Vu comme cas particulier du théorème de Stokes , le théorème s'écrit sous la forme suivante, en notant ∂D la courbe C et ω la forme différentielle. Alors, la dérivée extérieure de ω s'écrit :
d
ω
=
(
∂
Q
∂
x
−
∂
P
∂
y
)
d
x
∧
d
y
{\displaystyle \mathrm {d} \omega =\left({\frac {\partial Q}{\partial x}}-{\frac {\partial P}{\partial y}}\right)\mathrm {d} x\wedge \mathrm {d} y}
et le théorème de Green se résume par :
∮
∂
D
ω
=
∬
D
d
ω
.
{\displaystyle \oint _{\partial D}\omega =\iint _{D}\mathrm {d} \omega .}
Le cercle sur l'intégrale précise que le bord ∂D est une courbe fermée (orientée). Changer l'orientation de la courbe change le signe de l'intégrale curviligne. L'orientation du bord ∂D se fait intuitivement de telle façon qu'un point le parcourant doit avoir le domaine D constamment sur sa gauche.
On peut aussi interpréter
∮
∂
D
ω
{\displaystyle \oint _{\partial D}\omega }
comme la circulation du champ de vecteurs
P
ı
→
+
Q
ȷ
→
{\displaystyle P\,{\vec {\imath }}+Q\,{\vec {\jmath }}}
défini sur un ouvert du plan contenant D .
Démonstration dans un cas simplifié
modifier
Théorème de Green-Riemann dans un cas simplifié.
Montrons que
∬
D
−
∂
P
∂
y
(
x
,
y
)
d
x
d
y
=
∫
∂
D
P
d
x
{\displaystyle \iint _{D}-{\frac {\partial P}{\partial y}}(x,y)\,\mathrm {d} x\mathrm {d} y=\int _{\partial D}P\,\mathrm {d} x}
en supposant que le domaine D peut être décrit par :
D
=
{
(
x
,
y
)
∈
R
2
;
a
⩽
x
⩽
b
et
f
(
x
)
⩽
y
⩽
g
(
x
)
}
{\displaystyle D=\{(x,y)\in \mathbb {R} ^{2}\ ;\ a\leqslant x\leqslant b\ {\text{ et }}\ f(x)\leqslant y\leqslant g(x)\}}
où f et g sont des fonctions de classe C1 sur [a , b ] qui coïncident en a et b .
Le théorème de Fubini donne :
∬
D
−
∂
P
∂
y
(
x
,
y
)
d
x
d
y
=
∫
a
b
(
∫
f
(
x
)
g
(
x
)
−
∂
P
∂
y
(
x
,
y
)
d
y
)
d
x
{\displaystyle \iint _{D}-{\frac {\partial P}{\partial y}}(x,y)\,\mathrm {d} x\mathrm {d} y=\int _{a}^{b}\left(\int _{f(x)}^{g(x)}-{\frac {\partial P}{\partial y}}(x,y)\,\mathrm {d} y\right)\mathrm {d} x}
Or
∫
f
(
x
)
g
(
x
)
−
∂
P
∂
y
(
x
,
y
)
d
y
=
P
(
x
,
f
(
x
)
)
−
P
(
x
,
g
(
x
)
)
{\displaystyle \int _{f(x)}^{g(x)}-{\frac {\partial P}{\partial y}}(x,y)\,\mathrm {d} y=P(x,f(x))-P(x,g(x))}
, de sorte que :
∬
D
−
∂
P
∂
y
(
x
,
y
)
d
x
d
y
=
∫
a
b
P
(
x
,
f
(
x
)
)
−
P
(
x
,
g
(
x
)
)
d
x
.
{\displaystyle \iint _{D}-{\frac {\partial P}{\partial y}}(x,y)\,\mathrm {d} x\mathrm {d} y=\int _{a}^{b}P(x,f(x))-P(x,g(x))\,\mathrm {d} x.}
Or l'arc orienté
∂
D
{\displaystyle \partial D}
peut être décomposé en deux sous-arcs :
t
⟼
(
t
,
f
(
t
)
)
{\displaystyle t\longmapsto (t,f(t))}
où t croît de a à b
et
t
⟼
(
t
,
g
(
t
)
)
{\displaystyle t\longmapsto (t,g(t))}
où t décroît de b à a .
L'intégrale curviligne
∫
∂
D
P
d
x
{\displaystyle \int _{\partial D}P\,\mathrm {d} x}
est donc :
∫
a
b
P
(
t
,
f
(
t
)
)
d
t
+
∫
b
a
P
(
t
,
g
(
t
)
)
d
t
=
∫
a
b
P
(
t
,
f
(
t
)
)
−
P
(
t
,
g
(
t
)
)
d
t
{\displaystyle \int _{a}^{b}P(t,f(t))\,\mathrm {d} t+\int _{b}^{a}P(t,g(t))\,\mathrm {d} t=\int _{a}^{b}P(t,f(t))-P(t,g(t))\,\mathrm {d} t}
qui est bien l'expression obtenue ci-dessus.
On montre de même que
∬
D
∂
Q
∂
x
(
x
,
y
)
d
x
d
y
=
∫
∂
D
Q
d
y
{\displaystyle \iint _{D}{\frac {\partial Q}{\partial x}}(x,y)\,\mathrm {d} x\mathrm {d} y=\int _{\partial D}Q\,\mathrm {d} y}
en supposant que le domaine D peut être décrit comme étant :
D
=
{
(
x
,
y
)
∈
R
2
;
c
⩽
y
⩽
d
et
ϕ
(
y
)
⩽
x
⩽
ψ
(
y
)
}
{\displaystyle D=\{(x,y)\in \mathbb {R} ^{2}\ ;\ c\leqslant y\leqslant d\ {\text{ et }}\ \phi (y)\leqslant x\leqslant \psi (y)\}}
où ϕ et ψ sont des fonctions de classe C1 sur [c , d ] qui coïncident en c et d :
∬
D
∂
Q
∂
x
(
x
,
y
)
d
x
d
y
=
∫
c
d
∫
ϕ
(
y
)
ψ
(
y
)
∂
Q
∂
x
(
x
,
y
)
d
x
d
y
=
∫
c
d
Q
(
ψ
(
y
)
,
y
)
−
Q
(
ϕ
(
y
)
,
y
)
d
y
=
∫
∂
D
Q
d
y
.
{\displaystyle \iint _{D}{\frac {\partial Q}{\partial x}}(x,y)\,\mathrm {d} x\mathrm {d} y=\int _{c}^{d}\int _{\phi (y)}^{\psi (y)}{\frac {\partial Q}{\partial x}}(x,y)\,\mathrm {d} x\mathrm {d} y=\int _{c}^{d}Q(\psi (y),y)-Q(\phi (y),y)\,\mathrm {d} y=\int _{\partial D}Q\,\mathrm {d} y.}
Le théorème de Green permet notamment de démontrer l'inégalité de Poincaré , ainsi que le théorème intégral de Cauchy pour les fonctions holomorphes .
L'utilisation du théorème de Green permet de calculer l'aire délimitée par une courbe paramétrée fermée. Cette méthode est concrètement appliquée dans les planimètres .
Soit D un domaine du plan auquel le théorème de Green s'applique et soit C = ∂D sa frontière, orientée positivement par rapport à D . On a :
A
(
D
)
=
∬
D
d
x
d
y
=
∫
C
−
y
d
x
=
∫
C
x
d
y
=
1
2
∫
C
−
y
d
x
+
x
d
y
{\displaystyle {\mathcal {A}}(D)=\iint _{D}\mathrm {d} x\mathrm {d} y=\int _{C}-y\mathrm {d} x=\int _{C}x\mathrm {d} y={\frac {1}{2}}\int _{C}-y\mathrm {d} x+x\mathrm {d} y}
en prenant respectivement
(
P
(
x
,
y
)
,
Q
(
x
,
y
)
)
{\displaystyle \left(P(x,y),Q(x,y)\right)}
égal à
(
−
y
,
0
)
{\displaystyle (-y,0)}
, ou bien
(
0
,
x
)
{\displaystyle (0,x)}
, ou enfin
(
−
y
/
2
,
x
/
2
)
{\displaystyle (-y/2,x/2)}
, chacun de ces trois cas vérifiant
∂
Q
∂
x
−
∂
P
∂
y
=
1.
{\displaystyle {\frac {\partial Q}{\partial x}}-{\frac {\partial P}{\partial y}}=1.}
On traite ici l'exemple d'une astroïde , dont le bord C est paramétré par :
t
↦
(
cos
3
t
,
sin
3
t
)
,
{\displaystyle t\mapsto (\cos ^{3}t,\sin ^{3}t),}
t variant de 0 à 2π . En prenant
P
(
x
,
y
)
d
x
=
−
y
2
d
x
=
3
2
sin
4
t
cos
2
t
d
t
{\displaystyle P(x,y)\,\mathrm {d} x=-{\frac {y}{2}}\,\mathrm {d} x={\frac {3}{2}}\sin ^{4}t\cos ^{2}t\,\mathrm {d} t}
et
Q
(
x
,
y
)
d
y
=
x
2
d
y
=
3
2
cos
4
t
sin
2
t
d
t
{\displaystyle Q(x,y)\,\mathrm {d} y={\frac {x}{2}}\,\mathrm {d} y={\frac {3}{2}}\cos ^{4}t\sin ^{2}t\,\mathrm {d} t}
, on obtient :
A
(
D
)
=
1
2
∫
C
−
y
d
x
+
x
d
y
=
3
2
∫
0
2
π
cos
2
t
sin
2
t
d
t
.
{\displaystyle {\mathcal {A}}(D)={\frac {1}{2}}\int _{\mathcal {C}}-y\mathrm {d} x+x\mathrm {d} y={\frac {3}{2}}\int _{0}^{2\pi }\cos ^{2}t\sin ^{2}t\,\mathrm {d} t.}
Après linéarisation , on en déduit que l'aire de l'astroïde est égale à 3π / 8 .
Pour un polygone simple à n sommets P 0 , P 1 , … , Pn = P 0 numérotés dans le sens trigonométrique positif, avec Pi = (xi , yi ) , on obtient
A
=
1
2
∑
i
=
1
n
(
x
i
+
x
i
−
1
)
(
y
i
−
y
i
−
1
)
=
−
1
2
∑
i
=
1
n
(
x
i
−
x
i
−
1
)
(
y
i
+
y
i
−
1
)
{\displaystyle {\mathcal {A}}={\frac {1}{2}}\sum _{i=1}^{n}(x_{i}+x_{i-1})\,(y_{i}-y_{i-1})=-{\frac {1}{2}}\sum _{i=1}^{n}(x_{i}-x_{i-1})\,(y_{i}+y_{i-1})}
ou encore
A
=
1
2
∑
i
=
1
n
x
i
−
1
y
i
−
x
i
y
i
−
1
,
{\displaystyle {\mathcal {A}}={\frac {1}{2}}\sum _{i=1}^{n}x_{i-1}\,y_{i}-x_{i}\,y_{i-1},}
expression qui peut s'interpréter comme la somme des aires des triangles OP i –1Pi .
Note : dans la première relation, on observe qu'une translation ne modifie pas l'aire.