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A B S T R A C T

Traditionally, equipment reliability assessment is based on failure data from a population of similar equipment,
somewhat giving an average description of the reliability performance of an equipment, not capturing the
specificity of the individual equipment. Monitored degradation data of the equipment can be used to specify its
behavior, rendering dynamic the reliability assessment and the failure prognostics of the equipment, as shown
in some recent literature. In this paper, dynamic reliability assessment and failure prognostics with noisy
monitored data are developed for a system composed of dependent components. Parallel Monte Carlo
simulation and recursive Bayesian method are integrated in the proposed modelling framework to assess the
reliability and to predict the Remaining Useful Life (RUL) of the system. The main contribution of the paper is
to propose a framework to estimate the degradation state of a system composed of dependent degradation
components whose conditions are monitored (even without knowing the initial system degradation state) and to
dynamically assess the system risk and RUL. As case study, a subsystem of the residual heat removal system of a
nuclear power plant is considered. The results shows the significance of the proposed method for tailored
reliability assessment and failure prognostics.

1. Introduction

Traditional reliability assessment computes the reliability of an
equipment based on failure data from a (large) number of similar
equipment [1,10,17,19,9]. This provides the reliability for the some-
what average equipment, without taking into account the specificity of
the physical process of degradation and the related monitored data of
the individual equipment under assessment.

Recently, dynamic reliability assessment and failure prognostics
have been investigated. Following Liu et al. [12], dynamic reliability
assessment in this paper is interpreted as the dynamic updating or
modification of the reliability model of a specific equipment, when
additional information becomes available, related to the state and
degradation process of the equipment. The failure prognostics of the
equipment can also be dynamic, within the reliability assessment
framework.

Dynamic reliability assessment and failure prognostics have been
investigated with reference to single components. The works of Dong
and He [2], Ghasemi et al. [4], Ye et al. [23] and Si et al. [20] are some
examples.

The dynamic reliability assessment and failure prognostics of a

system of multiple components have not yet been explored in depth,
because of the complications due to the interactions and dependences
of behavior of the components constituting the system. The work of Liu
et al. [12] and Moghaddass et al. [14] represent recent efforts in
developing methods for the dynamic reliability assessment and failure
prognostics of a system, where the observations on the system state are
considered (although without noise).

In this paper, the dynamic reliability assessment and failure
prognostics of a system with dependent multi-state/continuous de-
grading components is addressed. To the authors’ knowledge, this is
the first time that such type of system is considered for dynamic risk
assessment and prognostics. Some main practical considerations are:

i) Degradation is usually described as a continuous process by
physics-based or data-driven models [11,18,5,6,8]. In this paper,
the authors propose a framework for dynamic reliability assess-
ment and prognostics of a system composed of a pump and a valve,
whose degradation processes are multi-state and continuous,
respectively. The degradation model for each component is given.

ii) As the system can be operated in different conditions and
environments, uncertainties affect the degradation models.
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iii) As the system can be operated in different conditions and
environments, uncertainties are included in the degradation model
of each component.

iv) The data monitored by the sensors is noisy.

To the authors’ knowledge, this is the first time that such a system is
considered for dynamic risk assessment and prognostics.

In Lin et al. [10], the simulation of a Piecewise Deterministic
Markov Process (PDMP) model is performed for the reliability assess-
ment of multiple dependent components with multi-state and contin-
uous degradation processes, where the system degradation state is
supposed to be precisely known and no uncertainty is considered.
PDMP gives a same average result for different systems, without
considering information on the specific system. If the precise system
degradation state is not available, how can one assess the system
reliability and predict the Remaining Useful Life (RUL) of the system
with monitored noisy data? If the system degradation state is available
for some time instances, how can one update the results on the
reliability assessment and prognostics with the monitored value? This
paper proposes a modelling framework to answer these questions.

Given a known system degradation state, PDMP can update the
reliability and RUL of a multi-component system based on data
monitored on the system. To exploit the information in the monitored

data, especially in the case that the true system state is not known, a
modelling framework combining recursive Bayesian method and
parallel Monte Carlo simulation is proposed in this paper.

Specifically, the general recursive Bayesian method for system
degradation state estimation with monitored data is firstly established
for the considered system. As in Tombuyses and Aldemir [21], the
system degradation state is discretized into a finite number of states.
The recursive Bayesian method for the considered system with a finite
number of degradation states is derived. The strategy for numerically
implementing the established Bayesian framework for dynamic relia-
bility assessment and failure prognostics is a parallel Monte Carlo
simulation: one Monte-Carlo simulation is carried out for each possible
system degradation state. The reliability and RUL of the considered
system are calculated based on the results of the parallel Monte Carlo
simulation. The dynamic reliability assessment and failure prognostics
of an illustrative system with two dependent components are carried
out to show the application of the proposed modelling framework. The
case study in this paper concerns the degradation of a subsystem,
composed of a pneumatic valve and a centrifugal pump, belonging to
the residual heat removal system of a nuclear power plant.

The remainder of the paper is organized as follows. The generic
formulation of the modelling problem considered is presented in
Section 2. Section 3 details the framework for the proposed dynamic

Fig. 1. Flowchart of the proposed modelling framework for dynamic reliability assessment and failure prognostics.

Symbols

t time
C number of components in a system
si t, state of component i at time t
Mi j, j-th degradation state of component i
si t M, , i j,

degradation state of component i at time t is Mi j,
ss t, state of the system at time t
xt measured value of the system state at time t

s∆ i difference between two consequent states of component i
s∆ s t, difference between two consequent discrete system states

at time t
Ni number of possible degradation states of component i
Nall number of possible degradation states of the system
NMC replication times of Monte Carlo simulation
Thi threshold for failure of component i
g (∙)i degradation function of component i

h(∙) relation between the system state and the measured value
δt and γt uncertainty in the degradation function at time t
X :t1 vector including the values monitored from inspection

time 1 to inspection time t
p AB( ) conditional probability of A given B
p A BC( , ) conditional probability of A and B given C
p AB C( , ) conditional probability of A given B and C
p A( ) unconditional probability of A
RULs true RUL of the system
RULˆ

s estimated RUL of the system
R t( ) estimated reliability of the system at time t
λmn transition rate from state m to state n
N μ σ( , ) Gaussian distribution with a mean of μ and a standard

deviation of σ
εt noise in the measured value at time t
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reliability assessment and failure prognostics. The pump and valve
subsystem of the case study are described in Section 4. The results of
the case study are presented in Section 5. Some conclusions and
perspectives are given in Section 6.

2. Target system configuration

Engineering systems are normally composed of multiple compo-
nents. The degradation process of one component may influence those
of others. Often, it is difficult to observe directly the degradation states
of all components and the observation of the system degradation
process is only available at a system level, or for some of the
components in the system. Generally, the measurable degradation
variables are monitored at a fixed time interval.

Before establishing the method for dynamic reliability assessment
and failure prognostics based on monitored data, some general
specifications regarding the system considered are presented as
follows:

1. The system containsC components. The state of component i at time
t is noted as si t, . The state of the system at time t , noted as ss t, , is
composed of the state of all the components, i.e s s s s={ , ,…, }s t t t c t, 1, 2, , .
When the degradation of component i follows a multi-state process
and the degradation state of the component at time t is Mi j, , it is
noted as si t M, , i j,

, and j is an integer between 1 and Ni, with Ni the
number of possible degradation states of the component i. For
estimating the Remaining Useful Life (RUL) of the system, the
threshold Thi for failure of the component i in the system is assumed
known. For guaranteeing a proper safety and reliability level of the
component and system, the failure threshold of a component can be
given by the field experts, experiments, etc. For example, in Vitanza
[22], the fuel enthalpy failure threshold is calculated by an equation
derived from the post-test strain data. The failure threshold of
leakage from the first seal of reactor coolant pump in a nuclear
power plant is determined by the field experts [13]. Degradation
thresholds are calculated in Pope et al. by minimizing the total
maintenance cost of the monitored component, or to minimize the
downtime of the machine due to maintenance on the monitored
component. If, instead of each component, the threshold for the
system performance is available, the proposed framework for
dynamic prognostics is still applicable, as the thresholds are only
used to decide the RUL of the system in each replication of Monte
Carlo simulation. For a discrete degradation process, the threshold is
simply the failure state. The failure threshold can also be dynamic
according to different environments as in Emani-Maeini et al. and
Jiang et al. [7]. It is not the objective of this work to decide the
system failure threshold, and we just assume that the system failure
threshold is known. Uncertain failure thresholds can also be treated,
within a double-loop Monte Carlo simulation.

2. In this paper, we assume that the degradation rate of the continuous
degrading component i at time t is dependent on the system state at
time t . The dependency is given by ss g′ = ( )i t i s t, . . The state of the

component i at time t t+ ′ can be expressed as ∫s s dt γ= ′ +i t t t

t t
i t t, + ′

+ ′
, .

For a component with multi-state degradation process, its transition
rates at time t are dependent on the state of the system at time t , and
the transition rates can be given by λ s λ δg= ( , ) +i t t i s t i t t. + ′ . . . The
degradation functions g (∙)i and the uncertainty elements γt , δt are
known or can be estimated from historical data.

3. The degradation of all components may not always be possible to
observe. Suppose there are some measurable variables related to
system degradation, whose values are monitored at discrete times
t = 1,2, … and are noted as xt. We suppose that the measured value
xt is only dependent on the system state at time t and it can be
expressed as x s εh= ( ) +t s t t, . The noise εt from the sensors follows a
constant or time-dependent distribution. The function h(∙) and the

noise εt are known or can be estimated from historical data. The
vector X x x x={ , ,…, }:t t1 1 2 includes the values monitored from inspec-
tion time 1 to inspection time t .

These specifications in Section 2 are not especially for a parallel,
series or mixed system. A system that satisfies the previous specifica-
tions can use the proposed framework for dynamic reliability assess-
ment and failure prognostics, independently of the specific logic
configuration. In the experiments of Section 5, the system considered
is a series system where the failure of one component can result in the
failure of the system. However, the relation between the component
failure and the system failure can also be different.

3. Dynamic reliability assessment of a system made of
multiple dependent degrading components

The proposed modelling framework is composed of two parts, as
shown in Fig. 1, i.e. the system degradation state estimation and the
parallel Monte Carlo simulation of the evolution of the system
degradation state. With the monitored data and system degradation
model, the recursive Bayesian method introduced in Section 3.1 is used
to estimate the possible system degradation states and their probabil-
ities. Then, for each possible system state with non-zero probability, a
Monte Carlo simulation is carried out whose number of replications is
proportional to the probability of this system state. The reliability of the
system is calculated based on the RUL of each replication in a parallel
Monte Carlo simulation. When more monitored data on the system
degradation are available, the probability of each system degradation
state is updated and parallel Monte Carlo simulation is repeated to
calculate dynamically the new system reliability and RUL.

3.1. Estimation of the probability of the system degradation state at
time t

Nonlinear Bayesian filtering presented in Orchard [15] is used in
this Section for estimating the conditional probability of a system
degradation state given the measured data until time t and the
degradation functions in Section 2.

The values of the measurable variables are monitored at a discrete
time t . This section establishes the procedure for calculating the
conditional probability of the system at a specific degradation state
ss t, , which can be noted as

s X
X s s

X
x X s s

X
p

p p
p

p p
p

( ) =
( ) ( )

( )
=

( , ) ( )
( )

.s t t
t s t s t

t

t t s t s t

t
, 1:

1: , ,

1:

1: −1 , ,

1: (1)

Eq. (1) can be reformulated as

s X
x X s
x X X

p
p s p
p p

( ) =
( , ) ( )
( | ) ( )

.s
s t t

t t t s t

t t t
, 1:

1: −1 , ,

1: −1 1: −1 (2)

The conditional probability x X sp( , )t :t s t1 −1 , equals to
x X s X sp p( | , ) ( | )t :t s t :t s t1 −1 , 1 −1 , . From the assumptions in Section 2, we

know that the measured value at time t is only dependent on the system
state at time t . Thus, we have x X s x sp p( , )= ( )t :t s t t s t1 −1 , , . The Bayes’ rule

gives that X sp( ) = s X X
s:t s t

p p
p1 −1 ,

( | ) ( )
( )

s t :t :t

s t

, 1 −1 1 −1

,
. Thus, the Eq. (2) can be

rewritten as

s X
x s s X

x X
p

p p
p

( ) =
( | ) ( | )

( | )
,s t t

t s t s t t

t t
, 1:

, , 1: −1

1: −1 (3)

with

∫x X x s s X sp p p d( ) = ( | ) ( | ) .t t t s t s t t s t1: −1 , , 1: −1 , (4)

In Eqs. (3) and (4), x sp( | )t s t, can be calculated from the given
degradation function h(∙) and noise distribution εt. The other two
conditional probabilities in the right part of Eq. (3) are calculated as
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follows:

∫s X s s s X sp p p d( ) = ( | ) ( )s t t s t s t s t t s t, 1: −1 , , −1 , −1 1: −1 , −1 (5)

where the conditional probability s s s sp p( ) = ∏ ( | )s t s t i
C

i t s t, , −1 =1 , , −1 , and
sp s( | )i t s t, , −1 can be calculated directly with the degradation functions

of assumption 2 in Section 2;
s Xp( )s t :t, −1 1 −1 in Eq. (5) is the conditional probability of ss t, −1 given all the

measured values until time t − 1. Then,

∫
∬

s X
x s s s s X s

x s s s s X s s
p

p p p d

p p p d d
( ) =

( | ) ( | ) ( )

( | ) ( | ) ( )
.s t t

t s t s t s t s t t s t

t s t s t s t s t t s t s t
, 1:

, , , −1 , −1 1: −1 , −1

, , , −1 , −1 1: −1 , −1 , (6)

Thus, as shown in Eq. (6), s Xp( )s t :t, 1 is, eventually, expressed as a
function of s Xp( )s t :t, −1 1 −1 . Given that s Xp( )s,1 1:1 can be estimated with the
assumption 3 in Section 2, the conditional probability s Xp( )s t :t, 1 can be
calculated recursively.

The Eqs. (1)–(6) are from classic Bayesian filtering methods and
are kept for completeness and self-containment of the paper, while they
are adapted to the considered system for dynamic prognostics and risk
assessment.

3.2. Parallel Monte Carlo simulation for dynamic reliability
assessment and prognostics

In order to carry out the recursive Bayesian method established in
Section 3.1, the discretization of the continuous degradation state. For
example, the component i is one such component and the whole range
of degradation states is Th[0, ]i , which is divided into Ni different states
and the distance between two consequent states is s∆ i which is Th

N −1
i

i
.

The first state Mi,1 is the failure state and the Ni-th state Mi N, i
is the

perfect functioning state. For a multi-state degrading component i, s∆ i
is 1 in arbitrary unit. Suppose that the volume between two consequent
discrete system states is noted as s∆ s t, , then, with the assumed the
second factor of the numerator in Eq. (6) can be approximated as

∫ ∑ ∑ ∑s s s X s sp p d f( ) ( ) ≅[ … (∙)]∆ ,s t s t s t t s t
i

N

i

N

i

N

s t, , −1 , −1 1: −1 , −1
=1 =1 =1

, −1
t C

C

t c

c

t−1, −1, −1

−1

−1,1

1

with

X

f p s s s s

s s p s s

s

(∙) = ({ , ,…, }{ ,

,…, })* ({ , ,…,

} ).

t M t M C t M t M

t M C t M t M t M

C t M t

1, , 2, , , , 1, −1,

2, −1, , −1, 1, −1, 2, −1,

, −1, 1: −1

it it C it C it

it C it C it it

C it C

1, ,1 2, ,2 , , 1, −1,1

2, −1,2 , −1, 1, −1,1 2, −1,2

, −1, (7)

where s j N, = 1, …,i t M i, , i j,
means that the state of the component i at time

t is Mi j, .
The denominator can be approximated similarly following the

previous steps, and becomes

∬

∑ ∑ ∑

∑ ∑ ∑

x s s s s X s s s

s

p p p d d

p x s

s s f

( ) ( ) ( ) ≅∆ ∆

… ( { ,

,…, }) … (∙).

t s t s t s t s t t s t s t s t

s t
i

N

i

N

i

N

t t M

t M C t M
i

N

i

N

i

N

, , , −1 , −1 1: −1 , −1 , , −1

,
=1 =1 =1

1, ,

2, , , ,
=1 =1 =1

t C

c

t C

C

t
i

it C it C
t C

C

t c

c

t

, , −1

−1

,1

1

1, 1

2, ,2 , ,
−1, −1, −1

−1

−1,1

1

(8)

For reliability assessment and failure prognostics of the system at
time t , Monte Carlo simulation is used. The states of the continuous
degrading components are discretized as before and, thus, the system
degradation states can have N N= ∏all i

C
i=1 possible configurations. The

conditional probability for each possible state of the system is
recursively calculated with the monitored data using the Eq. (6). A
Monte Carlo simulation, as shown in Fig. 1, is carried out in parallel for
each possible system degradation state, for a total of NMC replications.
The number of replications NMC i, in the i-th Monte Carlo simulation is

proportional to the probability of the corresponding system degrada-
tion state ss t, at time t , i.e. s X sN p N= ( )*∆ *MC i s t :t s t MC, , 1 , and

N N= ∑MC i
N

MC i=1 ,
all . Note that, with Eqs. (6)–(8), s∆ s t, is eliminated in

the Monte Carlo simulation and s X sp( )*∆s t :t s t, 1 , is the likelihood that the
system state at time t is ss t, . For a system state, if s Xp( )=0s t :t, 1 , there is no
need of a Monte Carlo simulation with this initial system state.

To account for the uncertainties in the degradation models, during
a replication of Monte Carlo simulation, one value is randomly selected
as realization of the degradation state at the next time step from the
probability density distribution given by the degradation model.

For each replication of Monte Carlo simulation, a system degrada-
tion evolution is generated and the RUL of the system for this
replication is noted as RUL i Nˆ , = 1,2, …,i s MC, . The estimated RUL of

the system, noted as RULˆ
s, given by the parallel Monte Carlo simulation

is calculated as the mean of the RULi s, of all the degradation evolutions

simulated, i.e. RUL RULˆ = ∑ ˆ
s N i

N
i s

1
=1 ,MC
MC . The reliability of the system at

time t t+ ′ is calculated as R t t( + ′) = N RUL t
N

( ˆ ≥ ′)i s, , with N RUL t( ˆ ≥ ′)i s, the

number of iterations with RUL tˆ ≥ ′i s, .
When new monitored data, e.g. xt+1, are available, the probability of

the each possible system state can be updated, i.e. s Xp( )s t :t, +1 1 +1 and
Monte Carlo simulation can be used to dynamically calculate the
reliability and RUL of the system.

Fig. 2. Schematic explanation of the illustrative system.

Fig. 4. The true and estimated probabilities of the pump at different states.

Fig. 3. Degradation process of the pump.
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4. An illustrative case study

In this section, a system composed of two dependent components is
considered as illustrative example to explain the proposed modelling
framework, as shown in Fig. 2.

The system is characterized as:

• component 1 follows a N1-state degradation process and component
2 undertakes a continuous degradation process;

• the monitored data xt is the sensor measurement of the degradation
of the component 2, noted as s t2, , with a known sensor noise ε
following a fixed distribution, i.e. x s ε= +t t2, . The measurement is
carried out at a fixed time interval of 1 (with an arbitrary unit);

• the degradation rate of component 2 is dependent on the state of
components 1 and 2 at that time, i.e. s g s s′ = ( , )t t t2, 2 1, 2, and

∫s g s s γ= ( , )+t t

t
t t2, +1

+1
2 1, 2, ;

• component 1 follows a multi-state Markov process and
s g s λ= ( , )t t t1, +1 1 1, ;

• the failure threshold of component 1 is Th;
• if one component in the system fails, the system fails.

In order to carry out the recursive Bayesian method presented in
Sections 2 and 3, the discretization of the degradation state of
component 2 is necessary. Suppose the continuous degradation state
of component 2, ranged in interval Th[0, ], is divided into N2 states and

Fig. 5. True and estimated pump (left) and valve (right) degradation state of scenario 1.

Fig. 6. True and estimated pump (left) and valve (right) degradation state of scenario 2.

Table 1
Details of the four considered failure scenarios.

Pump holding time failure time failure type

state 3 state 2 state 1

Scenario 1 22 433 291 559 valve failure
Scenario 2 333 104 700 658 valve failure
Scenario 3 65 172 32 268 pump failure
Scenario 4 49 81 267 397 pump failure
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the distance between two consequent states is s∆ = Th
N2 −12

. With

s s s i N andi N= { , }, =1, …, =1, …,s t t M t M t t, 1, , 2, , ,1 1 ,2 2it it1, ,1 2, ,2
, Eqs. (6)–(8) give

that the probability that the system state is ss t, at time t is

X
s

p s s
p x s s l

p x s s l
({ , } )==

( { , }) (∙)

∆ ∑ ∑ ( { , }) (∙)
,t M t M t

t t M t M

s t i
N

i
N

t t M t M
1, , 2, , 1:

1, , 2, ,

, =1 =1 1, , 2, ,
it it

it it

t t it it

1, ,1 2, ,2

1, ,1 2, ,2

,2
2

,1
1

1, ,1 2, ,2

with

∑ ∑

X

l p s s s s

p s s

(∙) = ({ , }{ , })

({ , } ).

i

N

i

N

t M t M t M t M

t M t M t

=1 =1
1, , 2, , 1, −1, 2, −1,

1, −1, 2, −1, 1: −1

t t
it it it it

it it

−1,2

2

−1,1

1

1, ,1 2, ,2 1, −1,1 2, −1,2

1, −1,1 2, −1,2 (9)

As the measuring data is only dependent on the degradation state of
component 2, the recursive Bayesian Eq. (9) can be simplified as

Fig. 7. True and estimated pump (left) and valve (right) degradation state of scenario 3.

Fig. 8. True and estimated pump (left) and valve (right) degradation state of scenario 4.

Fig. 9. Reliability of the monitored system, given thedata monitored until different
observation timest for Scenario 1. (The true failure time is marked as a square on x axis.).
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Fig. 11. Reliability of the monitored system, given the data monitored until different
observation times t for Scenario 2. (The true failure time is marked as a square on x
axis.).

Fig. 12. Estimated system RUL PDFs, given data monitored until different observation
times t for Scenario 2.

Fig. 13. Reliability of the monitored system, given the data monitored until different
observation times t for Scenario 3. (The true failure time is marked as a square on x
axis.).

Fig. 14. Estimated system RUL PDFs, given data monitored until different observation
times t for Scenario 3.

Fig. 10. Estimated system RUL PDFs, given data monitored until different observation
timest for Scenario 1.

Fig. 15. Reliability of the monitored system, given the data monitored until different
observation times t for Scenario 4. (The true failure time is marked as a square on x
axis.).
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In the parallel Monte Carlo simulation, NMC realizations of the
system states are generated for time t . The number of replications of
the i-th Monte Carlo simulation for data point

s s s i N andi N= , , =1, …, =1, …,s t t M it t M it t t, 1, , 1, ,1 2, , 2, ,2 ,1 1 ,2 2
⎧⎨⎩

⎫⎬⎭ , is s X sN p* ( )∆s t :t s t, 1 , . As

s t M1, , it1, ,1
and s t M2, , it2, ,2

are independent, sp s s,s t t M t M, 1, −1, 2, −1,it it1, −1,1 2, −1,2

⎛
⎝⎜

⎧⎨⎩
⎫⎬⎭

⎞
⎠
⎟⎟

can be rewritten as

p s s s p s s
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.

t M t M t M t M t M

t M
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NMC degradation evolutions of the system are generated for the system
at time t . Suppose the estimated RULs of each component in the system
degradation evolution set i i N, = 1, …, MC are noted separately
RUL RULˆ , ˆ

i i.1 ,2: then, the system RUL, noted RULˆ
i s, , is

RUL RUL RULˆ = min ( ˆ , ˆ )i s i i, .1 ,2 . The overall reliability and RUL of the
system from the NMC replications can, then, be calculated as explained
in the previous section.

5. Case study

In this case study, a subsystem of a residual heat removal system of
a nuclear power plant is considered [10]. The subsystem is composed of
two components, i.e. a pneumatic valve and a centrifugal pump.

The degradation of the centrifugal pump follows a continuous-time
homogeneous Markov process with constant transition rates. Fig. 3
shows the degradation process of the pump.

The degradation states of the pump are classified into four states,
i.e. state 3, noted as Mp,3, state 2, noted as Mp,2, state 1, noted as Mp,1,
state 0, noted as Mp,0, with state 3 being the perfect functioning state
and state 0 the failure state. The transition rates λ32, λ21 and λ10 are all
equal to λ t= 0.003/ .

Under this assumption, if the degradation state of the pump at time
t is M ,p k, k ∈ {3,2,1}, the degradation state of the pump at time t + 1 can

Fig. 16. Estimated system RUL PDFs, given data monitored until different observation
times t for Scenario 4.

Fig. 17. True system state and estimated probability of the system state at observation
time t = 5, 20, 100, 300, using the proposed method for Scenario 1.

Fig. 18. The flowchart of using PDMP for dynamic reliability assessment and failure
prognostics.
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either be Mp k, orMp k, −1, and p s s p s s e( )=1 − ( )=1−p t Mp k p t Mp k p t Mp k p t Mp k
λ

, +1, , −1 , , , , +1, , , , ,
− .

The degradation of the pneumatic valve is a continuous degradation
process whose degradation rate is dependent on the degradation state
of the pump. The relation between the degradation rate of the valve and
the degradation state of the pump is s s′ = 10 *(4 − 1.5*( −1))v t p t,

−8
, , with

sp t, the degradation state of the pump and s′v t, the degradation rate of
the valve. For example, if the degradation state of the pump at time t is
state 2, the degradation rate of the valve is s′ =2.5*10v t,

−8. These
relations are simplified by the authors, without loss of generality. As
mentioned in the second specification of the system in Section 2, in
practice this relation can be obtained according to physical laws or
statistically estimated from the historical data. In this paper, we did not
focus on how to obtain this relation, but assumed it already available,
as the focus was mainly on how to estimate dynamically the RUL and
reliability of the system.

The degradation state of the valve is monitored every second with

sensor noise, i.e. x s ε= +t v t, , with xt the monitored value, sv t, the

degradation of the valve and ε N∈ (0,8*10 )−8 the noise. N μ σ( , ) repre-
sents a Gaussian distribution with a mean of μ = 0 and a standard
deviation of σ = 8*10−8.

In order to simplify the system analysis, we suppose that the
transition of the state of the pump occurs only once between two
observations (monitored values) and occurs right before the observa-
tion, i.e. the state of the pump is fixed between two observations. Thus,
the state of the valve at the next observation time can be expressed as
s s s γ= + ′ *1 +v t v t v t, +1 , , , with γ N∈ (0,4*10 )−8 being the uncertainty
related to the operation condition and environment. This assumption
is correct under the condition that the transition rate is very low, as
expected in practice. Fig. 4 shows the true probabilities of the pump
under different states and the estimated probabilities under the
previous assumption. One can observe that the difference is very small.
Thus, the assumption is reasonable. In fact the assumption is arbitrary,

Fig. 19. Reliability of test scenario 1, given the true initial system state and the monitored data until different timest , using the proposed method and PDMP. (The true failure time is
marked as a square on x axis.).

Fig. 20. Reliability of test scenario 2, given the true initial system state and the monitored data until different timest , using the proposed method and PDMP. (The true failure time is
marked as a square on x axis.).
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we can use a small time unit for the cases of a larger transition rate, e.g.
instead of 1 time unit, one can use 1/1000 time unit. This assumption
allows simplifying the Monte-Carlo simulation.

The threshold for the failure of the valve is Th = 1.5*10−5.
The above values are set by the authors, referring to the previous

work of Lin et al. [10].
The system failure can be caused by pump failure or valve failure. In

this paper, four failure scenarios are considered with two scenarios
with pump failure and the other two with valve failure. The details of
the considered failure scenarios are shown in Table 1.

5.1. Case with unknown initial state of the system

We assume that monitored values are available from time1 to time t
and the true degradation state of the system is not known for any time.
In this situation, the deterministic method proposed in Lin et al. [10]
(briefly introduced in Appendix) does not work, as PDMP needs to be
initialized with a precise system state.

The degradation state, Th[0, ] of the valve is discretized into 500
states, noted as M i, = 1,2, …, 500v i, , with Mv,1 the failure state of the
valve, i.e. the degradation is Th, and Mv,500 the perfect functioning state
of the valve, i.e. the degradation is 0. sv t M, , v i,

means that the degradation
state of the valve at time t is Mv i, . And s Th∆ = /499v .

With the measured value at time 1, the conditional probability

p s x( | )v M,1, 1v i,
at this time is

p x s p s

s pp x s p s

( ) ( )

∆ ∑ ( ) ( )

v Mv i v Mv i

v j v Mv i v Mv i

1 ,1, , ,1, ,

=1
500

1 ,1, , ,1, ,
, with

p s( )=1/500v M,1, v i,
andi j, ∈ {1,2, …, 500}. As the system is working, the

degradation state of the pump is supposed to be s M M M∈{ , , }p p p p,1 ,3 ,2 ,1
and p s p s p s( ) = ( )= ( )=1/3p M p M p M,1, ,1, ,1,p p p,3 ,2 ,1

, with s j, = 3,2,1p t M, , p j,
, meaning

that the state of the pump at time t is Mj. Thus, the conditional
probability of the system state at time 1 is
p s s x p s x p s({ , } ) = ( | ) ( )v p v p,1 ,1 1 ,1 1 ,1 . With the recursive Bayesian approach
expressed as Eq. (10), we can estimate Xp s s({ , } )v t p t :t, , 1 , with
s M M M∈{ , , }p t p p p, ,3 ,2 ,1 and s Th∈[0, )v t, .

The number of replications in the parallel Monte-Carlo simulation
is 105.

Recursive Bayesian method in Section 3.1 is first used to estimate

Fig. 21. Reliability of test scenario 3, given the true initial system state and the monitored data until different times t , using the proposed method and PDMP. (The true failure time is
marked as a square on x axis.).

Fig. 22. Reliability of test scenario 4, given the true initial system state and the monitored data until different times t , using the proposed method and PDMP. (The true failure time is
marked as a square on x axis.).
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the system state (pump and valve), then the parallel Monte-Carlo
simulation is used to estimate the system RUL and reliability.

Figs. 5–8 show the estimated pump and valve degradation states
given the monitored data until different time instances and the true
pump and valve degradation state at that time instance.

From these Figures, it is shown that the recursive Bayesian network
can effectively estimate the valve degradation state using the monitored
data, as it is directly related to the valve degradation.

Given the holding times of the pump under different states in
Table 1, one can also observe that the recursive Bayesian method can
also estimate properly the degradation state of the pump whose holding
time is larger 60. For example, the holding time of the pump on state 3
in Scenario 1 is only 22. Without knowing the initial degradation state

of the pump, the probabilities of the estimated pump degradation on
states 3 and 2 are comparable (left figure of Fig. 5), i.e. there are not
enough measured data for the proposed method to recognize precisely
the pump degradation state. This is because the recursive Bayesian
method needs a number of data to update the conditional probabilities
of the pump degradation state, i.e. there is a delay of the recursive
Bayesian method to detect correctly the pump degradation state.
However, when the holding time is larger (normally larger than 60),
the recursive Bayesian method can estimate correctly the pump
degradation state. For example, the holding time of the pump on state
3 in Scenario 2 is 333. After about 50 measure value, the probability of
the estimated pump degradation state on State 3 is always larger than
70% until 350 when the pump state transits to State 2 (left figure of

Fig. 23. PDFs of the predicted RUL for test scenario 1, given the true system state at time 0 and the monitored data until different timest , using the proposed method and PDMP.

Fig. 24. PDFs of the predicted RUL for test scenario 2, given the true system state at time 0 and the monitored data until different timest , using the proposed method and PDMP.
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Fig. 6). The left figure of Fig. 7 shows that the proposed method does
not catch effectively the pump degradation state, as the holding times
of the pump on States 3 and 1 are too short.

Given the monitored data until different time instances, the
reliability at different times t t+ ′ and the RUL of the system can be
estimated. The results are shown separately in Figs. 9–16. These
figures show that the proposed framework can effectively update the
estimated reliability and predicted RUL with the monitored data. It
works well especially for the system with valve failure (as shown in
Figs. 9–12) and the results are improved with more and more
measured data. For example, in Fig. 9 it is shown that the reliability
assessment given the monitored data until time t = 500 drops sharply
close to the true system failure time, which is 559. On the contrary,
with monitored data only available until time t = 100, the reliability of
the system is still high. The results in Fig. 9 show that the proposed
method, which uses monitored data of a specific system for dynamically
assessing its reliability, gives more and more reliable results as more
and more monitored data become available with time.

The proposed framework works no so well on the system with pump

failure, especially for Scenario 3. With a transition rate of 0.003/t, the
mean transition time is around 333. But the holding times of the pump
on different states in Scenario 3 are smaller than the mean transition
time. The proposed framework does no react quickly enough to capture
the true pump degradation state and, thus, the proposed framework
does not work for systems with pump failure as well as those with valve
failure.

From Fig. 10 and Fig. 12, it is observed that the Probability Density
function (PDF) of the RUL can also be updated, based on the
monitored data. As more monitored data is available, the uncertainty
bounds of the RUL PDF become narrower.

Fig. 17 shows the true system state and estimated probability of the
system state at observation time t = 5, 20, 100, 300, using the
proposed method for Scenario 1. From Fig. 17, it is observed that the
holding time of the pump at state 3 is only 22, with a transition rate
λ t=0.003/32 , and the proposed method can quickly capture the change
of state based on the monitored data (until time t = 100 and t = 300), as
shown in the lower two plots in Fig. 17. The Figure shows that only a
small part of all the possible system states have a non-zero probability

Fig. 25. PDFs of the predicted RUL for test scenario 3, given the true system state at time 0 and the monitored data until different times t , using the proposed method and PDMP.

Fig. 26. PDFs of the predicted RUL for test scenario 4, given the true system state at time 0 and the monitored data until different times t , using the proposed method and PDMP.
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with the monitored data. Thus, the parallel Monte Carlo simulation is
carried out for the system states that have a non-zero probability. Also,
advanced filtering methods and Monte Carlo simulation techniques can

be considered to improve the computational efficiency and reduce the
computational burden. For example, particle filtering approaches can
be used for estimating a posterior probability distribution of the system
states with the state equations and observation equations in the second
and third specifications of the system in Section 2. Combined with
Monte Carlo simulation, the RUL of the system can be derived.

5.2. Case with known initial state of the system

In this Section, we assume that monitored values are available from
time 1 to time t and the system at time 0 is known to be at the perfect
state, i.e. s M=v v,0 ,500, s M=p p,0 ,3 and s M M={ , }s v p,0 ,500 ,3 . Considering this
initial state, the conditional probability of the state of the pump at time

1, is p s s e p s s e p s s| = , | =1− , | =0p Mp p Mp
λ

p Mp p Mp
λ

p Mp p Mp,1, ,3 ,0, ,3
−

,1, ,2 ,0, ,3
−

,1, ,1 ,0, ,3
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ . And

the conditional probability of the valve at state M i, = 1,2, …, 500v i, is

p s x s, =v M s

p x s p s s

s p x s p s s
,1, 1 ,0

∆ ∑
v i

v Mv i v Mv i s

v j v Mv j v Mv j s
,

1 ,1, , ,1, , ,0

=1
500
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. Thus, the conditional

probability of the system state at time 1 is

Table 2
AE of the estimated RUL of the proposed method and PDMP, at different observation
times.

Scenario 1 Scenario 2

Observation
time

5 20 100 300 500 5 300 400 500 600

The proposed
method

114 115 26 9 1 17 212 81 27 13

PDMP 116 116 118 146 216 17 47 72 117 181
Scenario 3 Scenario 4

Observation
time

5 50 100 150 250 5 50 100 150 300

The proposed
method

404 420 111 222 262 274 314 266 65 20

PDMP 405 405 407 411 426 306 274 278 282 307

Fig. 27. True and estimated probability of each system state of test scenario 1 at
observation time t = 5, 20, 100, 500, using the proposed method.

Fig. 28. True and estimated probability of each system state of test scenario 1 at
observation time t = 5, 20, 100, 500, using PDMP.
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p s s x s p s x s p s s({ , } , ) = ( | , ) ( | )v p s v s p p M,1 ,1 1 ,0 ,1 1 ,0 ,1 ,0, p,3 . With the recursive
Bayesian approach expressed as Eq. (10), we can estimate

Xp s s({ , } )v t p t :t, , 1 , with s M M M∈{ , , }p t p p p, ,3 ,2 ,1 and s Th∈[0, )v t, .
The Piecewise Deterministic Markov Process (PDMP) method

proposed in Lin et al. [10] is used as a benchmark method to compare
the results of reliability assessment and prognostics. The procedure for
updating the results of PDMP is shown in Fig. 18.

The monitored value at each time t shows if the system is
functioning or not. If the system is functioning, the degradation
evolutions for which the system has already failed at time t are
eliminated, and, then, the RUL and the reliability of the system is
calculated based on the remaining degradation evolutions, as for the
Monte Carlo simulation in Section 4.

In this Section, the four scenarios in Table 1 are considered. The
true initial state of the system in the two test scenarios are known, i.e.
M M{ , }v p,500 ,3 . Figs. 19–22 show the estimated reliability for these
scenarios, with different available monitored data.

It is observed that PDMP gives similar reliability estimations for
different test scenarios, while the proposed method can dynamically

update the assessed reliability with the monitored data. The proposed
method gives relatively better results for scenarios 1, 2 and 4, while
worse results for scenario 3. This is caused by the fact that the system
in scenario 3 suffers a pump failure and the holding time of the pump
on the state 1 is too short (22) and, thus, there are not enough
monitored data for the proposed method to catch the transition of the
pump state from state 2 to state 1. For scenario 4 with also pump
failure, the proposed method gives better results, as the holding time of
the pump in scenario 4 is larger and, thus, the proposed method can
correctly estimate the pump degradation state before its failure.

Similarly, in the experiments, the PDFs of the predicted RUL given
by the proposed method is more accurate and precise than PDMP, as
shown in Figs. 23–26.

Table 2 shows the Absolute Error (AE) given by the proposed
method and PDMP at different times. The Absolute Error is calculated
as RUL RUL| ˆ − |s t s t, , , with RULˆ

s t, the predicted RUL of the system at time
t and RULs t, the true RUL of the system at time t .

From Table 2, one can observe that the proposed method and
PDMP give comparable results at the beginning, e.g. t = 5. But as time

Fig. 29. True and estimated probability of each system state of test scenario 2 at
observationtime t = 5, 300, 400, 500, using the proposed method.

Fig. 30. True and estimated probability of each system state of test scenario 2 at
observationtime t = 5, 300, 400, 500, using PDMP.
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goes on, PDMP gives worse predicted RUL for the specific test
scenarios. On the contrary, the method proposed in this paper can
capture well the specific system state with the monitored data and gives
more accurate results on the predicted system RUL. Some clue can be
found in Figs. 27–30, which present the PDFs of the estimated system
state at different times using the proposed method and PDMP, for the
two test scenarios. In comparison with Fig. 17, with a known initial
system state, the number of possible system state with non-zero
probability is less in Fig. 27. Although the proposed framework gives
worse results for scenario 3 than for other scenarios, its AE is still
smaller than PDMP in the experiments.

Theoretically, with the same replication times, the computation
time of the proposed method should be much longer than that of
PDMP, as the calculation of a posterior probability of system states
given the monitored data takes considerable time. However in the
experiment, the replications is 105 for both PDMP and parallel Monte
Carlo simulation, and the computation time of PMDP and the proposed
method for observation time t = 200 are not significantly different,
because in the experiment, s Xp( )s t :t, +1 1 is calculated as ∑s s X: p( )≠0s t s t :t, , 1

s s s Xp p( )* ( )s t s t s t :t, +1 , , 1 instead of s X s s s Xp p p( ) = ∑ ( )* ( )ss t :t all s t s t s t :t, +1 1 , +1 , , 1s t,
.

The number of system states with a non-zero probability i.e. s Xp( )≠0s t :t, 1
until time t = 50 has already reduced to 53 among the 1500 possible
system states.

6. Conclusions and perspectives

The dynamic reliability assessment and failure prognostics of a
system with monitored data is drawing much attention for the great

practical opportunity of tailoring the results on the specific system
behavior and not on an average behavior. In this paper, a recursive
Bayesian method-based framework is proposed to dynamically assess
the reliability and predict the RUL of a system with multiple dependent
components, whose degradation processes can be continuous.
Uncertainties are considered in the degradation model and noise exist
in the monitored data. Recursive Bayesian method estimates the
system state with the monitored data for the considered system, and,
then, a parallel Monte Carlo simulation is carried out to estimate the
reliability and RUL of the system. The results can be updated with new
monitored data.

The results for a case study show that the proposed method gives
reliable and accurate reliability and RUL results. In comparison with
PDMP, the proposed method is more capable at capturing the dynamic
degradation process of the considered system, even if it is less effective
for the scenarios with low possibilities.

The transition of the states for a multi-state component is supposed
to occur at most once between two observation time and right before
the second observation. If no constraints is posed on the transitions,
the estimation of the conditional probability of the system state will be
much more complicated. But the proposed framework still works.

In this paper, the continuous state has been discretized and, in
order to be precise, a larger number of states has been created. In the
experiment, it is shown that only a small number of all the possible
system state are with non-zero probability given the monitored data.
Advanced filtering methods should be integrated for reducing the
number of possible system states.

Appendix

Brief introduction of PDMP method proposed in Lin et al. [10].

The considered system is composed of dependent degrading component. Z
X t

Y
′

⎯→
=

⎯→
( )
⎯→
t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ represents the system degradation state at time t , where Y

⎯→
t

is the state of the components following a stochastic multiple state degradation process and X t
⎯→

( ) is the state of the components following a

continuous degradation process which is dependent on Y
⎯→
t . These relations are known. X is the failure threshold of the components in X t

⎯→
( ).

Below is the pseudo-code of PDMP:

SetNmax (the maximum number of replications) and k=0 (index of replication)

Setk′ = 0 (number of trials that end in the failure state)
Whilek N< max

Initialize the system by setting Z
X

Y
′

⎯→
=

⎯→
(0)
⎯→
0

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ (initial state), and the time T=0 (initial system time)

Sett′=0 (state holding time)
WhileT T< miss

Sample a holding time t′ by using the probability density function of the holding time at current degradation state given the external influencing
factors

Sample an arrival state Y′
⎯→

for stochastic process Y t
⎯→

( ) from all the possible states by using the conditional probability function of component state
given the holding time
Set T T t= + ′

Calculate X T
⎯→

( ) by using the physics equations

Set Z
X T

Y
′

⎯→
=

⎯→
( )

′
⎯→

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

IfT T≤ miss

Calculate all the extreme values X n(
⎯→

, ∈ )n
o

 of X t
⎯→

( ) in the interval T t T[ − ′, ] by using the physics equations

If ( m X Z∃ ∈ ,
⎯→

∈ ) ∨ ( ′
⎯→

∈ )m
o

X

Setk k′ = ′+1
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Break
End if
Else (when T T> miss)

Calculate all the extreme values X n(
⎯→

, ∈ )n
o

 of X t
⎯→

( ) in the interval T t T[ − ′, ]miss by using the physics equations

If m X∃ ∈ ,
⎯→

m
o

 ∈ X

Setk k′ = ′+1
Break
End if
End if
End While
Setk k= +1
End While

The estimated reliability of component at time Tmiss can be obtained by

R T k Nˆ( )=1− ′/miss max

where k' is the number of trials that the system fails, and the sample variance is:

var R T R T N= ˆ( )(1− ˆ( ))/( −1)R T miss miss maxˆ( )miss
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