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Abstract Achieving fast and accurate collective decisions with a large number of
simple agents without relying on a central planning unit or on global communi-
cation is essential for developing complex collective behaviors. In this paper, we
investigate the speed versus accuracy trade-off in collective decision-making in the
context of a binary discrimination problem—i.e., how a swarm can collectively
determine the best of two options. We describe a novel, fully distributed collective
decision-making strategy that only requires agents with minimal capabilities and
is faster than previous approaches. We evaluate our strategy experimentally, using
a swarm of 100 Kilobots, and we study it theoretically, using both continuum and
finite-size models. We find that the main factor affecting the speed versus accu-
racy trade-off of our strategy is the agents neighborhood size—i.e., the number
of agents with whom the current opinion of each agent is shared. The proposed
strategy and the associated theoretical framework can be used to design swarms
that take collective decisions at a given level of speed and/or accuracy.
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1 Introduction

The ability to make careful and timely decisions is an essential feature of most arti-
ficial systems, being them formed by a single agent or, as in this paper, by a swarm
of reactive agents. With the aim of studying problems of swarm robotics [1] within a
more principled and general framework, we focus on the design and analysis of col-
lective decision-making—an essential collective behavior that implements agency
at the swarm level and is a required component in many applications of swarm
robotics [3,16,24]. We consider how a swarm of agents with minimal capabilities
can solve the problem of finding the best out of two options that are symmetri-
cally distributed in a certain environment [25,44]. The swarm has to reach such
an agreement by local interactions only and by exploiting positive feedback, i.e.,
by implementing a self-organized process. Contrary to classic multiagent systems
formed by rational and more informed agents, the agents in a swarm act highly
asynchronously, independently assessing the quality of the two alternatives over
and over again, repeatedly changing preference for the best option, and communi-
cating that choice to their local neighbors only. Positive feedback is induced by a
mechanism that is generally called positive feedback modulation [11]. It amplifies
or reduces the time that individual agents spend on participating to the decision-
making process as a function of the option’s quality. Over time, this process biases
the opinion of the majority of agents towards the highest quality.

In this paper, we thoroughly study the collective decision-making strategy
first proposed in [45]: Direct Modulation of Majority-based Decisions (DMMD).
In this strategy, modulation of positive feedback is implemented by agents that
advertise their opinion for a time that is proportional to the assessed quality. The
same modulation of positive feedback is used also in Valentini et al. [44]. The
two strategies differ for the decision rule used by the agents. In [44], we used the
voter model [4,18], which is based on agents copying the opinion of a random
neighbor at each application of the decision rule. In this paper, we use instead the
majority rule [9], which is based on agents changing their opinion to the one shared
by the majority of individuals in their neighborhood. Using both a continuous
approximation model and a stochastic, finite-size model, we show that the majority
rule enables faster although less accurate collective decisions in comparison to
the voter model. The speedup allowed us to realize an implementation of the
decision-making strategy on a robot swarm composed of 100 Kilobots [31]—simple
autonomous robots with limited sensing and actuation capabilities.

In order to understand the dynamics obtained with robot experiments and in
order to predict the performance in arbitrary regions of the parameter space, we
developed a model of the collective decision-making system that is based on or-
dinary differential equations (ODEs). We analytically compare the majority rule
versus the voter model by means of this model, showing that the majority rule
achieves faster decisions at the expense of lower accuracy. This result is confirmed
for finite-size systems using a second model, based on a chemical reaction network
simulated numerically using the Gillespie algorithm. Using both modeling tech-
niques, we show that the speed-accuracy trade-off [6,27] of the DMMD strategy
is strongly dependent on one key parameter of the system: the neighborhood size
of individual agents when applying the majority rule.

The remaining of the paper is organized as follows. In Section 2, we describe
our collective decision-making strategy in details. In Section 3, we present the ex-
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Fig. 1 Illustration of the probabilistic
finite-state machine of the individual
agent. Solid and dotted lines represent,
respectively, deterministic and stochastic
transitions; symbols Di and Ei with i ∈
{a, b} represent the dissemination states
and the exploration states, while sym-
bols MR highlight the application of the
majority rule at the end of the dissemina-
tion state.

periments we performed with the Kilobots, and the corresponding results. The two
mathematical models, ODEs and chemical reaction network, and their predictions,
are presented in Section 4 and Section 5, respectively. Section 6, contains a dis-
cussion and a comparison with existing approaches in the literature. Conclusions
and future research perspective are finally presented in Section 7.

2 Collective Decision-Making Strategy

We design a self-organized decision-making strategy to allow a swarm of agents to
discriminate between two options based on their quality. Although the approach is
general enough for an arbitrary number of options [45], here we focus on a binary
scenario to simplify the description of the DMMD strategy. We refer to the two
options as option a and option b. The quality of the two options is denoted with
ρi ∈ (0, 1], i ∈ {a, b}. Each agent in a swarm has always a preference for an option,
either a or b, referred to as the agent’s opinion. Furthermore, each agent can be
in one of four possible states: dissemination states Da and Db, exploration states
Ea and Eb. The resulting probabilistic finite-state machine is shown in Figure 1.

In the dissemination states, each agent communicates its current opinion locally
(which is a when in state Da and b when in state Db) to other agents in its
neighborhood that are also in the dissemination state. This behavior is performed
for the entire duration of the dissemination state. Before moving to an exploration
state, the agent perceives and collects the opinions of its neighbors. Then, the
agent adds its own opinion to this group of opinions and applies the majority rule
to determine its next preferred option. Depending on the outcome of the majority
rule, the agent switches to one of the two exploration states Ea or Eb (cf. dotted
lines in Figure 1). In the case of a tie the agent keeps its current opinion.

In the exploration states, each agent assesses the quality of its currently pre-
ferred option, which is a when in state Ea and b when in state Eb. For the entire du-
ration of the exploration state, the agent evaluates the characteristic features that
determine the quality associated to its opinion following a given domain-specific
routine. The quality-estimation routine depends on the particular target scenario
and could involve complex robot behaviors—for example, those necessary to ex-
plore a candidate construction site and evaluate its level of safety. Independently
of the scenario, the quality estimation routine results in one sample measurement
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which is generally subject to noise. The swarm processes noisy measurements by
acting as a filter that averages over many individual agent measurements (see
also [44]). Once the exploration is completed, the agent switches to the dissemi-
nation state that corresponds to its current opinion (cf. solid lines in Figure 1).

A core mechanism of the DMMD strategy, which implements the selection of
the best option, is the so-called modulation of positive feedback [11,44]. The agent
controller is designed to scale the time spent in the dissemination states proportion-
ally to the quality of the opinions. The time spent disseminating a (respectively, b)
is directly proportional to the opinion’s quality ρag (ρbg) where g is the unbiased
dissemination time, a parameter set by the designer. The parameter g represents
the average duration of opinion dissemination without considering its modulation
and is subject to application-specific considerations. The agents have control of
the positive feedback mechanism by adapting the amount of time that they dis-
seminate an opinion. In this way agents influence the frequency with which other
agents observe a certain opinion in their dissemination state. As a consequence,
observing neighbors that are in favor of the best option is more likely than observ-
ing neighbors that are in favor of other, lower quality alternatives. Therefore, the
swarm is biased towards achieving a collective decision for the best option. This
idea is loosely inspired by the honeybee behavior shown when honeybees search
for potential site locations for their new nest [7,8,37].

A requirement of this strategy is that the interaction among agents in the
dissemination states should be well-mixed or, at least, approximately well-mixed.
That is, the probability of any agent to encounter a neighbor of a certain opinion
is approximately proportional to the global distribution of opinions in the whole
swarm. The well-mixed property is only a weak requirement as it influences the
efficiency of the decision-making process but only in extreme cases its efficacy.
If the spatial distribution of agents is sufficiently well-mixed, the decision-making
strategy is efficient and successful. The more the system deviates from a well-mixed
state, the slower the decision-making process is. Only if the spatial distribution
of agents is far from well-mixed, then the decision-making process is slowed down
considerably by spatial fragmentation of opinions (e.g., formation of clusters of
robots with the same opinion) and might even end up in a deadlock, that is, a
macroscopic state of indecision far from consensus [5]. In the next section, we
explain how this requirement can be fulfilled for the case of autonomous robots.

3 Experiments with the Kilobots

In this section we present a series of robot experiments aimed at validating the
robustness of the DMMD strategy to the constraints imposed by the real world.
Due to the simplicity of our model, we were able to implement experiments with
a relatively large swarm of 100 Kilobots [31]. The Kilobot (shown in Figure 2a) is
a low-cost (currently about e120), small-sized (3.3 cm diameter) robot equipped
with two independently-controllable vibrating motors for differential drive locomo-
tion, infrared receiver and transmitter for local, close-range communication, RGB
LED light emitters, and a light sensor for sensing the intensity of the ambient
light. A Kilobot can move with a maximum nominal speed of 1 cm/s and rota-
tional speed of π/4 rad/s. It can send and receive, within a maximum distance of
approximately 20 cm, infrared messages at a rate of up to 30 kb/s.
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Fig. 2 The figure shows a) the Kilobot robot highlighting the position of vibrating motors,
light sensor, and IR transceiver; and b) the experimental arena partitioned into nest, red site,
and blue site with details of both IR and light beacons.

We implemented the DMMD strategy in the following scenario. We built a
rectangular arena whose total size is 100 × 190 cm2 (see Figure 2b), which is
three orders of magnitude larger than the footprint of a single Kilobot. Options a
and b correspond to foraging sites of quality ρa and ρb, respectively. The two sites
are 80 × 45 cm2 large and are located at the right (site a, red) and at the left
(site b, blue) of the arena. The remaining, central part of the arena is called nest.
It is 100 × 100 cm2 large and it is where the swarm of 100 Kilobots is initially
placed. The nest is also the decision-making hub of the swarm, that is, the decision
rule is only allowed to be executed within the nest. Robots are initialized in the
dissemination state with random position and orientation. At time t = 0, the
swarm consists of 50 robots with opinion a and 50 with opinion b; their initial
quality estimate is unbiased (ρ̂a(0) = ρ̂b(0) = 1). Our goal is to have the majority
of the swarm foraging from the site associated with the higher quality, in this
scenario by definition site a. Specifically, the quality of site a is twice as high as
that of site b (ρa = 1 and ρb = 0.5). We position a light source on the right of the
arena, to provide a landmark that can be used by the robots to navigate and find
the three areas. They perform phototaxis when they need to move from site b to
the nest or from the nest to site a and anti-phototaxis in the remaining two cases.

Kilobots can identify the two sites and measure the associated quality by using
their infrared sensors. For each site, five additional Kilobots are positioned upside-
down under the transparent surface of the arena, at the border between the site
and the nest, and act as beacons. These Kilobots continuously communicate locally
a message containing the type (a or b) and the quality (ρa or ρb) associated to a
site. These infrared messages are perceived only within the sites, both due to their
local nature (approximately 15 cm) and because we cover the nest area by light
occluding paper to prevent robots from sensing this information at the nest.

As defined by the DMMD strategy, robots continuously iterate between pe-
riods of exploration and dissemination. Robots explore the site associated with
their current opinion by navigating from the nest to that site and measuring its
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Fig. 3 The figure shows the finite-state machines that implement the motion control method
of the individual robot during the execution of the decision-making strategy: a) FSM used for
both dissemination states Da and Db; and b) the two FSMs used for the exploration state Ea
(top) and Eb (bottom). Symbols represent low level motion routines, respectively, random walk
(RW ), phototaxis (PT ), and antiphototaxis (!PT ); colors represent the current robot opinion,
respectively, red for opinion a and blue for opinion b.

quality. They then go back to the nest, where they disseminate their current opin-
ion modulating the positive feedback based on the measured quality ρi. Finally,
they collect the opinions of their neighbors and apply the majority rule potentially
changing preference for the best site. As explained in Section 2, the swarm can
potentially suffer from opinion fragmentation [5]. For example, the robots might
distribute themselves in such a way that all robots with opinion a are positioned
close to site a and all robots with opinion b are positioned close to site b. As a con-
sequence, a robot would be more likely to interact with a robot of the same opinion
which might cause the decision-making process to enter a deadlock. To maintain
the spatial distribution close to a well-mixed distribution, we implemented spe-
cialized motion routines that, if performed for a sufficiently long period of time,
allow robots to mix well in the nest while disseminating their opinions.

3.1 Robot Control Algorithm

We implemented the DMMD strategy by using the motors, the light sensor, and
the infrared transceiver of the Kilobot. Three low-level motion routines—random
walk, phototaxis and anti-phototaxis—allow robots to navigate and to explore the
environment and to disseminate their opinion. Depending on the current con-
trol state and on the current robot opinion, these routines are combined into a
probabilistic finite-state machine to implement the behavior in the dissemination
states (see Figure 3a) and exploration states (see Figure 3b). In the supplementary
material [42], we provide a video highlighting intermediate phases of the robot con-
troller. In the following, we employ the exponential distribution to determine the
duration of several sub-routines. We have chosen this distribution due to its large
variance that allows us to break the synchrony in the robot motion patterns by
introducing noise that improves the mixing of robots (see also Section 6.2 in [45]).
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3.1.1 Low-level motion routines

We implemented a correlated random walk in order to improve the mixing of
the opinions in the swarm. When performing the random walk, the robot moves
forward for an exponentially distributed amount of time; this mostly results in
short walks with sporadically longer ones. Then, the robot turns in place for a
normally distributed period of time. Phototaxis (respectively, anti-phototaxis) is
implemented by letting robots perform oriented motion towards (away from) the
light source placed on the right side of the arena. The robots search for the direc-
tion with the highest (lowest) light intensity by turning on the spot; once found,
they move forward until the ambient light intensity measurement falls outside a
tolerance range; when this happens, the robots resumes the on-spot search of the
correct direction of motion.

3.1.2 Dissemination states

In both dissemination states Da and Db, the robots execute the finite-state ma-
chine depicted in Figure 3a. Robots start by performing a random walk in the
nest while communicating locally their opinions. The random walk favors the spa-
tial mixing of robots in space and therefore of their opinions. In addition to their
current opinion, robots also communicate a randomly generated 16-bit identifier
that, with high probability, uniquely identifies the robot in its local neighborhood.
This is used to make sure that, at any given time, robots distinguish the opinion
of different neighbors. Robots directly modulate positive feedback by spending an
exponentially distributed amount of time in the dissemination state. The mean of
this exponential distribution is either ρ̂ag or ρ̂bg, where ρ̂i, i ∈ {a, b} is the current
robot estimate of the option quality. During dissemination, robots might perceive
messages from the five robot-beacons positioned at each border between the nest
and a site. If such a message is perceived, it means that the robot is mistakenly
leaving the nest and it therefore performs either phototaxis or anti-phototaxis in
order to return to the nest (see Figure 3a). Oriented motion is performed by the
robot for as long as beacon messages are received and proceeds for an additional
period of 20 seconds after the last message. This kind of oriented motion allows
the robot to keep a distance from the border and to favor a good mixture of robot
opinions in space. During the last three seconds before leaving the nest, a robot
records the opinions of its neighbors. It then adds its own current opinion to that
record, applies the majority rule to determine its next preferred option and, con-
sequently, the next site to explore. We chose a relatively short time for opinion
collection in order to reduce the time-correlation of the observed opinions (i.e.,
robots taking decisions on the basis of outdated information). Nonetheless, this
period of time is sufficient for a robot to receive messages from many neighbors
as will be clear from the analysis in the next section. Finally, the robot leaves the
nest to explore the chosen site.

3.1.3 Exploration states

In states Ea and Eb, robots move to the site associated to their current opinion,
performing either phototaxis (towards site a) or anti-phototaxis (towards site b).
Once they reach the site, they explore it for an exponentially distributed amount
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Fig. 4 The figure shows a series of screen-shots taken from one experiment with a swarm of
100 Kilobots. The screen-shots are taken every 18 minutes of execution.

of time, they record the associated quality (received from the beacons), and then
return to the nest. During this time, the robot executes the finite-state machine
depicted in Figure 3b (respectively, top for site a and bottom for site b) in order to
stay within the boundaries of the site. We consider this behavior as an abstraction
of a quality-estimation routine dependent on the target scenario. For example, the
robot might assess during this period how much of a certain resource is available in
the site (e.g., construction material), what is the average level in the site of a cer-
tain physical feature (e.g., temperature), etc. Additionally, to ensure that robots
fully enter the site (i.e., they do not remain in the border region), we implemented
the following mechanism. If a robot wants to explore site a (respectively, b), it
performs phototaxis (anti-phototaxis) in two phases. In the first phase, the robot
performs phototaxis (anti-phototaxis) until it perceives a message from the bea-
cons, indicating that the robot has crossed the border and entered site a (b). In
the second phase, phototaxis (anti-phototaxis) is continued for as long as messages
from the beacons are not received for 5 seconds. Exactly the same mechanism, but
reversed, is used by the robots returning to the nest and entering the dissemina-
tion state. The second phase also eases the mixing of robot opinions in the nest
because robots are programmed to approach the center of the nest.

3.2 Results of Robot Experiments

Our main working hypothesis is that efficiency and accuracy of the decision-making
process are affected by the neighborhood size considered when applying the ma-
jority rule. The neighborhood size can be directly or indirectly controlled by the
experimenter. However, its size could fluctuate over time due to spatial density
constraints. In our scenario, we consider two extreme situations. We restrict the
maximum neighborhood size to either 4 robots or to 24. The latter case corresponds
in practice to no restriction, since the actual number of neighbors perceived by
a robot at a given time is rarely greater than 24. We refer to this parameter as
the maximum size of the opinion group Gmax and we define it in a way so that
it also includes the opinion of the considered robot: Gmax ∈ {5, 25}. For each of
these two cases, we performed 10 independent runs, each lasting 90 min each (see
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Fig. 5 Results of the experiments with the robot and statistical test: a) distributions of the
proportion of robots with opinion a over time; b) median and confidence intervals predicted
by the GLMM (see explanation in the main text).

supplementary material [42]). Recall that the parameter g determines the dura-
tion of the dissemination state without considering positive feedback modulation
(i.e., the site quality). The higher the value of g, the longer the robot performs its
random walk behavior contributing to the mixing of the opinions, and the longer
it takes to the swarm to find a consensus. After a few preliminary test runs, we set
g = 8.4 min (i.e., about 500 seconds), so as to obtain a proper mixing of the robots
opinions while limiting the overall decision time. Some snapshots taken from one
of the experiments are depicted in Figure 4, for an explanatory video see [46].

The results of the robot experiments are shown in Figure 5. Figure 5a reports
the behavior of the proportion of robots with opinion a ((Da + Ea)/N) over time
for the two cases: Gmax = 5 and Gmax = 25. Qualitatively, we observe that the
maximum allowed neighborhood size influences the speed of the decision-making
process. To determine whether the observed difference in speed was statistically
significant, we fitted a generalized linear mixed model (GLMM) with binomial
response, where we considered time as a continuous covariate, Gmax as a fixed
factor, and Gmax nested into the run number as a random factor. In this model,
we also included explicitly the interaction of Gmax with time as an additional fixed
factor, which turned out to be significant (p-value = 0.047). The presence of a
significant interaction confirms our qualitative observation: the curves representing
the predicted proportion of robots with opinion a as a function of time for the two
settings (Gmax = 5 and Gmax = 25) do not grow at the same rate. The one with
Gmax = 25 grows faster than the one with Gmax = 5. These two curves (lines) are
shown in Figure 5b, together with the confidence intervals (shaded areas) predicted
by the GLMM. As we can see, the system reaches a 90% consensus on a faster
with Gmax = 25 than with Gmax = 5: with 95% confidence, the system converges
to 90% consensus in the interval between t ≈ 55 and t ≈ 69 for Gmax = 25, and in
the interval between t ≈ 66 and t ≈ 80 for Gmax = 5.

In both parameter settings, after 90 minutes of execution the swarm always
reached a state where the broad majority preferred opinion a, but this almost
never coincided with 100% consensus. We identified robot failure as a possible
cause of this result: robots occasionally incurred in battery failures, stuck motors,
or switched to stand-by due to short circuits caused by collisions with other robots
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(0.7 robots per experimental run). Additionally, some robots experienced serious
motion difficulties due to poor motor calibration, were unable to reach target areas
(i.e., nest, sites), and were thus prevented from changing opinion. Despite these
failures, the proposed self-organized decision-making mechanism proved to be very
robust by allowing the swarm to always reach a correct collective decision.

4 Ordinary Differential Equations Model

We now deepen our understanding of the direct modulation of majority-based
decision strategy. We study the behavior of the systems under the continuous
limit approximation (N → ∞). We also study systematically the impact of the
neighborhood size on the speed and accuracy of the decision-making process. For
this purpose, we define a system of ordinary differential equations (ODEs) and
we analyze it using standard tools of dynamical systems theory. The ODE model
describes the dynamics of the expected proportion of agents in the dissemination
states (da and db) and the expected proportion of agents in the exploration states
(ea and eb). Our mathematical modeling approach relies on two assumptions: i. the
neighborhood size of agents is constant and ii. each agent has always a noiseless
quality estimate of its opinion, (even at time t = 0). Assumptions i. and ii. simplify
our derivation of the ODE model by allowing us to neglect the effects of random
fluctuations of parameters G, ρa and ρb and to consider instead their mean values.

One essential feature that we need to model is the modulation of positive
feedback, that is, the regulation of the time agents spend in the dissemination
states. This time is proportional to the quality of the sites (ρag and ρbg). If these
two quantities represent the average time spent by agents to disseminate their
opinion, then we can also define the rates at which agents move from dissemination
to exploration as the inverse of these quantities: α = (ρag)−1 and β = (ρbg)−1.

Additionally, to derive our set of differential equations, we need to know the
rates at which agents change their opinions. We need to express the probability pab
that an agent with opinion a switches to opinion b as an effect of applying the
majority rule for a given group size G (similarly for probability pba). In the model,
we also need to consider the cases where the application of the majority rule has no
effect, that is, no opinion switch is triggered after its application. The probabilities
of keeping the same opinion are denoted as paa and pbb.

First we consider a simplified example to explain how we determined these
probabilities (cf. Figure 6). Consider an agent i with opinion a that has two neigh-
bors j, h. Hence, we have G = 3. The probability pab that this agent switches
opinion to b after applying the majority rule is computed by considering all possi-
ble combinations of neighbors that form a majority for b. In this simple example
with a small group, the only relevant case is when both neighbors j and h have
opinion b (denoted by bb). All the other cases, aa, ab, and ba, correspond to a
majority of a which leaves agent i unaffected. We define pa the probability that a
neighboring agent has opinion a; due to symmetry, (1−pa) is the probability that
a neighboring agent has opinion b. Probability pa is a function of the proportions
da and db of agents in the dissemination states. Only these agents advertise their
opinion and only they can provoke a switch, which gives pa = da

da+db
. Given the

probability pa, we can derive pab as the joint probability (1 − pa)2 to have two
neighbors with opinion b. In the same way, the probability paa of not provoking
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Fig. 6 The figure illustrates the application of the majority rule in a group of G = 3 agents.
An agent i with opinion a applies the majority rule over a set of opinions containing its current
opinion and the opinions of its two neighbors j and h. In the first three cases, agent i keeps
its current preference for option a, in the last case, the agent switches its opinion to option b.

a switch is p2a + 2pa(1 − pa), obtained as the sum of the three cases aa, ab, and
ba. The derivations of probabilities pij , i, j ∈ {a, b}, is performed by assuming
an infinite number of agents (N →∞) and a well-mixed distribution of their po-
sitions (and therefore their opinions) within the nest. The first assumption is a
direct consequence of the continuous nature of the ODE model presented in this
section. The second assumption is instead motivated by the requirement of the our
strategy to have robots approaching a well-mixed distribution (cf. Section 2), and
it is supported by the special motion routines of robots described in Section 3.

The above reasoning to compute probabilities paa and pab for a pair of neigh-
bors can be generalized to a generic group size G using equations

paa =

G−1∑

i=b(G−1)/2c

(
G − 1

i

)
pia(1− pa)G−1−i, (1)

pab =

b(G−1)/2c−1∑

i=0

(
G − 1

i

)
pia(1− pa)G−1−i. (2)

These equations are a discrete integration of a Binomial distribution, where pa is
the success probability, G − 1 the number of trials, and i the number of successes.
The rationale is simple. In order to keep opinion a, the number of successes for a
needs to be less than half of the neighborhood (G − 1) minus 1 which is the agent
itself. More successes than that provoke a switch. The expressions for probabili-
ties pbb and pba can be obtained by swapping the power indexes in Equations (1–2).
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Table 1 Summary of the parameters used to compare the ODE model to the robot experi-
ments. We use the following legend in the column “Type”: DP (design parameter) is a param-
eter set by designer; RE (robot experiment) is a parameter estimated from robot experiments;
PP (problem parameter) is a parameter that defines the problem to be solved.

Parameter Value Type

Quality of Site a ρa = 1.0 PP
Quality of Site b ρb = 0.5 PP

Maximum group size (robots) Gmax ∈ {5, 25} DP
Mean group size (ODEs) G ∈ {5, 9} RE

Exploration time σ−1 = 6.072 min RE
Dissemination time g = 8.4 min DP

The rates α, β and the probabilities pij , i, j ∈ {a, b} allow us to finally write
the system of four ordinary differential equations that model the proposed strategy





d

dt
da = σea − αda,

d

dt
db = σeb − βdb,

d

dt
ea = paaαda + pbaβdb − σea,

d

dt
eb = pabαda + pbbβdb − σeb.

(3)

The dynamics of the proportions of agents in the dissemination states da and db
are modeled by the first two equations. Proportions da and db increase every
time agents return from the corresponding exploration state Ea or Eb, whose
rate is determined by σ (see Section 3.2). da (respectively, db) decreases at a
rate α (β), due to agents leaving the dissemination state. The third and fourth
equations model the dynamics of the proportion of agents in the exploration states
ea and eb. The proportion ea (respectively, eb) increases every time agents in the
dissemination states switch to state Ea (Eb). This happens for all agents in the
dissemination state (Da and Db) that switch to state Ea (Eb) by applying the
majority rule. These rates of switching depend on the probabilities paa and pba in
Equation (1) and Equation (2) (pbaand pbb). Finally, ea (eb) decreases at a rate σ
due to agents leaving the exploration state Ea (Eb).

4.1 Validation Against Robot Experiments

In order to use the model defined in the system of Equations (3) to study different
regions of the parameter space, we first need to check whether the model can
qualitatively predict the results obtained with robot experiments. To to do, we
performed additional robot experiments necessary to estimate the values of the
parameters G and σ of the ODE model. Table 1 lists all parameters used in the
ODE model, while Appendix A contains a detailed analysis of the additional robot
experiments. We set the group size in the ODE model by rounding the average
group size obtained in the robot experiments. This was 8.57 when Gmax = 25
and 4.4 when Gmax = 5. We therefore set G = 5 and G = 9 in the two cases.
The value of g in the robot scenario was set by the designer to g = 8.4 min. The
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Fig. 7 The figure shows the comparison between robot experiments (box-plots) and pre-
dictions of the ODE model in Equations (3) (lines), respectively, for Gmax = 5 (green) and
Gmax = 25 (purple). In a), we compare robot experiments against the prediction of the ODE
model given the estimated parameters; in b), the predictions of the ODE model are instead
scaled in time according to t′ = 3t + g. Parameters: σ = 6.072, g = 8.4, ρa = 1, ρb = 0.5,
Gmax ∈ {5, 25}, G ∈ {5, 9}.

mean duration of the exploration state (i.e., the inverse of the rate at which robots
transit from the exploration state to the dissemination state) was estimated from
data and equals σ−1 = 6.072 min.

The comparison between the system of ODEs and the robot experiments is
shown in Figure 7a. As we can see, the trajectories predicted by the model (solid
lines) have the same shape but do not match those obtained in the robot experi-
ments (box-plots). Specifically, the ODE model appears to be shifted in time and
to evolve at a higher speed. Indeed, the fitting improves if we apply the following
time rescaling: t′ = 3t + g, see Figure 7b. This result suggests that robot exper-
iments are approximately 3 times slower than the dynamics of the ODE model,
and shifted by a factor g. The offset g is easily explained by assumption ii. of the
ODE model: initially, robots do not have a correct estimate of the quality of the
two sites but begin the execution with ρa = ρb = 1 (in contrast to assumption ii.).
Before having a correct quality estimate, robots have to do an initial exploration
of the sites, for which they need to wait on average g units of time. Besides, we
conjecture that spatial interference among robots might have caused a partial vi-
olation of the well-mixed assumption of the model which caused a slow down by a
factor of 3. This result could be possibly mitigated by extending (through param-
eter g) the period of time in which robots perform the random walk designed to
minimize this problem (see Section 3.1). Despite this, we obtained correct, quali-
tative predictions from the ODE model with respect to the asymptotic dynamics
of robot experiments.

4.2 Stability of Equilibria

After validating the ODE model with the results from the robot experiments,
our next objective is to understand which are all the possible collective decisions
that might emerge from the decision-making strategy. To reach this objective, we
determine what are all the possible equilibria γ̌ = [ďa, ďb, ěa, ěb]

T of the system of
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ODEs of Equations (3) and perform a stability analysis. The analysis results in
three fixed points

γ̌1 =

[
gσρa

1 + gσρa
, 0,

1

1 + gσρa
, 0

]T
, (4)

γ̌2 =

[
0,

gσρb
1 + gσρb

, 0,
1

1 + gσρb

]T
, (5)

γ̌3 =
1

Ψ

[
gσρaρ

2
b , gσρ

2
aρb, ρ

2
b , ρ

2
a

]T
, (6)

where Ψ = ρ2a + gσρ2aρb + gσρaρ
2
b + ρ2b .

Two equilibria, respectively, γ̌1 and γ̌2 given in Equation (4) and Equation (5),
represent consensus on opinion a and consensus on opinion b. Interestingly, the
proportion of agents in exploration and dissemination states predicted by γ̌1 and
γ̌2 depend only on the exploration and dissemination rates. In turns, this result
means that the designer has a tool to fine-tune the desired proportion of agents
exploring or disseminating at consensus. This could be of interest during a foraging
task [24,41,36] to effectively tune the foraging rate, or to aid the calibration of the
quorum thresholds [25,26] when the detection of consensus is necessary to trigger
a change in the behavior of the entire swarm (e.g., migration to the selected site).
The third equilibrium γ̌3 in Equation (6) corresponds instead to a macroscopic
state of indecision where both opinions coexist in the swarm.

A subsequent question that arises is which of these equilibria is asymptotically
stable and, more importantly, under which conditions. To answer this question, we
linearized the system of ODEs around each equilibrium, calculated the eigenvalues
of the corresponding Jacobian matrix, and studied their signs. Note that, due
to the conservation of the swarm mass, the system of ODEs in Equations 3 is
over-determined. One equation can be omitted, for example the last equation,
by rewriting the remaining three using the substitution eb = 1 − da − db − ea.
Therefore, each equilibrium of the system has only three meaningful eigenvalues.
The eigenvalues corresponding to the two consensus equilibria γ̌1 and γ̌2 are




− 1
gρb

−σ
−gσρaρb−ρa

gρaρb


 ,




− 1
gρa

−σ
−gσρaρb−ρa

gρaρb


 , (7)

respectively for consensus on option a and for consensus on option b. These eigen-
values depend only on the rates g, σ and on the site qualities ρa, ρb. Given that
these quantities are defined to be always strictly positive, we can conclude that
the two consensus equilibria are always asymptotically stable.

The third equilibrium γ̌3 is characterized by eigenvalues with a very complex
analytic formulation which prevents us from providing it here for the reader (see
supplementary material [42]). Nonetheless, we have performed the stability analy-
sis for this fixed point as well. According to our analysis, for values of ρa, ρb ∈ (0; 1],
ρa ≥ ρb, and for σ, g > 0, two eigenvalues are always strictly negative while one
is always strictly positive. Such a fixed point, which is difficult to visualize due
to the high dimensionality of the system, is a saddle point and divides the basin
of attraction between trajectories converging to consensus on a and trajectories
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converging to consensus on b (see also next section). We can therefore conclude
that the macroscopic state of indecision, γ̌3, is not stable.

We finally compare the dynamics of the majority rule against those of the
weighted voter model proposed in Valentini et al. [44]. The voter model has simpler
asymptotic dynamics as it has only 2 equilibria corresponding to the two consensus
decisions. One of the two equilibria is associated with the best opinion a and is
asymptotically stable when ρa > ρb. The other equilibrium is unstable. When
ρa = ρb, one eigenvalue vanishes for both equilibria that are in this case only
Lyapunov stable but not asymptotically stable. Under these conditions, the voter
model does not converge to a collective decision but remains indefinitely with
the same proportion of opinions a and b with which the swarm was initialized.
Therefore, in the limit of N → ∞, the differences between the voter model and
the majority rule are the following. i) With the majority rule, convergence to a
particular equilibrium depends on the initial conditions (as there are two stable
equilibria); whereas the voter model always converges to the best opinion, if one
exists (ρa > ρb). ii) The majority rule converges, differently from the voter model,
to one of the opinions even in the case of symmetric qualities (ρa = ρb). In [44],
we show that these properties of the voter model hold only in the deterministic,
continuous approximation (N → ∞), and that they vanish when the influence of
finite-size effects is included (see Section 5).

4.3 Speed Versus Accuracy Trade-Off

Our aim in this section is to use the ODE model defined in Equations (3) to
analyze how convergence speed and decision accuracy [6,27] change as a function
of a key parameter of our strategy: the group size G. In our terminology, the
system has higher accuracy when it can reach consensus on the best opinion (i.e.,
option a) for a wider range of initial conditions. For all possible initial conditions
da(0) ∈ [0, 1], db = 1 − da(0) we determine the consensus ďa + ěa ∈ {0, 1} that is
reached asymptotically from there. We are particularly interested in the border c
that separates the two basins of attraction: we converge to ďa+ ěa = 1 for da(0) ∈
[c + ε, 1] and to ďa + ěa = 0 for da(0) ∈ [0, c − ε] where ε > 0. Smaller values
of c are preferred since they increase the basin of attraction for the best option.
Convergence speed is simply measured as the time necessary to reach consensus on
any option. To compute this convergence time from the ODE model, we introduce
a threshold δ = 10−3 and consider that the system has converged to a collective
decision at a certain time t if either da(t) + ea(t) > 1− δ or db(t) + eb(t) 6 δ. We
define convergence time to be the minimum t satisfying this criterion.

The results of this analysis are reported in Figure 8 for decision accuracy and
Figure 9 for convergence time. In both figures, the difference between the left
and right graphs is the value of the quality parameter ρb which determines the
difficulty of the decision-making problem. Specifically, a quality of ρb = 0.5 defines
a simpler, more asymmetric discrimination problem where option a is twice as
good as option b, whereas ρb = 0.9 defines a much harder problem where the
qualities of the two options are more difficult to distinguish.

In Figure 8a the black, solid line represents the border c between the two in-
tervals of initial conditions (basins of attraction) that lead to different consensus
decisions (i.e., asymptotically stable solutions). We observe that this border in-
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Fig. 8 The figure shows the results from the speed versus accuracy analysis performed us-
ing the ODE model in Equation (3) as a function of the group size G, the initial condition
da(0), db(0) = 1−da(0), and the option quality ρb. Figures in the upper row show the border c
that divides initial conditions that lead the system to consensus on a (red area) from those
with consensus on b (blue area) as a function of the group size G, respectively, a) for ρb = 0.5
and b) for ρb = 0.9.

creases roughly logarithmically as a function of the group size G. Higher values
of this border indicate a smaller set of initial conditions (red area) that lead the
swarm to choose the best option (i.e., site a), and thus lower decision accuracy. The
graph shows that the accuracy of the decision-making strategy decreases as a func-
tion of the group size. This happens for both easier (ρb = 0.5, Figure 8a) and more
difficult (ρb = 0.9, Figure 8b) decision-making problems. However, for ρb = 0.9 this
increase is much less noticeable due to the fact that accuracy is already relatively
low for small group sizes. Additionally, we can observe that the parity of the group
size G influences the accuracy of the decision-making process. When G is even the
set of initial conditions leading to consensus on option a is smaller than that of the
two nearby odd group sizes. This phenomenon, which is more distinct for small
group sizes, is characteristic of the majority rule and was reported previously for
other systems too [9,19].

Figures 9a and 9b show through heatmaps how the time necessary to reach a de-
cision varies as a function of the group size G and of initial conditions da(0), db(0) =
1− da(0). The black lines provide the border c between consensus on a and con-
sensus on b. As we can see, the consensus time increases with the proximity to the
border c. Figure 9c and Figure 9d detail instead the shape of consensus time for
selected values of the group size G. The color of the lines represents the asymptotic
result of the decision-making process, respectively, red for consensus on a and blue
for consensus on b. As we can see, the consensus time is higher when the initial
proportion da(0) of agents favoring option a is closer to the border c between the
basins of attraction that divides initial conditions leading to consensus on a from
those leading to consensus on b (i.e., where lines turn from blue to red in Fig-
ures 9c and 9d). Additionally, we observe that increasing the group size G speeds
up the decision-making process for a wide range of initial conditions da(0). This
speedup is approximately halved every time we double the number of neighbors in
the group (c.f. the speedup given by G = 9 with respect to G = 5 with that given
by G = 17 with respect to G = 9).
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Fig. 9 The figure shows the results from the speed versus accuracy analysis performed us-
ing the ODE model in Equation (3) as a function of the group size G, the initial condition
da(0), db(0) = 1− da(0), and the option quality ρb. The heatmaps in the upper row show the
consensus time (min) for group size G ∈ {3, 25} and initial condition da(0) ∈ [0, 1], respec-
tively, a) for ρb = 0.5 and b) for ρb = 0.9. Black solid lines represent the border points c for
each value of G. In the lower row, figures show the consensus time over initial conditions da(0)
for group size G ∈ {5, 9, 17}, respectively, c) for ρb = 0.5 and d) for ρb = 0.9. Red and blue
lines represent initial conditions with consensus on option a and option b.

The results given in Figure 8 and Figure 9 reveal the crucial trade-off between
convergence speed and decision accuracy of the DMMD strategy. We can increase
convergence speed by increasing the group size G at the cost of lower accuracy.
Similarly, we can have higher accuracy at the cost of lower convergence speed.
This behavior is particularly evident for simple decision-making problems (e.g.,
ρb = 0.5). For more difficult discrimination problems (e.g., ρb = 0.9), the group
size G has a lower influence on the decision accuracy while the swarm can still
benefit in terms of convergence speed.

5 Chemical Reaction Network

In Section 4 we studied the asymptotic properties of the DMMD strategy using the
continuous limit approximation (N → ∞). Real-world swarm systems, however,
are composed of a large but finite number of agents. In many of these systems,
finite size crucially influences the system’s dynamics so that predictions based on
continuous approximations might be of limited use [40,44]. A number of different
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Algorithm 1: Gillespie algorithm(N, g, σ, ρa, ρb, Da(0))

1 Initialize agents in the swarm: Da = Da(0), Db = N −Da(0), Ea = 0, Eb = 0
2 Initialize time: t = 0
3 repeat
4 Compute the total reaction rate: κ = αDa + βDb + σEa + σEb
5 Generate an exponentially distributed time t′ with rate κ and set t = t+ t′

6 Randomly choose the next reaction to occur with probabilities
(αDa/κ, βDb/κ, σEa/κ, σEb/κ)

7 If Reaction 8 (Reaction 9) occurs, the outcome of its right-hand side Ea|Eb is
determined by probabilities qaa and qab (qba and qbb).

8 Update Da, Db, Ea, Eb according to the outcome of steps 6–7

9 until Da + Ea ∈ {0, N};

modeling techniques exist to deal with finite-size effects, such as Markov chains [38,
13,41,43] and master equations [22,21,44,47,36,17]. Here, we use the formalism
of (chemical) master equations which are derived from a chemical reaction net-
work [15].

Chemical master equations are stochastic differential equations modeling the
dynamics of coupled chemical reactions among a set of molecules. Using this for-
malism to model a multiagent system, agents in different states are represented
by molecules of different types, while state transitions of individual agents are
represented by chemical reactions with certain rates. Chemical master equations
are often hard if not impossible to solve analytically. For this reason, we base our
study on numerical simulations using the Gillespie algorithm [12]. The Gillespie
algorithm—also known as Stochastic Simulation Algorithm—generates statisti-
cally correct trajectories of a master equation which can be used to approximate
its exact solution.

Given a swarm of N agents, we use symbols Da and Db to denote the number
of agents in the dissemination states and symbols Ea and Eb to denote the number
of agents in the exploration states. Additionally, we refer to an individual agent
in one of these states using symbols Da and Db for opinion dissemination and
symbols Ea and Eb for exploration, respectively. The proposed decision-making
strategy is modeled by the chemical reactions

Da
α−→ Ea|Eb, (8)

Db
β−→ Ea|Eb, (9)

Ea
σ−→ Da, (10)

Eb
σ−→ Db. (11)

The above set of reactions is sufficient to define a master equation as described
by van Kampen [15]. According to Reactions (8–9), each agent in a dissemination
state (either Da or Db) switches to an exploration state (either Ea or Eb) at a
constant rate. Specifically, at rate α = (ρag)−1 if the agent is in state Da or
at rate β = (ρbg)−1 otherwise. Reactions (10–11) model instead the transition
of agents from an exploration state (either Ea or Eb) to a dissemination state
(either Da or Db) which happens at a constant rate σ.

In the Gillespie algorithm [12], the evolution in time of the numbers of agents
Da, Db, Ea, and Eb is obtained by iteratively performing two steps: i) determine
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the time of the next reaction and ii) determine which is the reaction that occurs
and consequently update the macroscopic stateDa,Db, Ea, Eb of the system. Since
the execution time of chemical reactions is modeled by exponentially distributed
times [15], we have that the time before the next occurrence of any reaction is also
exponentially distributed. Specifically, this time is computed as the minimum of
a set of exponentially distributed variables which is still exponentially distributed
with a rate κ equal to the sum of the individual reactions rates (see lines 4-5 in
Algorithm 1). The specific reaction that occurs is randomly determined with prob-
abilities equal to the ratio between each reaction rate and the overall rate κ (see
line 6). If Reaction (10) occurs, respectively Reaction (11), the outcome is uniquely
determined. We have that the number Ea of agents exploring option a (Eb) de-
creases by one unit and the number Da of agents disseminating opinion a (Db)
increases by one unit. However, if Reaction (8) occurs, respectively Reaction (9),
the outcome is determined by an additional probabilistic experiment. The num-
ber Da of agents (Db) decreases by one unit, and the type of agents increasing by
one unit is Ea with probability qaa (qba) or Eb with probability qab (qbb).

This additional step is required because Reactions (8–9) are in fact “meta-
reactions” that expand in a larger reaction set having one entry for each possible
configuration of an agent neighborhood during the application of the majority
rule. Probabilities qaa, qab, qba, and qbb are the discrete equivalent of the switching
probabilities in Equations (1–2) used for the continuous ODE model. In contrast
to the Binomial distribution used in Section 4, in the discrete case we use an
hypergeometric distribution, which yields probabilities

qaa =

G−1∑

i=b(G−1)/2c

(
Da−1
i

)(
Db

G−i−1

)
(
Da+Db

G−1

) , (12)

qab =

b(G−1)/2c−1∑

i=0

(
Da−1
i

)(
Db

G−i−1

)
(
Da+Db

G−1

) . (13)

Probabilities qaa and qab are a discrete integration of an hypergeometric distribu-
tion, whereby Da and Db are the number of success states and failure states in the
population, Da+Db is the population size, G−1 is the number of trials, and i the
actual number of successes. The expressions for probabilities qbb and qba can be
obtained by swapping the number of successes i with the number of failures G−i−1
in Equations (12–13).

After simulating trajectories of the master equation using the Gillespie algo-
rithm, we compute the exit probability EN , that is, the probability that a swarm
of N agents reaches consensus on opinion a, and the average consensus time TN ,
that is, the time necessary to reach consensus on any option. In all of our studies,
we use the nominal parameters that characterized the robot experiments: N = 100,
σ = 6.072, g = 8.4, and ρa = 1. In the reminder of this section, we validate the
chemical reaction network model against the results of the robot experiments, we
perform a thorough analysis of the speed versus accuracy trade-off (as we did for
the ODE model in Section 4.3), and we compare the proposed DMMD strategy
against the voter model previously described in [44].
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Fig. 10 The figure shows the comparison between robot experiments (box-plots) and the
predictions of the chemical reaction network in Equations (8–11) approximated by the Gillespie
algorithm (shaded areas). The shaded areas correspond to a confidence region computed using
the 25th and the 75th percentiles of 1000 independent executions of Algorithm 1 with time
rescaled according to t′ = 3t+ g. a) reports the robot scenario with Gmax = 5 compared with
the Gillespie algorithm with G = 5 and b) the robot scenario with Gmax = 25 compared with
the Gillespie algorithm with G = 9. Parameters: N = 100, σ = 6.072, g = 8.4, ρa = 1, ρb = 0.5.

5.1 Validation Against Robot Experiments

We validate the chemical reaction network defined to model our decision-making
strategy against the results of the robot experiments. The results of this validation
are shown in Figure 10 as a function of time, where shaded areas provide a con-
fidence region between the 25th and 75th percentile predicted by the model and
box-plots give the outcome of robot experiments. The results of the Gillespie algo-
rithm depicted in the figure are obtained using the same time rescaling t′ = 3t+ g
used in Section 4.1 (refer to that section for the rationale). Remarkably, the pre-
dictions of the simulated chemical reaction network fit the robot experiments very
well, for both group sizes G = 5 (Figure 10a) and G = 9 (Figure 10b). In contrast
to the ODE model, the chemical reaction network can also very well predict the
variance of the system. Both in data from robot experiments and in the prediction
of the model, the variance is higher for intermediate values of time, and lower
at the beginning and at the end of the execution of the system. Given that the
Gillespie algorithm, that we recall approximates a chemical master equation, gives
qualitatively correct predictions of the dynamics of our system, we can proceed to
study the speed-accuracy trade-off in different regions of the parameter space.

5.2 Speed Versus Accuracy Trade-Off

The results of the speed versus accuracy analysis performed by approximating the
chemical master equation are reported in two separate figures: Figure 11 reports
the accuracy of the system by showing the exit probability EN as a function of the
group size G and of the initial condition Da(0); Figure 12 reports the convergence
speed of the decision-making strategy by showing the time TN necessary to reach
consensus as a function of the same two parameters. Throughout this analysis we
keep the same color notation used in the figures of Section 4.3 for the ODE model
with the purpose to simplify the comparison of the results.
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Fig. 11 The figure shows the results of the accuracy part of the speed versus accuracy analysis
performed using the chemical reaction network defined by Reactions (8–11). The x-axis refers
to the group size G ∈ {3, . . . , 25} dimension, the y-axis to the initial condition Da(0) ∈
{0, . . . , N}, Db(0) = N −Da(0) dimension, while the column of the plot refers to two different
problem difficulties, encoded in the option quality ρb ∈ {0.5, 0.9}. The heatmaps show: the
exit probability EN to reach consensus on option a, respectively a) for ρb = 0.5 and b)
for ρb = 0.9. Panels c) and d) are zoomed-in versions of Panels a) and b) focusing on the
region that separates the two basins of attraction. In all panels, red encodes EN = 1 while blue
encodes EN = 0. Finite-size predictions have been approximated using 2.5× 104 independent
executions of the Gillespie algorithm for each point. Parameters: σ = 6.072, g = 8.4, N = 100.

For what concern accuracy, the outcome of the analysis with the Gillespie al-
gorithm is in accordance with that obtained with the ODE model: the system is
more accurate for lower values of the group size G, particularly for easier decision-
making problems (ρb = 0.5, Figures 11a–11c). The main difference between the
continuous and finite-size analysis is that in the latter case we do not have any-
more a clear border dividing the two basins of attractions for different consensus
decision. In contrast, we obtain a border that gather all points having equal prob-
ability to converge to either option (EN = 0.5). Under this line, the probability
to converge to option a smoothly decreases to 0, above this line, it increases to 1
(Figures 11c–11d). This behavior is a direct consequence of finite-size effects mod-
eled by the chemical reaction network and ignored in the ODE model. Where the
ODE model predicts a macroscopic state of indecision, we have instead that the
system converges anyway to a consensus in the finite-size model. Additionally, the
results in Figure 11 also show the same pattern in the decision accuracy that we
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Fig. 12 The figure shows the results of the speed part of the speed versus accuracy analysis
performed using the chemical reaction network defined by Reactions (8–11) for a swarm of N =
100 agents as a function of the group size G ∈ {3, . . . , 25}, the initial condition Da(0) ∈
{0, . . . , N}, Db(0) = N−Da(0), and option quality ρb ∈ {0.5, 0.9}. The heatmaps in the upper
row show the average consensus time TN (min) for group size G ∈ {3, 25} and initial condition
da(0) ∈ [0, 1], respectively, a) for ρb = 0.5 and b) for ρb = 0.9. Black solid lines represent
the border points c for each value of G. In the lower row, figures show the consensus time
over initial conditions da(0) for group size G ∈ {5, 9, 17}, respectively, c) for ρb = 0.5 and
d) for ρb = 0.9. Red and blue lines represent initial conditions with consensus on option a
and option b. Finite-size predictions have been approximated using 2.5 × 104 independent
executions of the Gillespie algorithm for each point. Parameters: σ = 6.072, g = 8.4, N = 100.

observed with the ODE model where even groups G were less accurate than odd
groups (cf. Section 4.3).

The results of the analysis of the convergence speed are shown in Figure 12.
In agreement with the prediction obtained with the ODE model, we have that
the system is faster for higher values of the group size G. This is particularly true
for initial conditions that are closer to the state of indecision (i.e., the border line
for EN = 0.5) as shown in Figure 12a and Figure 12b. The primary difference
between the current finite-size analysis and that of the continuous approximation
in Section 4 is evident when looking at the shape of the consensus time as a
function of the initial condition. Figure 12c and Figure 12d show these results: the
curve of the consensus time TN has a much smoother shape around the point of
indecision as opposed to the exponentially increasing curves shown in Figure 9c
and Figure 9d. Additionally, we also observe that the value of TN predicted by
the chemical reaction network is lower than that predicted by the ODE model for
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Fig. 13 The figure shows the results of the speed versus accuracy comparison between the
majority rule and the voter model. Data shown have been generated using Algorithm 1 for the
majority rule and the Gillespie algorithm in [44] for the voter model. Results are given for a
swarm ofN = 100 agents as a function of the initial conditionDa(0) ∈ {0, . . . , N}, Db(0) = N−
Da(0) and option quality ρb ∈ {0.5, 0.7, 0.9, 0.99}. In a), we show the difference EVMN −EMR

N

between the exit probability of the voter model, EVMN , and that of the majority rule, EMR
N . In

b), we show the time ratio TVMN /TMR
N between the time necessary to reach consensus on any

option using the voter model, TVMN , and using the majority rule, TMR
N . Red horizontal dotted

lines represent equivalent points, respectively, EVMN −EMR
N = 0 for a), and TVMN /TMR

N = 1 for
b); symbols (square, diamond) visualize the configuration corresponding to the robot scenario.
Parameters: N = 100, σ = 6.072, g = 8.4, G = 5.

almost all initial conditions. As already mentioned above, the discrepancies in the
behavior of the system are a direct consequence of the finiteness of the swarm size.

Overall, the speed versus accuracy analysis presented here provides the same
message as the continuous analysis in Section 4.3. By increasing the group size G,
the swarm benefits in terms of convergence speed at the cost of a lower decision
accuracy. This loss in accuracy is stronger in easier decision-making problems (e.g.,
ρb = 0.5) while it is mitigated in more difficult discrimination problems (e.g., ρb =
0.9). Conversely, the benefits concerning convergence speed obtained by increasing
the group size are relatively unaffected by the difficulty of the problem. With
respect to the continuous approximation provided by the ODE model, the analysis
of the chemical master equations allowed us to better quantify the performance of
the system by catching the stochastic effects resulting from a finite swarm.

5.3 Comparison with the Voter Model

We conclude the analysis of finite-size effects by performing again a speed versus
accuracy study but this time we compare the performance of the DMMD strategy
against the one of the weighted voter model [44]. Let us recall that the primary
difference between the two decision-making strategies is given by the decision rule
utilized by individual agents—in the voter model agents decide by copying the
opinion of a random neighbor. The difference in decision accuracy between the
two strategies is reported in Figure 13a for increasingly difficult decision-making
problems (ρb ∈ {0.5, 0.7, 0.9, 0.99}). The majority rule is less accurate than the
voter model when lines are greater than 0, is equally accurate for values equal to 0,



24 Gabriele Valentini et al.

and more accurate for values greater than 0. As it can be noticed, the voter model
is in general more accurate than the majority rule for initial conditions Da(0) < 50.
Conversely, the accuracy of the majority rule reaches that of the voter model for
initial conditions Da(0) > 50 and it even outperform the voter model for the
hardest decision problem (ρb = 0.99). This behavior is a direct consequence of the
stability analysis provided at the end of Section 4.2: since the voter model has
only one asymptotically stable state, when considering finite-size effects, we have
that its dynamics converge with high probability to the best option for a larger
set of initial conditions (cf. Valentini et al. [44]). In contrast, the dynamics of the
majority rule strongly depend on the initial conditions. Figure 13b reports instead
the comparison between the two strategies in terms of convergence time depicted
as the ratio between the consensus time of the voter model, TVMN , over that of the
majority rule, TMR

N . We can observe that the majority rule considerably speeds up
the decision-making process for all considered parameters. The difference in speed
ranges from almost two-fold for the easy problem with ρb = 0.5 up to twenty-fold
for the difficult problem with ρb = 0.99.

The above analysis shows that, for application scenarios where the time avail-
able to reach a collective decision is critical, such as the Kilobot scenario described
in Section 3, the majority rule proposed in this paper is a much more practical de-
sign solution than the voter model. In our specific scenario, by using the majority
rule instead of the voter model, we obtained a speed up of 1.89 while keeping the
accuracy at the same level as in the voter model. This key difference is extremely
relevant when considering the limitations in energy autonomy of the available
robotic platform. Although the voter model is more accurate than the majority
rule for most initial conditions Da(0) < 50, this difference is considerably reduced
for values of Da(0) ≈ 50 and vanishes for Da(0) > 50. That is, when the designer
has means to initialize the swarm with an approximately uniform distribution of
opinion, the accuracy of the majority rule is close to that of the voter model.

6 Discussion and related work

The collective decision-making strategy and the scenario studied in this paper are
inspired by the collective behavior of social insects, such as ants and honeybees [20,
7,37,39]. Specifically, the scenario was inspired by the site selection problem often
faced by honeybee swarms [7,37], and was tackled by a swarm of 100 Kilobots [31].
The same and similar robots have successfully been used in swarms sized up to
thousands to complete tasks such as aggregation [16], collective transport [32] and
self-assembly [33]. However, the site-selection scenario discussed here and in our
previous paper [45], is the first experiment in which a large swarm of robots has
tackled a collective discrimination problem. The decision-making strategy that we
have designed included a modulation of positive feedback mechanism that is loosely
inspired by the waggle dance communication language observed in honeybees [8].

Collective decision-making systems have already received substantial attention
from the engineering community. For example, the control theory community has
intensively studied the problem of consensus achievement [14,29,30,23,34]. How-
ever, this research line mostly focuses on continuous decision-making problems,
that is, problems with infinite number of alternatives which do not require dis-
crimination based on quality assessment. Differently, we focus on engineering lit-
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erature that has tackled discrete discrimination problems in the remaining of this
section. We organize this literature into two categories. In the first category, we
discuss decision-making strategies that are related to our work but do not directly
apply to the scenario considered in this paper. These strategies do not include
a mechanism for the direct modulation of positive feedback. Instead, features of
the environment (e.g., the length of a path in a shortest-path problem) are used
to indirectly bias the collective decisions towards consensus on the best option.
Such strategies are not easily transferred to scenarios that are relevant here. In
the second category, the studied strategies include a direct modulation mechanism
of positive feedback as done in this paper. This modulation is used to engineer the
bias towards the best option directly in the controller.

In the first category, we find works on collective decision-making inspired by
the aggregation behavior of cockroaches [10,3]. In these works, a specific feature
of the environment—the size of the aggregation site—represents the quality of
each option. The authors implement the decision-making process by two individ-
ual decision rules (the first proposed in [10] and the second in [3]) that allow
agents to adjust the probability of staying within a site as a function of the site’s
area. Free parameters of the strategy are determined empirically or through a ge-
netic algorithm, and are thus environment-specific. In [24,35,41], the authors use
a majority rule-based strategy that does not include direct modulation of posi-
tive feedback. The goal of the swarm is to find the shortest path connecting the
starting location to a site. When agents meet in the starting location, they form
teams of 3 agents and they apply the majority rule. However, differently from
our strategy, the dissemination time does not depend on the quality (path length)
of the option because agents are assumed to be incapable of measuring the path
length. Instead, modulation is indirectly provided by the asymmetry in the envi-
ronment: the shorter the distance of a particular path, the more frequently agents
return to the nest and disseminate the corresponding option. The work in [36,2]
uses a similar, environmentally-provided mechanism for the modulation of positive
feedback. Differently from [24], the path selection is specifically represented by a
double-bridge experiment and the majority rule is substituted by the so called
k-unanimity rule. When using the k-unanimity rule, an agent switches to a par-
ticular option only after observing it k times in a row in other neighboring agents.
Similarly to the group size G in our strategy, the parameter k can be used by the
designer to regulate the speed and the accuracy of the collective decision.

In the second category, we describe scientific contributions that make use of
a mechanism that allows agents to actively and directly modulate positive feed-
back. Reina et al. [28] developed a decision-making strategy inspired by math-
ematical models that generalize the collective decision-making behavior of so-
cial insects (ant colonies, honeybee swarms) and that of neurons in vertebrate
brains [20]. Their modeling and design method is sufficiently generic to model ei-
ther environmentally-induced or internally-designed positive feedback modulation.
However, the authors focused so far only on the study of environmentally-induced
modulation mechanism while no experiment have been performed using direct
modulation as done in this paper. The main differences with respect to our ap-
proach are that their decision-making strategy allows agents to be in an uncommit-
ted state (not favoring any of the two options) and that the individual decision rule
implements recruitment and cross-inhibition. In Parker and Zhang [25], the authors
consider the best-of-n decision-making problem in an aggregation task inspired by
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the house-hunting behavior observed in ant colonies. In contrast to the majority
rule used here, agents directly recruit other agents and perform explicit search
and commitment phases. The decision-making strategy also includes a mechanism
for consensus awareness by the swarm that is implemented following a quorum-
sensing procedure. Finally, in our earlier work on the voter model [44] we proposed
a decision-making strategy that utilizes the same mechanism for the direct mod-
ulation of positive feedback as here. The weighted voter model can be considered
as a simplified version of the algorithm proposed by Parker and Zhang [25] where
the initial exploration of the environment and the quorum-sensing mechanism are
neglected. This feature allowed us to simplify the comparison between the voter
model/recruitment rule and the majority rule presented above.

7 Conclusions and Future Work

In this paper, we have proposed a collective decision-making strategy—direct mod-
ulation of majority-based decisions (DMMD)—that allows a swarm of agents to
choose the best of two options. Following the DMMD strategy, individual agents
in the swarm couple the use of the majority rule with a mechanism for direct
modulation of positive feedback to implement collective agreement for the best
option. Specifically, agents iteratively alternate periods of opinion dissemination,
where they advertise their preference for particular alternatives of the problem,
with periods of exploration, where they gather information from the environment
concerning the quality of their current opinion. The information gathered from the
environment is utilized by individual agents to modulate their efforts of opinion
promotion, that is, amplifying or reducing the time spent in the dissemination state
during which they advertise a particular option. At the end of the dissemination
period, agents reconsider their current opinion by adopting the opinion favored by
the majority of their neighbors. This coupling of positive feedback modulation and
the majority rule introduces a bias in the agents opinions that steers the swarm
towards a collective decision for the best option.

We have shown that the DMMD strategy can be successfully implemented to let
a swarm of 100 Kilobots tackle a binary foraging/site-selection problem. We have
validated our decision-making strategy by performing more than 20 independent
repetitions, equivalent to ≈ 35 hours of robot experiments. The results of the robot
experiments prove that: i. the DMMD strategy has sufficiently low requirements
that allow its implementation on robots with very limited perception and actuation
capabilities; ii. it is fast enough to implement a feasible collective decision-making
process within the robots’ limited energy autonomy; and iii. it is robust to failures
of real robotic hardware.

Along with robot experiments, we have defined a mathematical framework to
analyze the performance of the decision-making strategy over broader regions of
the parameter space. We have investigated the limiting dynamics (N → ∞) of
the DMMD strategy using an ordinary differential equation model and finite-size
effects (N <∞) using a chemical reaction network approximated with the Gillespie
algorithm. Both mathematical models have been validated against data from robot
experiments showing good qualitative agreement based on the mere requirement
of linear time rescaling (t′ = 3t + g). Using this mathematical framework, we
proved that consensus decisions are the only asymptotically stable solutions of
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the system. We investigated the trade-off between the convergence speed and the
decision accuracy that arises when varying the average neighborhood size of agents
applying the majority rule. The primary result of this analysis is that quicker
collective decisions can be obtained with larger neighborhood sizes (i.e., higher
robot swarm densities) at the cost of a lower probability to reach the optimal
decision. Additionally, we observed that the parity of the group of opinions utilized
in the majority rule influences this trade-off as well, with odd group sizes having
greater chances to choose the best option then even groups. Finally, we compared
the performance of the DMMD strategy with those of the weighted voter model [44]
which was previously proposed to address the same scenario. With respect to the
voter model, the use of the majority rule speeds up the decision-making process
considerably (e.g., 1.89× speed-up in the considered robot scenario) although it is
characterized by a lower accuracy in all but the harder decision-making problems.

In our study we have focused on the minimal case of binary decision-making
problems. This simplification allowed us to perform an extensive analysis of the
proposed strategy based on data from robot experiments and based on the math-
ematical analysis of continuous and finite-size models. Nonetheless, the DMMD
strategy already applies to the general case of more than two options as discussed
in [45]. Currently, we are extending our entire mathematical framework in order
to account for this generalized scenario and we plan to keep validating our results
through large-scale robot experiments. An additional simplification in our study
is the symmetry between options in relation to the environment. As reviewed in
Section 6, asymmetries in the environment might introduce a bias in the decision-
making process. In cases when this bias affects the dissemination of the best option
negatively, an individual agent’s direct modulation of opinion promotion might not
suffice to implement convergence on the best option. As a future line of research,
we plan to analyze the robustness of the modulation mechanism to asymmetries
in the environment. In addition, we plan to extend the proposed strategy with
a more powerful modulation mechanism that is capable to balance a potentially
negative influence of the environment on the decision-making process.
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A Appendix

We performed additional robot experiments to estimate the values of the average group size G in
the two settings and that of the time σ−1 necessary to exploration a site. Each Kilobot records
internally its series of exploration times and that of the number of neighbors at decision time.
After an entire experiment, the acquired data is downloaded from the robots using a wired
connection. We had to limit the number of experiments for data acquisition because it is very
time-consuming. Specifically, we performed four runs: two runs to measure the actual average
group size in the two settings (Gmax = 5 and Gmax = 25); and two runs to measure the average
time required to complete the exploration of a site, again in the two settings.

Figure 14a reports the probability mass function of the actual neighborhood size P (G)
estimated from a single experimental run for each setting. When Gmax = 25 (purple histograms,
652 samples), the average group size estimated using this mass function was 8.57, while it was
4.4 for Gmax = 5 (green histograms, 682 samples). We have therefore a difference of almost a
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Fig. 14 The figure shows the results form the statistical analysis performed on the additional
robot experiments: a) probability mass function of the group size G for the two parameter
settings Gmax = 5 (green) and Gmax = 25 (purple); b) probability density function of the
time σ−1 necessary for a robot to explore a site (dotted line gives the average value of σ−1).

factor of two between the two averages. Concerning the exploration time, we have graphically
shown in [45] that the probability density functions resulting from Gmax = 5 (504 samples)
and Gmax = 25 (602 samples) were very similar (as one would expect). To further investigate
this point, we performed a two-sample Kolmogorov-Smirnov test. The null hypothesis that the
two samples come from a different distribution could not be rejected (p-value = 0.5364), which
supports our original conclusion that data sets are consistent with each other. We therefore
merged the two data sets to improve our estimate of the exploration time. Figure 14b shows the
probability density function of the time σ−1 (where σ is a rate, see Section 4) a robot spends
to complete the exploration of a site. The average exploration time is 6.072 min (dotted line).
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