Lezárási operátor
Legyen adott egy tetszőleges A halmaz, ennek a hatványhalmazán (részhalmazai halmazán) értelmezett és ugyan abba képező függvényt akkor nevezünk lezárási operátornak vagy zárási operátornak, ha az üres halmazt önmagának felelteti meg, egy halmaz képe mindig tartalmazza az illető halmazt, és egy halmazra többször is alkalmazva, iterálva a függvényt, ugyanazt kapjuk, mintha csak egyszer alkalmaztuk volna. A formális definíció lentebb található.
A fogalom elsősorban a topológiában fontos. E tudományágban többféleképp is lehet definiálni a „zárt halmaz” alapvető fogalmát, és az egyik lehetőség épp az, hogy zárt halmazok a lezárási operátorok értékkészletének elemei (Kuratowski-axiómarendszer). Ez természetesen azt is jelenti, hogy egy halmaz adott részhalmaza attól is függően lehet zárt vagy nem zárt, hogy milyen zárási operátort alkalmazunk; de erről ld. inkább a zárt halmaz cikket.
Definíció
szerkesztésLegyen A tetszőleges halmaz és ennek hatványhalmaza. Az függvényt zárási operátornak nevezzük, ha
Általánosítások és változatok
szerkesztésHárom fontos fajtája az algebrai zárási operátor, a topologikus zárási operátor és a monoton zárási operátor. Egyszerűen belátható, hogy topologikus zárási operátor mindig monoton is.
Példák
szerkesztés- -ben a konvex burok
- Minimális bennfoglaló tégla
- Topologikus térben a lezárás
- Csoportban részcsoportok, normálosztók generálása
- Gyűrűben ideálok generálása
- Test generálása
- A Galois-kapcsolatban szereplő hozzárendelések
- Ld. például Generált szigma-algebra/Lezárás
Formális nyelvek
szerkesztésLegyen formális nyelvek osztálya. Ekkor létezik lezárása a nyelveken végzett műveletekre.
- Legyen H homomorfizmus.
- Ha , akkor
- Lezárás az unióra:
- Lezárás a metszetre:
- Lezárás a konkatenációra:
Ha ezek a lezárások nem változtatnak a nyelvosztályon, akkor a nyelvosztály zárt az adott műveletre.
Források
szerkesztés- [1]
- Marcel Erné: Einführung in die Ordnungstheorie. Bibliographisches Institut, Mannheim 1982, ISBN 3-411-01638-8.
- Heinrich Werner: Einführung in die allgemeine Algebra. Bibliographisches Institut, Mannheim 1978, ISBN 3-411-00120-8.
Fordítás
szerkesztésEz a szócikk részben vagy egészben a Hüllenoperator című német Wikipédia-szócikk fordításán alapul. Az eredeti cikk szerkesztőit annak laptörténete sorolja fel. Ez a jelzés csupán a megfogalmazás eredetét és a szerzői jogokat jelzi, nem szolgál a cikkben szereplő információk forrásmegjelöléseként.