קובץ:Hexahedron.jpg
גודל התצוגה המקדימה הזאת: 538 × 599 פיקסלים. רזולוציות אחרות: 216 × 240 פיקסלים | 431 × 480 פיקסלים | 742 × 826 פיקסלים.
לקובץ המקורי (742 × 826 פיקסלים, גודל הקובץ: 51 ק"ב, סוג MIME: image/jpeg)
זהו קובץ מתוך ויקישיתוף וניתן להשתמש בו גם במיזמים אחרים. תיאורו בדף תיאור הקובץ שלו מוצג למטה.
תקציר
תיאורHexahedron.jpg |
English: A Hexahedron (cube). A regular polyhedron. |
מקור | see below |
יוצר |
מעלה היצירה המקורי היה Cyp מוויקיפדיה האנגלית |
File:Hexahedron.svg הוא גרסה וקטורית של קובץ זה. יש להשתמש בו במקום הקובץ הזה JPG כאשר הוא אינו נחות.
File:Hexahedron.jpg → File:Hexahedron.svg
למידע נוסף, אנא ראו Help:SVG.
|
רישיון
מוענקת בכך הרשות להעתיק, להפיץ או לשנות את המסמך הזה, לפי תנאי הרישיון לשימוש חופשי במסמכים של גנו, גרסה 1.2 או כל גרסה מאוחרת יותר שתפורסם על־ידי המוסד לתוכנה חופשית; ללא פרקים קבועים, ללא טקסט עטיפה קדמית וללא טקסט עטיפה אחורית. עותק של הרישיון כלול בפרק שכותרתו הרישיון לשימוש חופשי במסמכים של גנו.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
הקובץ הזה מתפרסם לפי תנאי רישיון קריאייטיב קומונז ייחוס-שיתוף זהה 3.0 לא מותאם. | ||
| ||
תבנית רישוי זו הוספה לקובץ כחלק מעדכון רישיון GFDL.http://creativecommons.org/licenses/by-sa/3.0/CC BY-SA 3.0Creative Commons Attribution-Share Alike 3.0truetrue |
Povray src code
Hexahedron, made by me using POV-Ray, see en:User:Cyp/Poly.pov for source.}}
//Picture *** Use flashiness=1 !!! ***
//
// +w1024 +h1024 +a0.3 +am2
// +w512 +h512 +a0.3 +am2
//
//Movie *** Use flashiness=0.25 !!! ***
//
// +kc +kff120 +w256 +h256 +a0.3 +am2
// +kc +kff60 +w256 +h256 +a0.3 +am2
//"Fast" preview
// +w128 +h128
#declare notwireframe=1;
#declare withreflection=0;
#declare flashiness=0.25; //Still pictures use 1, animated should probably be about 0.25.
#macro This_shape_will_be_drawn()
//PLATONIC SOLIDS ***********
//tetrahedron() #declare rotation=seed(1889/*1894*/);
//hexahedron() #declare rotation=seed(7122);
//octahedron() #declare rotation=seed(4193);
//dodecahedron() #declare rotation=seed(4412);
//icosahedron() #declare rotation=seed(7719);
//weirdahedron() #declare rotation=seed(7412);
//ARCHIMEDIAN SOLIDS ***********
//cuboctahedron() #declare rotation=seed(1941);
//icosidodecahedron() #declare rotation=seed(2241);
//truncatedtetrahedron() #declare rotation=seed(8717);
//truncatedhexahedron() #declare rotation=seed(1345);
//truncatedoctahedron() #declare rotation=seed(7235);
//truncateddodecahedron() #declare rotation=seed(9374);
//truncatedicosahedron() #declare rotation=seed(1666);
//rhombicuboctahedron() #declare rotation=seed(6124);
//truncatedcuboctahedron() #declare rotation=seed(1156);
//rhombicosidodecahedron() #declare rotation=seed(8266);
//truncatedicosidodecahedron() #declare rotation=seed(1422);
//snubhexahedron(-1) #declare rotation=seed(7152);
//snubhexahedron(1) #declare rotation=seed(1477);
//snubdodecahedron(-1) #declare rotation=seed(5111);
//snubdodecahedron(1) #declare rotation=seed(8154);
//CATALAN SOLIDS ***********
//rhombicdodecahedron() #declare rotation=seed(7154);
//rhombictriacontahedron() #declare rotation=seed(1237);
//triakistetrahedron() #declare rotation=seed(7735);
//triakisoctahedron() #declare rotation=seed(5354);
//tetrakishexahedron() #declare rotation=seed(1788);
//triakisicosahedron() #declare rotation=seed(1044);
//pentakisdodecahedron() #declare rotation=seed(6100);
//deltoidalicositetrahedron() #declare rotation=seed(5643);
//disdyakisdodecahedron() #declare rotation=seed(1440);
//deltoidalhexecontahedron() #declare rotation=seed(1026);
//disdyakistriacontahedron() #declare rotation=seed(1556);
//pentagonalicositetrahedron(-1) #declare rotation=seed(7771);
//pentagonalicositetrahedron(1) #declare rotation=seed(3470);
//pentagonalhexecontahedron(-1) #declare rotation=seed(1046);
//pentagonalhexecontahedron(1) #declare rotation=seed(1096);
//PRISMS, ANTIPRISMS, ETC... ***********
//rprism(5) #declare rotation=seed(6620);
antiprism(5) #declare rotation=seed(6620);
//bipyramid(5) #declare rotation=seed(6620);
//trapezohedron(17) #declare rotation=seed(6620);
#end
#declare tau=(1+sqrt(5))/2;
#declare sq2=sqrt(2);
#declare sq297=sqrt(297);
#declare xi=(pow(sq297+17,1/3)-pow(sq297-17,1/3)-1)/3;
#declare sqweird=sqrt(tau-5/27);
#declare ouch=pow((tau+sqweird)/2,1/3)+pow((tau-sqweird)/2,1/3);
#declare alfa=ouch-1/ouch;
#declare veta=(ouch+tau+1/ouch)*tau;
#macro tetrahedron()
addpointsevensgn(<1,1,1>)
autoface()
#end
#macro hexahedron()
addpointssgn(<1,1,1>,<1,1,1>)
autoface()
#end
#macro octahedron()
addevenpermssgn(<1,0,0>,<1,0,0>)
autoface()
#end
#macro dodecahedron()
addpointssgn(<1,1,1>,<1,1,1>)
addevenpermssgn(<0,1/tau,tau>,<0,1,1>)
autoface()
#end
#macro icosahedron()
addevenpermssgn(<0,1,tau>,<0,1,1>)
autoface()
#end
#macro weirdahedron()
addpermssgn(<1,2,3>,<1,1,1>)
autoface()
#end
#macro cuboctahedron()
addevenpermssgn(<0,1,1>,<0,1,1>)
autoface()
#end
#macro icosidodecahedron()
addevenpermssgn(<0,0,2*tau>,<0,0,1>)
addevenpermssgn(<1,tau,1+tau>,<1,1,1>)
autoface()
#end
#macro truncatedtetrahedron()
addevenpermsevensgn(<1,1,3>)
autoface()
#end
#macro truncatedhexahedron()
addevenpermssgn(<sq2-1,1,1>,<1,1,1>)
autoface()
#end
#macro truncatedoctahedron()
addpermssgn(<0,1,2>,<0,1,1>)
autoface()
#end
#macro truncateddodecahedron()
addevenpermssgn(<0,1/tau,2+tau>,<0,1,1>)
addevenpermssgn(<1/tau,tau,2*tau>,<1,1,1>)
addevenpermssgn(<tau,2,1+tau>,<1,1,1>)
autoface()
#end
#macro truncatedicosahedron()
addevenpermssgn(<0,1,3*tau>,<0,1,1>)
addevenpermssgn(<2,1+2*tau,tau>,<1,1,1>)
addevenpermssgn(<1,2+tau,2*tau>,<1,1,1>)
autoface()
#end
#macro rhombicuboctahedron()
addevenpermssgn(<1+sq2,1,1>,<1,1,1>)
autoface()
#end
#macro truncatedcuboctahedron()
addpermssgn(<1,1+sq2,1+sq2*2>,<1,1,1>)
autoface()
#end
#macro rhombicosidodecahedron()
addevenpermssgn(<1,1,1+2*tau>,<1,1,1>)
addevenpermssgn(<tau,2*tau,1+tau>,<1,1,1>)
addevenpermssgn(<2+tau,0,1+tau>,<1,0,1>)
autoface()
#end
#macro truncatedicosidodecahedron()
addevenpermssgn(<1/tau,1/tau,3+tau>,<1,1,1>)
addevenpermssgn(<2/tau,tau,1+2*tau>,<1,1,1>)
addevenpermssgn(<1/tau,1+tau,3*tau-1>,<1,1,1>)
addevenpermssgn(<2*tau-1,2,2+tau>,<1,1,1>)
addevenpermssgn(<tau,3,2*tau>,<1,1,1>)
autoface()
#end
#macro snubhexahedron(s)
addpermsaltsgn(<1,1/xi,xi>*s)
autoface()
#end
#macro snubdodecahedron(s)
addevenpermsevensgn(<2*alfa,2,2*veta>*s)
addevenpermsevensgn(<alfa+veta/tau+tau,-alfa*tau+veta+1/tau,alfa/tau+veta*tau-1>*s)
addevenpermsevensgn(<-alfa/tau+veta*tau+1,-alfa+veta/tau-tau,alfa*tau+veta-1/tau>*s)
addevenpermsevensgn(<-alfa/tau+veta*tau-1,alfa-veta/tau-tau,alfa*tau+veta+1/tau>*s)
addevenpermsevensgn(<alfa+veta/tau-tau,alfa*tau-veta+1/tau,alfa/tau+veta*tau+1>*s)
autoface()
#end
#macro rhombicdodecahedron()
cuboctahedron() dual()
#end
#macro rhombictriacontahedron()
icosidodecahedron() dual()
#end
#macro triakistetrahedron()
truncatedtetrahedron() dual()
#end
#macro triakisoctahedron()
truncatedhexahedron() dual()
#end
#macro tetrakishexahedron()
truncatedoctahedron() dual()
#end
#macro triakisicosahedron()
truncateddodecahedron() dual()
#end
#macro pentakisdodecahedron()
truncatedicosahedron() dual()
#end
#macro deltoidalicositetrahedron()
rhombicuboctahedron() dual()
#end
#macro disdyakisdodecahedron()
truncatedcuboctahedron() dual()
#end
#macro deltoidalhexecontahedron()
rhombicosidodecahedron() dual()
#end
#macro disdyakistriacontahedron()
truncatedicosidodecahedron() dual()
#end
#macro pentagonalicositetrahedron(s)
snubhexahedron(s) dual()
#end
#macro pentagonalhexecontahedron(s)
snubdodecahedron(s) dual()
#end
#macro rprism(n)
#local a=sqrt((1-cos(2*pi/n))/2);
#local b=0; #while(b<n-.5)
addpointssgn(<sin(2*pi*b/n),cos(2*pi*b/n),a>,<0,0,1>)
#local b=b+1; #end
autoface()
#end
#macro antiprism(n)
#local a=sqrt((cos(pi/n)-cos(2*pi/n))/2);
#local b=0; #while(b<2*n-.5)
addpoint(<sin(pi*b/n),cos(pi*b/n),a>)
#local a=-a; #local b=b+1; #end
autoface()
#end
#macro bipyramid(n)
rprism(n) dual()
#end
#macro trapezohedron(n)
antiprism(n) dual()
#end
#declare points=array[1000];
#declare npoints=0;
#declare faces=array[1000];
#declare nfaces=0;
#macro addpoint(a)
#declare points[npoints]=a;
#declare npoints=npoints+1;
#end
#macro addevenperms(a)
addpoint(a)
addpoint(<a.y,a.z,a.x>)
addpoint(<a.z,a.x,a.y>)
#end
#macro addperms(a)
addevenperms(a)
addevenperms(<a.x,a.z,a.y>)
#end
#macro addpointssgn(a,s)
addpoint(a)
#if(s.x) addpointssgn(a*<-1,1,1>,s*<0,1,1>) #end
#if(s.y) addpointssgn(a*<1,-1,1>,s*<0,0,1>) #end
#if(s.z) addpoint(a*<1,1,-1>) #end
#end
#macro addevenpermssgn(a,s)
addpointssgn(a,s)
addpointssgn(<a.y,a.z,a.x>,<s.y,s.z,s.x>)
addpointssgn(<a.z,a.x,a.y>,<s.z,s.x,s.y>)
#end
#macro addpermssgn(a,s)
addevenpermssgn(a,s)
addevenpermssgn(<a.x,a.z,a.y>,<s.x,s.z,s.y>)
#end
#macro addpointsevensgn(a)
addpoint(a)
addpoint(a*<-1,-1,1>)
addpoint(a*<-1,1,-1>)
addpoint(a*<1,-1,-1>)
#end
#macro addevenpermsevensgn(a)
addevenperms(a)
addevenperms(a*<-1,-1,1>)
addevenperms(a*<-1,1,-1>)
addevenperms(a*<1,-1,-1>)
#end
#macro addpermsaltsgn(a)
addevenpermsevensgn(a)
addevenpermsevensgn(<a.x,a.z,-a.y>)
#end
/*#macro addevenpermssgn(a,s) //Calls addevenperms with, for each 1 in s, a.{x,y,z} replaced with {+,-}a.{x,y,z}
addevenperms(a)
#if(s.x) addevenpermssgn(a*<-1,1,1>,s*<0,1,1>) #end
#if(s.y) addevenpermssgn(a*<1,-1,1>,s*<0,0,1>) #end
#if(s.z) addevenperms(a*<1,1,-1>) #end
#end*/
#macro addface(d,l)
#local a=vnormalize(d)/l;
#local f=1;
#local n=0; #while(n<nfaces-.5)
#if(vlength(faces[n]-a)<0.00001) #local f=0; #end
#local n=n+1; #end
#if(f)
#declare faces[nfaces]=a;
#declare nfaces=nfaces+1;
#end
#end
#macro dual()
#declare temp=faces;
#declare faces=points;
#declare points=temp;
#declare temp=nfaces;
#declare nfaces=npoints;
#declare npoints=temp;
#end
#macro autoface() //WARNING: ONLY WORKS IF ALL EDGES HAVE EQUAL LENGTH
//Find edge length
#declare elength=1000;
#local a=0; #while(a<npoints-.5) #local b=0; #while(b<npoints-.5)
#local c=vlength(points[a]-points[b]); #if(c>0.00001 & c<elength) #local elength=c; #end
#local b=b+1; #end #local a=a+1; #end
//Find planes
//#macro planes()
#local a=0; #while(a<npoints-.5)
#local b=a+1; #while(b<npoints-.5)
#if(vlength(points[a]-points[b])<elength+0.00001) #local c=b+1; #while(c<npoints-.5)
#if(vlength(points[a]-points[c])<elength+0.00001)
#local n=vnormalize(vcross(points[b]-points[a],points[c]-points[a]));
#local d=vdot(n,points[a]);
#if(d<0) #local n=-n; #local d=-d; #end
#local f=1;
#local e=0; #while(e<npoints-.5)
#if(vdot(n, points[e])>d+0.00001) #local f=0; #end
#local e=e+1; #end
#if(f)
#declare ld=d;
addface(n,d) //plane { n, d }
#end
#end
#local c=c+1; #end #end
#local b=b+1; #end
#local a=a+1; #end
#end
This_shape_will_be_drawn()
//Random rotations are (hopefully) equally distributed...
#declare rot1=rand(rotation)*pi*2;
#declare rot2=acos(1-2*rand(rotation));
#declare rot3=(rand(rotation)+clock)*pi*2;
#macro dorot()
rotate rot1*180/pi*y
rotate rot2*180/pi*x
rotate rot3*180/pi*y
#end
//Scale shape to fit in unit sphere
#local b=0;
#local a=0; #while(a<npoints-.5)
#local c=vlength(points[a]); #if(c>b) #local b=c; #end
#local a=a+1; #end
#local a=0; #while(a<npoints-.5)
#local points[a]=points[a]/b;
#local a=a+1; #end
#local a=0; #while(a<nfaces-.5)
#local faces[a]=faces[a]*b;
#local a=a+1; #end
//Draw edges
#macro addp(a)
#declare p[np]=a;
#declare np=np+1;
#end
#local a=0; #while(a<nfaces-.5)
#declare p=array[20];
#declare np=0;
#local b=0; #while(b<npoints-.5)
#if(vdot(faces[a],points[b])>1-0.00001) addp(b) #end
#local b=b+1; #end
#local c=0; #while(c<np-.5)
#local d=0; #while(d<np-.5) #if(p[c]<p[d]-.5)
#local f=1;
#local e=0; #while(e<np-.5) #if(e!=c & e!=d & vdot(vcross(points[p[c]],points[p[d]]),points[p[e]])<0)
#local f=0;
#end #local e=e+1; #end
#if(f)
object {
cylinder { points[p[c]], points[p[d]], .01 dorot() }
pigment { colour <.3,.3,.3> }
finish { ambient 0 diffuse 1 phong 1 }
}
#end #end
#local d=d+1; #end
#local c=c+1; #end
#local a=a+1; #end
/*#local a=0; #while(a<npoints-.5)
#local b=a+1; #while(b<npoints-.5)
#if(vlength(points[a]-points[b])<elength+0.00001)
object {
cylinder { points[a], points[b], .01 dorot() }
pigment { colour <.3,.3,.3> }
finish { ambient 0 diffuse 1 phong 1 }
}
#end
#local b=b+1; #end
#local a=a+1; #end*/
//Draw points
#local a=0; #while(a<npoints-.5)
object {
sphere { points[a], .01 dorot() }
pigment { colour <.3,.3,.3> }
finish { ambient 0 diffuse 1 phong 1 }
}
#local a=a+1; #end
#if(notwireframe)
//Draw planes
object {
intersection {
#local a=0; #while(a<nfaces-.5)
plane { faces[a], 1/vlength(faces[a]) }
#local a=a+1; #end
//planes()
//sphere { <0,0,0>, 1 }
//sphere { <0,0,0>, ld+.01 inverse }
dorot()
}
pigment { colour rgbt <.8,.8,.8,.4> }
finish { ambient 0 diffuse 1 phong flashiness #if(withreflection) reflection { .2 } #end }
//interior { ior 1.5 }
photons {
_target on
refraction on
reflection on
collect on
}
}
#end
// CCC Y Y PP
// C Y Y P P
// C Y PP
// C Y P
// CCC Y P
#local a=0;
#while(a<11.0001)
light_source { <4*sin(a*pi*2/11), 5*cos(a*pi*6/11), -4*cos(a*pi*2/11)> colour (1+<sin(a*pi*2/11),sin(a*pi*2/11+pi*2/3),sin(a*pi*2/11+pi*4/3)>)*2/11 }
#local a=a+1;
#end
background { color <1,1,1> }
camera {
perspective
location <0,0,0>
direction <0,0,1>
right x/2
up y/2
sky <0,1,0>
location <0,0,-4.8>
look_at <0,0,0>
}
global_settings {
max_trace_level 40
photons {
count 200000
autostop 0
}
}
File:Hexahedron.svg הוא גרסה וקטורית של קובץ זה. יש להשתמש בו במקום הקובץ הזה JPG.
File:Hexahedron.jpg → File:Hexahedron.svg
למידע נוסף, אנא ראו Help:SVG.
|
פריטים שמוצגים בקובץ הזה
מוצג
היסטוריית הקובץ
ניתן ללחוץ על תאריך/שעה כדי לראות את הקובץ כפי שנראה באותו זמן.
תאריך/שעה | תמונה ממוזערת | ממדים | משתמש | הערה | |
---|---|---|---|---|---|
נוכחית | 22:28, 6 בינואר 2005 | 826 × 742 (51 ק"ב) | Kjell André | A Hexahedron (cube). A regular polyhedron. |
שימוש בקובץ
שימוש גלובלי בקובץ
אתרי הוויקי השונים הבאים משתמשים בקובץ זה:
- שימוש באתר ar.wikipedia.org
- שימוש באתר ary.wikipedia.org
- שימוש באתר az.wikipedia.org
- שימוש באתר bg.wikipedia.org
- שימוש באתר ca.wikipedia.org
- שימוש באתר cs.wikipedia.org
- שימוש באתר da.wikipedia.org
- שימוש באתר de.wikipedia.org
- שימוש באתר en.wikipedia.org
- שימוש באתר en.wikibooks.org
- שימוש באתר en.wikiversity.org
- שימוש באתר en.wiktionary.org
- שימוש באתר eo.wikipedia.org
- שימוש באתר es.wikipedia.org
- שימוש באתר eu.wikipedia.org
- שימוש באתר fr.wikipedia.org
- שימוש באתר fr.wiktionary.org
- שימוש באתר gl.wikipedia.org
- שימוש באתר he.wikipedia.org
- שימוש באתר he.wikibooks.org
- שימוש באתר hr.wikipedia.org
- שימוש באתר hu.wikipedia.org
צפייה בשימושים גלובליים נוספים של קובץ זה.