Recta

obxeto xeomético infinito unidimensional

A recta, en xeometría, é o ente ideal que só posúe unha dimensión e contén infinitos puntos. Está composta de infinitos segmentos (o fragmento de liña máis curto que une dous puntos). Tamén se describe como a sucesión continua e indefinida de puntos nunha soa dimensión.

É un dos entes xeométricos fundamentais, xunto ao punto e o plano. Son considerados conceptos apriorísticos, xa que a súa definición só é posíbel a partir da descrición das características doutros elementos similares. Así, é posíbel elaborar definicións baseándose nos Postulados característicos que determinan relacións entre os entes fundamentais. As rectas adóitanse denominar cunha letra minúscula.

Definicións e postulados de Euclides relacionados coa recta

editar

Euclides, no seu tratado denominado Os Elementos,[1] estabelece varias definicións relacionadas coa liña e a liña recta:

  • Unha liña é unha lonxitude sen anchura (Libro I, definición 2).
  • Os extremos dunha liña son puntos (Libro I, definición 3).
  • Unha liña recta é aquela que xace por igual respecto dous puntos que estean nela (Libro I, definición 4).

Tamén estabeleceu dous postulados relacionados coa liña recta:

  • Por dous puntos diferentes só pasa unha liña recta (Libro I, postulado 1).
  • Se unha recta secante corta a dúas rectas formando a un lado ángulos interiores, a suma dos cales é menor que dous ángulos rectos: as dúas rectas, suficientemente alongadas, cortaranse no mesmo lado (Libro I, postulado 5).

Características da recta

editar

Algunhas das características da recta son as seguintes:

  • A recta prolóngase até o infinito en ambos sentidos.
  • A distancia máis curta entre dous puntos é unha recta.
  • A recta é un conxunto de puntos situados ao longo da intersección de dous planos.

Rectas no plano

editar

Unha recta no plano pode ser descrita das seguintes formas:

  • dando dous puntos da recta;
  • dando un punto da recta e a súa pendente;
  • dando un punto da reta e un vector normal a esa recta;
  • dando un punto e un vector da reta.

Rectas no espazo

editar

Unha reta no espazo pode ser descrita das seguintes formas:

  • dando dous puntos da reta;
  • dando un punto da reta e dous vectores normais a esa recta, non colineares;
  • dando un punto e un vector da reta.

Na xeometría analítica

editar

A xeometría analítica consiste en empregar operacións de cálculo numérico para resolver problemas de xeometría. Nun plano, podemos representar unha recta mediante unha ecuación.

Ecuación da recta

editar

A recta escríbese en forma dunha ecuación de dúas incógnitas. Ten sempre a forma simplificada de  , onde   e   corresponden ás coordenadas dun punto   e   é a pendente. A pendente   é a tanxente da recta co eixo de abscisas  .

Tomados dous puntos dunha recta, a pendente  , é sempre constante. Pódese calcular mediante a ecuación:

 

Pódese obter a ecuación da recta a partir da fórmula da pendente:

 

Este xeito de obter a ecuación dunha recta utilízase máis ben cando se coñecen a pendente e as coordenadas dun dos seus puntos, ou cando se coñecen dous puntos, polo que tamén se lle chama ecuación da recta coñecidos dous puntos, e débeselle a Jean Baptiste Biot.

Exemplo:
  • A ecuación da recta que pasa polo punto   e que ten unha pendente   de -1/3.

Témola expresión:  

Substituímos  ,   e   (datos coñecidos, un punto e a pendente):

 

Sacámolos parénteses:

 

E xa teriamos a forma simplificada da ecuación da recta:

 

  1. http://www.euclides.org: Los Elementos [1] Arquivado 06 de marzo de 2009 en Wayback Machine. (en castelán) A obra non fala particularmente da recta, senón do segmento de recta.

Véxase tamén

editar

Outros artigos

editar

Ligazóns externas

editar
  NODES
Idea 1
idea 1
mac 1
os 75
todo 1