Fungsi gelombang
Fungsi gelombang dalam fisika kuantum adalah suatu persamaan matematis yang menggambarkan keadaan kuantum dari suatu sistem kuantum terisolasi. Fungsi gelombang merupakan suatu amplitudo probabilitas bernilai-kompleks, dan kebolehjadian untuk hasil yang mungkin dari pengukuran yang dibuat oleh sistem dapat diturunkan darinya. Secara umum, fungsi gelombang disimbolkan dengan huruf Yunani ψ atau Ψ (psi kecil dan kapital, berturut-turut).
Secara umum, fungsi gelombang suatu sistem dapat dinyatakan dalam berbagai perubah, seperti dalam momentum, posisi, energi, dan sebagainya. Fungsi gelombang dapat pula berupa fungsi waktu, dan dapat pula dinyatakan sebagai fungsi tak-gayut waktu. Menurut prinsip superposisi mekanika kuantum, fungsi gelombang dapat dijumlahkan dan dikali dengan bilangan kompleks untuk menghasilkan fungsi gelombang baru dan suatu ruang Hilbert. Hasil kali antara dua fungsi gelombang merupakan ukuran tumpang-tindih antara keadaan fisika terkait, dan digunakan sebagai dasar interpretasi kebolehjadian pada mekanika kuantum, hukum Born, yang mengaitkan kebolehjadian transisi pada hasil kali tersebut. Persamaan Schrödinger menentukan bagaimana fungsi gelombang berubah terhadap waktu, dan fungsi gelombang berperilaku secara kualitatif sebagaimana gelombang lainnya, seperti gelombang air atau gelombang pada sebuah dawai, karena persamaan Schrödinger secara matematis merupakan jenis persamaan gelombang. Namun, fungsi gelombang dalam mekanika kuantum menjelaskan suatu jenis fenomena fisika, yang secara fundamental berbeda dengan gelombang mekanika klasik.[1][2][3][4][5][6][7]
Dalam interpretasi statistik Born mengenai mekanika kuantum non-relativistik,[8][9][10] modulus kuadrat dari fungsi gelombang, |ψ|2, adalah suatu bilangan riil yang ditafsirkan sebagai rapat kebolehjadian untuk menemukan partikel di titik tersebut. Persyaratan umum yang harus dimiliki oleh suatu fungsi gelombang disebut sebagai kondisi normalisasi. Karena fungsi gelombang bernilai kompleks, hanya fase dan magnitudo relatifnya saja yang dapat diukur—nilainya tidak dapat diukur; dengan menerapkan operator kuantum, dengan nilai eigen yang menyatakan kebolehjadian dari pengukuran tersebut, pada fungsi gelombang ψ dan menghitung distribusi statistik dari kuantitas yang terukur.
Sejarah
suntingBagian dari seri artikel mengenai |
Mekanika kuantum |
---|
Pada tahun 1905, Einstein mempostulatkan hubungan kesebandingan antara frekuensi dari suatu foton dan energinya , ,[11] dan pada tahun 1916 hubungan yang terkait antara momentum dan panjang gelombang foton, ,[12] di mana adalah konstanta Planck.
Pada tahun 1920-an dan 1930-an, mekanika kuantum dikembangkan menggunakan kalkulus dan aljabar linear. Beberapa yang menggunakan teknik kalkulus diantaranya Louis de Broglie, Erwin Schrödinger, dan lainnya, mengembangkan "mekanika gelombang". Mereka yang menerapkan metode aljabar linear seperti Werner Heisenberg, Max Born, dan lainnya, mengembangkan "mekanika matriks". Schrödinger kemudian menunjukkan bahwa kedua pendekatan tersebut adalah sama.[13]
Pada tahun 1926, Schrödinger menerbitkan persamaan gelombang terkenal yang dinamai dari dirinya, persamaan Schrödinger, yang berdasarkan pada kekekalan energi klasik menggunakan operator kuantum.[14] Namun, tidak ada satupun yang mampu secara jelas menginterpretasikan persamaan ini.[15] Awalnya, Schrödinger dan lainnya berpikir bahwa fungsi gelombang mewakili partikel-partikel yang tersebar dengan kebanyakan dari mereka berada pada lokasi dengan fungsi gelombang yang besar.[16] Partikel ini memperlihatkan ketidaksesuaiannya dengan hamburan elastis paket gelombang (yang mewakili partikel) dari _target; partikel tersebut menyebar ke segala arah.[8] Saat partikel yang tersebar tersebut mampu menyebar ke segala arah, partikel itu tidak pecah dan lepas landas ke segala arah. Pada tahun 1926, Born memberikan perspektif amplitudo probabilitas.[8][9][17] Hal ini menghubungkan perhitungan mekanika kuantum secara langsung terhadap pengamatan kebolehjadian eksperimental. Pada tahun 1927, Hartree dan Fock membuat tahapan pertamanya dalam mencoba menyelesaikan fungsi gelombang N-badan, serta mengembangkan siklus swakonsistensi: suatu algoritma iteratif untuk mendekati penyelesaian. Saat ini, metode ini dikenal sebagai metode Hartree–Fock.[18] Determinan Slater dan permanen (dari suatu matriks) merupakan bagian dari metode ini, yang diperkenalkan oleh John C. Slater.
Definisi
suntingKeadaan dari sebuah partikel dijelaskan secara lengkap dengan fungsi gelombangnya,
di mana x menyatakan posisi dan t menyatakan waktu. Fungsi ini adalah fungsi bernilai kompleks dari dua peubah riil, x dan t.
Berdasarkan interpretasi statistik Born dari suatu fungsi gelombang, modulus kuadrat dari fungsi gelombang,
adalah probabilitas (kebolehjadian) untuk menemukan partikel pada titik x, pada suatu waktu t. Tanda bintang menunjukkan konjugat kompleks. Jika posisi partikel terukur, lokasinya tidak dapat ditentukan dari fungsi gelombang, tetapi dijelaskan oleh distribusi probabilitas. Kebolehjadian yang berada pada posisi x akan berada pada rentang a ≤ x ≤ b yang merupakan integral dari kerapatan pada rentang ini:
di mana t menyatakan waktu ketika partikel terukur. Hal ini mengarah pada kondisi normalisasi:
karena jika partikel tersebut terukur, maka kebolehjadiannya adalah 100% yang berarti partikel harus berada pada suatu tempat.
Contoh non-relativistik
suntingBerikut ini adalah penyelesaian persamaan Schrödinger bagi suatu partikel tak memiliki spin nonrelativistik.
Osilator harmonik kuantum
suntingFungsi gelombang bagi osilator harmonik kuantum dapat diekspresikan dalam polinomial Hermite Hn, yaitu
di mana n = 0,1,2,....
Atom hidrogen
suntingFungsi gelombang dari elektron dalam suatu atom hidrogen dinyatakan dalam harmonik sferis dan polinomial Laguerre tergeneralisasi.
Fungsi gelombang ini lebih mudah apabila menggunakan koordinat sferis, dan dapat dipisahkan menjadi fungsi dari masing-masing koordinat,[19]
di mana R adalah fungsi radial dan Ymℓ(θ, φ) adalah harmonik sferis pada derajat ℓ dan orde m. Ini adalah satu-satunya atom di mana persamaan Schrödinger dapat diselesaikan secara tepat. Atom banyak-elektron memerlukan metode pendekatan. Penyelesaian tersebut adalah:[20]
di mana a0 = 4πε0ħ2/mee2 adalah jari-jari Bohr, L2ℓ + 1n − ℓ − 1 adalah polinomial Laguerre tergeneralisasi pada derajat n − ℓ − 1, n = 1, 2, ... adalah bilangan kuantum utama, ℓ = 0, 1, ... n − 1 adalah bilangan kuantum azimut, m = −ℓ, −ℓ + 1, ..., ℓ − 1, ℓ adalah bilangan kuantum magnetik. Atom bakhidrogen memiliki penyelesaian yang hampir serupa.
Fungsi gelombang mewakili keadaan abstrak yang dicirikan dengan tiga bilangan kuantum (n, l, m), di kanan bawah dari setiap citra orbital elektron atom hidrogen. Tiga bilangan kuantum tersebut yakni bilangan kuantum utama, bilangan kuantum momentum sudut orbital, dan bilangan kuantum magnetik. Bersama-sama dengan sebuah bilangan kuantum proyeksi-spin dari elektron, maka diperoleh satu set nilai yang teramati.
Lihat pula
suntingReferensi
sunting- ^ Born 1927, hlm. 354–357
- ^ Heisenberg 1958, hlm. 143
- ^ Heisenberg, W. (1927/1985/2009). Heisenberg diterjemahkan oleh Camilleri 2009, hlm. 71, (dari Bohr 1985, hlm. 142).
- ^ Murdoch 1987, hlm. 43
- ^ de Broglie 1960, hlm. 48
- ^ Landau & Lifshitz, hlm. 6
- ^ Newton 2002, hlm. 19–21
- ^ a b c Born 1926a, diterjemahkan dalam Wheeler & Zurek 1983 pada halaman 52–55.
- ^ a b Born 1926b, diterjemahkan dalam Ludwig 1968, hlm. 206–225. Juga di sini Diarsipkan 2020-12-01 di Wayback Machine..
- ^ Born, M. (1954).
- ^ Einstein 1905, hlm. 132–148 (dalam bahasa Jerman), Arons & Peppard 1965, hlm. 367 (dalam bahasa Inggris)
- ^ Einstein 1916, hlm. 47–62, dan versi yang hampir serupa Einstein 1917, hlm. 121–128 diterjemahkan dalam ter Haar 1967, hlm. 167–183.
- ^ Hanle 1977, hlm. 606–609
- ^ Schrödinger 1926, hlm. 1049–1070
- ^ Tipler, Mosca & Freeman 2008
- ^ Weinberg 2013
- ^ Young & Freedman 2008, hlm. 1333
- ^ Atkins 1974
- ^ Physics for Scientists and Engineers – with Modern Physics (edisi ke-6), P. A. Tipler, G. Mosca, Freeman, 2008, ISBN 0-7167-8964-7
- ^ David Griffiths (2008). Introduction to elementary particles (dalam bahasa Inggris). Wiley-VCH. hlm. 162–. ISBN 978-3-527-40601-2. Diakses tanggal 27 Juni 2011.
Daftar pustaka
sunting- Atkins, P. W. (1974). Quanta: A Handbook of Concepts (dalam bahasa Inggris). ISBN 0-19-855494-X.
- Arons, A. B.; Peppard, M. B. (1965). "Einstein's proposal of the photon concept: A translation of the Annalen der Physik paper of 1905" (PDF). American Journal of Physics (dalam bahasa Inggris). 33 (5): 367. Bibcode:1965AmJPh..33..367A. doi:10.1119/1.1971542. Diarsipkan dari versi asli (PDF) tanggal 2016-03-04. Diakses tanggal 2019-01-08.
- Bohr, N. (1985). J. Kalckar, ed. Niels Bohr - Collected Works: Foundations of Quantum Physics I (1926 - 1932) (dalam bahasa Inggris). 6. Amsterdam: North Holland. ISBN 9780444532893.
- Born, M. (1926a). "Zur Quantenmechanik der Stoßvorgange". Z. Phys. (dalam bahasa Inggris). 37: 863–867. Bibcode:1926ZPhy...37..863B. doi:10.1007/bf01397477.
- Born, M. (1926b). "Quantenmechanik der Stoßvorgange". Z. Phys. (dalam bahasa Inggris). 38: 803–827. Bibcode:1926ZPhy...38..803B. doi:10.1007/bf01397184.
- Born, M. (1927). "Physical aspects of quantum mechanics". Nature (dalam bahasa Inggris). 119: 354–357. Bibcode:1927Natur.119..354B. doi:10.1038/119354a0.
- Born, M. (1954). "The statistical interpretation of quantum mechanics" (PDF). Nobel Lecture (dalam bahasa Inggris). 11 Desember 1954. Diarsipkan dari versi asli (PDF) tanggal 2006-12-31. Diakses tanggal 2019-01-08.
- de Broglie, L. (1923). "Radiations—Ondes et quanta" [Radiation—Waves and quanta]. Comptes Rendus (dalam bahasa Prancis). 177: 507–510, 548, 630. Online copy (French) Diarsipkan 2023-01-24 di Wayback Machine. Online copy (English) Diarsipkan 2023-03-07 di Wayback Machine.
- de Broglie, L. (1960). Non-linear Wave Mechanics: a Causal Interpretation (dalam bahasa Inggris). Amsterdam: Elsevier.
- Camilleri, K. (2009). Heisenberg and the Interpretation of Quantum Mechanics: the Physicist as Philosopher (dalam bahasa Inggris). Cambridge UK: Cambridge University Press. ISBN 978-0-521-88484-6.
- Byron, F. W.; Fuller, R. W. (1992) [1969]. Mathematics of Classical and Quantum Physics. Dover Books on Physics (dalam bahasa Inggris) (edisi ke-revisi). Dover Publications. ISBN 978-0-486-67164-2.
- Conway, J. B. (1990). A Course in Functional Analysis. Graduate Texts in Mathematics (dalam bahasa Inggris). 96. Springer-Verlag. ISBN 0-387-97245-5.
- Dirac, P. A. M. (1982). The principles of quantum mechanics. The international series on monographs on physics (dalam bahasa Inggris) (edisi ke-4). Oxford University Press. ISBN 0 19 852011 5.
- Dirac, P. A. M. (1939). "A new notation for quantum mechanics". Mathematical Proceedings of the Cambridge Philosophical Society (dalam bahasa Inggris). 35 (3): 416–418. Bibcode:1939PCPS...35..416D. doi:10.1017/S0305004100021162. Diarsipkan dari versi asli tanggal 2013-12-03. Diakses tanggal 2019-01-08.
- Einstein, A. (1905). "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt". Annalen der Physik (dalam bahasa Jerman). 17 (6): 132–14. Bibcode:1905AnP...322..132E. doi:10.1002/andp.19053220607. Diarsipkan dari versi asli tanggal 2017-07-22. Diakses tanggal 2019-01-08.
- Einstein, A. (1916). "Zur Quantentheorie der Strahlung". Mitteilungen der Physikalischen Gesellschaft Zürich (dalam bahasa Jerman). 18: 47–62.
- Einstein, A. (1917). "Zur Quantentheorie der Strahlung". Physikalische Zeitschrift (dalam bahasa Jerman). 18: 121–128. Bibcode:1917PhyZ...18..121E.
- Einstein, A. (1998). P. A. Schlipp, ed. Albert Einstein: Philosopher-Scientist. The Library of Living Philosophers (dalam bahasa Inggris). VII (edisi ke-3). La Salle Publishing Company, Illinois: Open Court. ISBN 0-87548-133-7.
- Eisberg, R.; Resnick, R. (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles (dalam bahasa Inggris) (edisi ke-2). John Wiley & Sons. ISBN 978-0-471-87373-0.
- Greiner, W.; Reinhardt, J. (2008). Quantum Electrodynamics (dalam bahasa Inggris) (edisi ke-4). springer. ISBN 9783540875604. Diarsipkan dari versi asli tanggal 2023-07-26. Diakses tanggal 2019-01-08.
- Griffiths, D. J. (2004). Introduction to Quantum Mechanics (dalam bahasa Inggris) (edisi ke-2). Essex England: Pearson Education Ltd. ISBN 978-0131118928.
- Heisenberg, W. (1958). Physics and Philosophy: the Revolution in Modern Science (dalam bahasa Inggris). New York: Harper & Row.
- Hanle, P.A. (1977), "Erwin Schrodinger's Reaction to Louis de Broglie's Thesis on the Quantum Theory.", Isis (dalam bahasa Inggris), 68 (4), doi:10.1086/351880
- Jaynes, E. T. (2003). G. Larry Bretthorst, ed. Probability Theory: The Logic of Science (dalam bahasa Inggris). Cambridge University Press. ISBN 978-0-521 59271-0.
- Landau, L.D.; Lifshitz, E. M. (1977). Quantum Mechanics: Non-Relativistic Theory (dalam bahasa Inggris). Vol. 3 (edisi ke-3). Pergamon Press. ISBN 978-0-08-020940-1. Online copy
- Lerner, R.G.; Trigg, G.L. (1991). Encyclopaedia of Physics (dalam bahasa Inggris) (edisi ke-2). VHC Publishers. ISBN 0-89573-752-3.
- Ludwig, G. (1968). Wave Mechanics (dalam bahasa Inggris). Oxford UK: Pergamon Press. ISBN 0-08-203204-1. LCCN 66-30631.
- Murdoch, D. (1987). Niels Bohr's Philosophy of Physics (dalam bahasa Inggris). Cambridge UK: Cambridge University Press. ISBN 0-521-33320-2.
- Newton, R.G. (2002). Quantum Physics: a Text for Graduate Student (dalam bahasa Inggris). New York: Springer. ISBN 0-387-95473-2.
- Pauli, Wolfgang (1927). "Zur Quantenmechanik des magnetischen Elektrons". Zeitschrift für Physik (dalam bahasa German). 43. Bibcode:1927ZPhy...43..601P. doi:10.1007/bf01397326.
- Peleg, Y.; Pnini, R.; Zaarur, E.; Hecht, E. (2010). Quantum mechanics. Schaum's outlines (dalam bahasa Inggris) (edisi ke-2). McGraw Hill. ISBN 978-0-07-162358-2.
- Rae, A.I.M. (2008). Quantum Mechanics (dalam bahasa Inggris). 2 (edisi ke-5). Taylor & Francis Group. ISBN 1-5848-89705. Diarsipkan dari versi asli tanggal 2023-07-26. Diakses tanggal 2019-01-08.
- Schrödinger, E. (1926). "An Undulatory Theory of the Mechanics of Atoms and Molecules" (PDF). Physical Review (dalam bahasa Inggris). 28 (6): 1049–1070. Bibcode:1926PhRv...28.1049S. doi:10.1103/PhysRev.28.1049. Diarsipkan dari versi asli (PDF) tanggal 17 Desember 2008.
- Shankar, R. (1994). Principles of Quantum Mechanics (dalam bahasa Inggris) (edisi ke-2). ISBN 0306447908.
- Martin, B.R.; Shaw, G. (2008). Particle Physics. Manchester Physics Series (dalam bahasa Inggris) (edisi ke-3). John Wiley & Sons. ISBN 978-0-470-03294-7.
- ter Haar, D. (1967). The Old Quantum Theory (dalam bahasa Inggris). Pergamon Press. hlm. 167–183. LCCN 66029628.
- Tipler, P. A.; Mosca, G.; Freeman (2008). Physics for Scientists and Engineers – with Modern Physics (dalam bahasa Inggris) (edisi ke-6). ISBN 0-7167-8964-7.
- Weinberg, S. (2013), Lectures in Quantum Mechanics (dalam bahasa Inggris), Cambridge University Press, ISBN 978-1-107-02872-2
- Weinberg, S. (2002), The Quantum Theory of Fields (dalam bahasa Inggris), 1, Cambridge University Press, ISBN 0-521-55001-7
- Young, H. D.; Freedman, R. A. (2008). Pearson, ed. Sears' and Zemansky's University Physics (dalam bahasa Inggris) (edisi ke-12). Addison-Wesley. ISBN 978-0-321-50130-1.
- Wheeler, J.A.; Zurek, W.H. (1983). Quantum Theory and Measurement (dalam bahasa Inggris). Princeton NJ: Princeton University Press.
- Zettili, N. (2009). Quantum Mechanics: Concepts and Applications (dalam bahasa Inggris) (edisi ke-2). ISBN 978-0-470-02679-3.
- Zwiebach, Barton (2009). A First Course in String Theory (dalam bahasa Inggris). Cambridge University Press. ISBN 978-0-521-88032-9.
Bacaan lebih lanjut
sunting- Yong-Ki Kim (2 September 2000). "Practical Atomic Physics" (PDF). National Institute of Standards and Technology (dalam bahasa Inggris). Maryland: 1 (55 halaman). Diarsipkan dari versi asli (PDF) tanggal 22 Juli 2011. Diakses tanggal 17 Agustus 2010.
- Polkinghorne, John (2002). Quantum Theory, A Very Short Introduction (dalam bahasa Inggris). Oxford University Press. ISBN 0-19-280252-6.
Pranala luar
sunting- (Inggris) Mekanika Kuantum dan Komputasi Kuantum Diarsipkan 2013-05-13 di Wayback Machine. di BerkeleyX
- (Inggris) Einstein, The quantum theory of radiation Diarsipkan 2011-07-23 di Wayback Machine.