Összetett számok

1-nél nagyobb számok, amelyeknek kettőnél több osztója van
Ez a közzétett változat, ellenőrizve: 2023. május 25.

Összetett számnak nevezzük az olyan 1-nél (szigorúan) nagyobb számokat, amelyeknek kettőnél több pozitív osztója van (vagyis: van legalább egy valódi osztójuk).[1] Másként, ha egész szám, és vannak egészek, hogy , akkor összetett. A 0-t nem tekintjük összetett számnak (bár kettőnél több osztója van, azaz van valódi osztója, mégpedig végtelen sok), míg az 1 csak önmagával osztható, így nem tartozik sem az összetett számokhoz, sem a prímszámokhoz. Definíció szerint minden egynél nagyobb egész szám vagy prím, vagy összetett szám.

Az első 15 összetett szám a következő: 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24 és 25.

Tulajdonságok

szerkesztés
  • A legkisebb összetett szám a 4.
  • Minden összetett szám sorrendtől eltekintve egyértelműen felírható prímszámok szorzataként. Ez a számelmélet alaptétele.
  • Minden összetett szám prímtényezős alakjában egynél több, nem feltétlenül különböző prímszám szerepel. Például  , a   prímszám kétszer jelenik meg.
  • Ha   összetett szám, akkor  . Ezt a Wilson-tétel mondja ki.

Osztályozás

szerkesztés

A prímtényezők száma szerint:

  • Félprímek vagy pq-számok a két, nem feltétlenül különböző prímszám szorzataként előálló számok
  • Szfenikus számok a három különböző prímszám szorzataként felírható számok
  • Négyzetmentes számok a csupa különböző prímszámok szorzatára bontható számok
  • Prímhatványok azok a számok, amelyeknek csak egy prímosztójuk van.
  1. Hajnal I.: Matematika I. NTK, 1994. 71. o.

További információk

szerkesztés
  NODES
os 13