Skip to content

stoneMan349/reinfocement-learning-on-robotic-mobile-fulfilment-system

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 

Repository files navigation

reinforcement-learning-on-robotic-mobile-fulfilment-system

A reinforcement learing environment for robotic mobile fulfilment system (RMFS)

We provide a reinforcement learning environment for RMFS and provide an improved DQN algorithm to realize the control of AGV.

For more information, you can search my paper: Astar guiding DQN algorithm for AGV pathfinding problem of robotic mobile fulfillment systems

1.Run the program by running the run.py

image

2.Choose how to control the AGV by setting the parameter control_mode

image

3.Various system layouts can be generated by setting the parameters shown in the figure. It should be noted that each storage station (red square) must be connected to a road.

image

4.EXAMPLE: The following set of animations shows the different learning stages of the neural network. 媒体1_ The first picture is the early stage of training, the AGV under the control of the neural network does not know how to act at all.

媒体2_ After training for a period of time, the AGV was able to complete a small number of tasks, but the neural network still made a lot of wrong decisions.

媒体3 (online-video-cutter com)_ After a period of training, AGV can complete a large number of tasks, but the neural network still occasionally makes wrong decisions.

媒体4 (online-video-cutter com)_ After the neural network is trained, it can control the AGV to complete all tasks.

About

A reinforcement learing environment for robotic mobile fulfilment system (RMFS)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  NODES
COMMUNITY 1
Note 1
Project 3
USERS 1