En mathématiques, dans le domaine de l'analyse p-adique , l’intégrale de Volkenborn est une méthode d'intégration des fonctions p-adiques.
Si ce bandeau n'est plus pertinent, retirez-le. Cliquez ici pour en savoir plus.
Cet article a une forme trop académique (avril 2022 ).
La forme ressemble trop à un extrait de cours et nécessite une réécriture afin de correspondre aux standards de Wikipédia .
N'hésitez pas à l'améliorer .
Soit
f
:
Z
p
→
C
p
{\displaystyle f:\mathbb {Z} _{p}\to \mathbb {C} _{p}}
une fonction définie sur les entiers p-adiques à valeurs p-adiques . L'intégrale de Volkenborn est définie par la limite, si elle existe :
∫
Z
p
f
(
x
)
d
x
=
lim
n
→
∞
1
p
n
∑
x
=
0
p
n
−
1
f
(
x
)
.
{\displaystyle \int _{\mathbb {Z} _{p}}f(x)\,{\rm {d}}x=\lim _{n\to \infty }{\frac {1}{p^{n}}}\sum _{x=0}^{p^{n}-1}f(x).}
Plus généralement, si
R
n
=
{
x
=
∑
i
=
r
n
−
1
b
i
x
i
|
b
i
=
0
,
…
,
p
−
1
for
r
<
n
}
{\displaystyle R_{n}=\left\{\left.x=\sum _{i=r}^{n-1}b_{i}x^{i}\right|b_{i}=0,\ldots ,p-1{\text{ for }}r<n\right\}}
alors
∫
K
f
(
x
)
d
x
=
lim
n
→
∞
1
p
n
∑
x
∈
R
n
∩
K
f
(
x
)
.
{\displaystyle \int _{K}f(x)\,{\rm {d}}x=\lim _{n\to \infty }{\frac {1}{p^{n}}}\sum _{x\in R_{n}\cap K}f(x).}
Cette intégrale tient son nom d'Arnt Volkenborn qui l'a définie dans sa thèse.
∫
Z
p
f
(
x
+
m
)
d
x
=
∫
Z
p
f
(
x
)
d
x
+
∑
x
=
0
m
−
1
f
′
(
x
)
{\displaystyle \int _{\mathbb {Z} _{p}}f(x+m)\,{\rm {d}}x=\int _{\mathbb {Z} _{p}}f(x)\,{\rm {d}}x+\sum _{x=0}^{m-1}f'(x)}
Il en résulte que l'intégrale de Volkenborn n'est pas invariante par translation.
En notant
P
t
=
p
t
Z
p
{\displaystyle P^{t}=p^{t}\mathbb {Z} _{p}}
, on a :
∫
P
t
f
(
x
)
d
x
=
1
p
t
∫
Z
p
f
(
p
t
x
)
d
x
{\displaystyle \int _{P^{t}}f(x)\,{\rm {d}}x={\frac {1}{p^{t}}}\int _{\mathbb {Z} _{p}}f(p^{t}x)\,{\rm {d}}x}
Arnt Volkenborn: Ein p-adisches Integral und seine Anwendungen I. In: Manuscripta Mathematica. Bd. 7, Nr. 4, 1972, [1]
Arnt Volkenborn: Ein p-adisches Integral und seine Anwendungen II. In: Manuscripta Mathematica. Bd. 12, Nr. 1, 1974, [2]
Henri Cohen, "Number Theory", Volume II, page 276