Kardinalitas
Dalam matematika, kardinalitas suatu himpunan dapat dimengerti sebagai ukuran banyaknya anggota yang ada dalam himpunan tersebut. Untuk himpunan hingga, yakni apabila anggota-anggotanya dapat disusun dalam barisan hingga, maka kardinalitasnya adalah panjang barisan tersebut. Dengan kata lain, kardinalitasnya adalah banyak anggota himpunan tersebut. Banyak anggota dari himpunan kosong adalah nol.
Perumuman konsep ini pada himpunan takhingga didasari pada relasi kesepadanan: dua himpunan dikatakan sepadan apabila ada pemadanan atau korespondensi satu-satu dari satu himpunan ke himpunan lainnya. Sebagai contoh, suatu himpunan takhingga dikatakan himpunan terhitung apabila ada bijeksi dari himpunan tersebut ke himpunan bilangan bulat.
Kardinalitas himpunan hingga
suntingKardinalitas suatu himpunan hingga adalah banyak anggota dari himpunan tersebut. Kardinalitas dapat dilambangkan dengan [1][2], [3], atau [4]. Sebagai contoh, untuk himpunan dapat kita tulis .
Kardinalitas himpunan kuasa dari suatu himpunan hingga dengan kardinalitas adalah .
Himpunan singelton adalah himpunan yang kardinalitasnya sama dengan satu.
Kardinalitas himpunan terbilang
suntingHimpunan semua bilangan genap positif merupakan himpunan terbilang, karena memiliki korespondensi satu-satu antara himpunan tersebut dengan himpunan bilangan asli, yang dinyatakan oleh .
Himpunan sepadan
suntingMisalkan himpunan buah-buahan , banyak anggota anggota adalah 4. Misalkan juga Himpunan huruf , himpunan juga memiliki anggota sebanyak 4. Kedua himpunan mempunyai banyak anggota yang sama, artinya kedua himpunan tersebut sepadan atau ekivalen satu sama lain; atau memiliki kardinalitas yang sama.
Secara formal, dua himpunan dikatakan sepadan apabial ada fungsi satu-satu pada yang memetakan A pada B. Karena terdapat fungsi satu-satu dan pada yang memetakan pada , seperti , maka kedua himpunan tersebut memiliki kardinalitas yang sama.
Rujukan
sunting- ^ Marsudi (2010). Logika dan Teori Himpunan. Malang: Universitas Brawijaya Press. ISBN 978-979-8074-51-6.
- ^ Richard., Hammack,. Book of Proof. ISBN 978-0-9894721-0-4. OCLC 1090382616.
- ^ Witte., Morris, Dave. Proofs and concepts : the fundamentals of abstract mathematics. OCLC 961479228.
- ^ Hakim., Nasoetion, Andi (1982). Landasan matematika. Bhratara Karya Aksara. OCLC 974924773.
Artikel rintisan ini tidak memiliki kategori. Tolong bantu Wikipedia untuk menambahkan kategori. Tag ini diberikan pada Februari 2023. |