Súlypont
Ez a szócikk a súlypont mértani értelmezéséről szól. A fizikai értelmezéshez lásd a tömegközéppont szócikket!
A geometriában, síkban egy síkidom súlypontján a síkidomot egyenlő elsőrendű nyomatékú részre osztó egyenesek metszéspontját nevezzük. N dimenziós esetre általánosítva: az test súlypontjának azon N-1 dimenziós hipersíkok metszéspontját nevezzük, amelyek -et egyforma elsőrendű nyomatékú részre osztják az N dimenziós térben. Egyszerűbben megfogalmazva, összes pontjának „átlaga”.
Egy fizikai test mértani súlypontja egybeesik a tömegközéppontjával, ha a test állandó sűrűségű. Az állandó sűrűség elégséges, de nem szükséges feltétel.
A háromszög és a tetraéder súlypontja
szerkesztésA háromszög súlypontja a súlyvonalak (a csúcsokat a szemközti oldalak felezőpontjával összekötő vonalak) metszéspontja. A súlypont a súlyvonalakat 2:1 arányban osztja úgy, hogy a csúcstól távolabb van. Ahogy a jobb oldali ábra mutatja, a súlypont az oldal és a szemközti csúcs közötti merőleges távolság 1/3-ánál található.
A súlypont megegyezik a háromszög tömegközéppontjával, ha a háromszöglap állandó sűrűségű anyagból készült. A súlypont koordinátái Descartes-féle derékszögű koordináta-rendszerben a csúcspontok koordinátáinak számtani közepével egyezik meg.
Hasonló a helyzet a tetraédernél: ennek súlypontja a csúcspontokat a szemközti oldallap súlypontjával összekötő szakaszok metszéspontjában van. Ezeket a szakaszokat a súlypont 3:1 arányban osztja úgy, hogy a csúcstól messzebb esik. Ezt az eredményt könnyen lehet általánosítani -dimenziós szimplexekre.
Kúpok és gúlák súlypontja
szerkesztésA kúpok és a gúlák súlypontja a csúcsot az alap súlypontjával összekötő szakaszon van, 3:1 arányban osztja azt, úgy hogy a csúcstól távolabb esik a súlypont.
Súlypont és konvexitás
szerkesztésEgy konvex test súlypontja mindig a testen belül található. Ez a konkáv objektumokra nem minden esetben igaz; például egy gyűrű, vagy egy vödör súlypontja a test középső, üres részében található.
A súlypont definíciója integrállal
szerkesztésEgy síkidom súlypontjának abszcisszáját az alábbi képlettel lehet kiszámolni:
- ,
ahol az idom -re merőleges mérete -nél. Ez az összefüggés a terület y tengelyre vett elsőrendű nyomatékából vezethető le.
Ugyanez az összefüggés írható le egy dimenziós térben lévő objektum súlypontjának bármelyik dimenziójára, feltéve, hogy az objektum keresztmetszetének -dimenziós mérete az koordinátánál.
Megjegyezzük, hogy a nevező egyszerűen az objektum -dimenziós mértéke. Abban a speciális esetben, ha f normalizált, vagyis a nevező 1, a súlypont f közepe.
A képlet nem alkalmazható, ha az objektum mértéke zéró, vagy bármelyik integrál divergál.
Ha az objektum rendelkezik egy vagy több szimmetria-tengellyel, a súlypont mindig a szimmetria-tengelyre esik.
Kapcsolódó szócikkek
szerkesztésKülső hivatkozások
szerkesztés- Háromszög súlypontja Írta: Antonio Gutierrez a Geometria lépésről lépésre az inkák földjén-ből.
- A súlypont tulajdonságai cut-the-knot