exécution est trop grand. À la manière de la stratégie utilisée dans l'algorithme de Chazelle and Matoušek's[4], l'algorithme de Chan élève au carré la valeur de   à chaque itération sans dépasser  . En d'autres termes,   prend les valeurs 2, 4, 16, 256, etc. et à l'itération numéro   (en commençant à 0), on a  . Le temps d'exécution total de l'algorithme est

 

En dimension 3

modifier

Pour généraliser l'algorithme en dimension 3, on doit utiliser un autre algorithme en   à la place du parcours de Graham et on doit utiliser une version 3D de la marche de Jarvis. La complexité temporelle reste en  .

Améliorations

modifier

Dans l'article de Chan, il y a des suggestions qui pourraient améliorer la performance de l'algorithme en pratique :

  • Quand on calcule les enveloppes convexes des sous-ensembles, on peut éliminer les points qui ne sont dans l'enveloppe convexe pour les autres itérations.
  • Quand   augmente, on peut calculer les nouvelles enveloppes convexes en fusionnant les enveloppes convexes précédentes au lieu de les recalculer à partir de zéro.

Extensions

modifier

L'article de Chan contient d'autres problèmes que l'on peut rendre sensible à la sortie en utilisant la même technique, par exemple :

  • Calculer la courbe minimum (lower enveloppe) d'un ensemble de   segments. Hershberger[5], donne un algorithme en   qui peut être amélioré en  , où   est le nombre de segments dans la courbe minimum.
  • Calculer une enveloppe convexe en dimension supérieure. On peut maintenir la complexité en   si   reste polynomial en  .

Références

modifier
  1. (en) Timothy M. Chan, « Optimal output-sensitive convex hull algorithms in two and three dimensions », Discrete and Computational Geometry, vol. 16,‎ , p. 361–368 (présentation en ligne)
  2. (en) Frank Nielsen, « Grouping and Querying : A Paradigm to Get Output-Sensitive Algorithms », Discrete and Computational Geometry, vol. 1763,‎ , p. 250–257 (présentation en ligne).
  3. Frank Nielsen, « Algorithmes géométriques adaptatifs », sur INRIA, , thèse de doctorat.
  4. B. Chazelle et Jiří Matoušek, « Derandomizing an output-sensitive convex hull algorithm in three dimensions », Computational Geometry, vol. 5,‎ , p. 27–32 (présentation en ligne).
  5. (en) J. Hershberger, « Finding the upper envelope of n line segments in O(n log n) time », Information Processing Letters, vol. 33,‎ , p. 169–174 (présentation en ligne).
  NODES