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Abstract
Background  It remains unclear what lifestyle behaviors are optimal for controlling postprandial glucose responses 
under real-world circumstances in persons without diabetes. We aimed to assess associations of diet, physical activity, 
and sleep with postprandial glucose responses in Asian adults without diabetes under free-living conditions.

Methods  We conducted an observational study collecting intensive longitudinal data using smartphone-based 
ecological momentary assessments, accelerometers, and continuous glucose monitors over nine free-living days in 
Singaporean men and women aged 21–69 years without diabetes. The outcome was the 2-h postprandial glucose 
incremental area under the curve (mmol/l*min). Associations were estimated using linear mixed-effect models.

Results  The analyses included 11,333 meals in 789 participants. Greater variations in glucose and lifestyle measures 
were observed within individuals than between individuals. Higher consumption of carbohydrate-rich and deep-
fried foods and lower consumption of protein-rich foods were significantly associated with higher postprandial 
glucose levels (incremental area under the curve). The strongest association was observed for including refined 
grains (46.2 [95% CI: 40.3, 52.1]) in meals. Longer postprandial light-intensity physical activity (-24.7 [(-39.5, -9.9] per 
h) and moderate-to-vigorous-intensity physical activity (-58.0 [-73.8, -42.3]) were associated with substantially lower 
postprandial glucose levels. Longer daily light-intensity physical activity (-7.5 [-10.7, -4.2]) and sleep duration (-2.7 [-4.4, 
-1.0]) were also associated with lower postprandial glucose levels. Furthermore, postprandial glucose levels were the 
lowest in the morning and the highest in the afternoon. The results were largely consistent for males and females and 
for participants with and without prediabetes.

Conclusions  Consuming less refined grains and more protein-rich foods, getting more physical activity (particularly 
during the postprandial period), and having a longer sleep duration were associated with lower postprandial glucose 
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Background
Postprandial glucose levels, the blood glucose concentra-
tions following food intake, are important indicators of 
glycemic control and overall cardiometabolic health [1, 
2]. Postprandial hyperglycemia is characterized by abnor-
mally rapid and large spikes in postprandial glucose levels 
and is among the earliest signs of metabolic deterioration 
[3]. Moreover, postprandial hyperglycemia is associated 
with a higher risk of cardiovascular diseases in both per-
sons with and without diabetes, independent of fasting 
glucose and HbA1c levels [1, 4].

Lifestyle behaviors, including diet, physical activity, and 
sleep, play essential roles in glycemic control. A grow-
ing number of studies have demonstrated the promise 
of healthy lifestyle behaviors to improve acute postpran-
dial glucose responses [1, 5]. However, existing evidence 
is skewed towards individuals with diabetes and mostly 
originated from small laboratory-based studies or studies 
that relied on standardized meals. Large studies examin-
ing diet, physical activity, and sleep simultaneously using 
high-resolution objective or real-time data are also lack-
ing, especially in Asian populations. In addition, limited 
by the collection of data at a single time point, previous 
studies largely focused on stable between-person differ-
ences at a population level. Effects of temporal within-
person lifestyle variations on postprandial glucose 
responses remain unclear. Longitudinal data collected at 
multiple time points allow simultaneous examination of 
associations at between-person and within-person levels. 
Analysis at the between-person level relates variation in 
usual levels of lifestyle behaviors to variation in postpran-
dial glucose responses between individuals. In contrast, 
analysis at the within-person level relates temporal varia-
tion in lifestyle behaviors to variation in postprandial glu-
cose levels in the same individual [6].

To better understand optimal lifestyle behaviors for 
postprandial glucose control in real-world settings, we 
conducted a study with intensive longitudinal measures 
using smartphone app-based ecological momentary 
assessments (EMA), accelerometers, and continuous 
glucose monitors (CGM) over nine days in Singapore 
adults under free-living conditions. We investigated 
associations between lifestyle factors (i.e., diet, physical 
activity, and sleep) and postprandial glucose responses to 
free-choice meals at between-person and within-person 
levels.

Methods
Study design and participants
The Continuous Observations of Behavioral Risk Factors 
in Asia (COBRA) is a longitudinal observational study. 
Details of COBRA have been published elsewhere [7]. In 
brief, COBRA recruited Singapore adults aged 21 to 69 
years of Chinese, Malay, or Indian ethnicity. Participants 
were excluded if they had a known sensitivity to medical-
grade adhesive, bleeding disorder, severe mental health 
condition, or a history of cardiovascular diseases, dia-
betes, cancer, kidney failure, or thyroid diseases. Follow-
ing the baseline visit with a questionnaire interview and 
physical examination, COBRA participants underwent 
nine days of continuous diet- and movement-related 
monitoring in free-living conditions using multiple ‘real-
time’ data collection methods, including smartphone 
app-based EMA surveys, accelerometers, and CGMs (an 
overview in Fig. 1).

This study used data from 820 participants without 
diabetes recruited between May 2021 and April 2024 
with CGM data (details in Supplementary Methods). 
All participants provided informed consent. Ethical 
approval was obtained from the Institutional Review 
Board of the National University of Singapore (NUS ref: 
NUS-IRB-2020-50).

Food logging via EMA surveys
Participants were instructed to log all their food intakes 
via EMA surveys. An app (Ethica; Avicenna Research 
Inc) was installed on participants’ smartphones at the 
baseline visit to deliver six EMA surveys per day during 
the nine free-living days. The six EMA surveys were sent 
at random times within six time windows across the day 
(i.e., 8:00–9:30, 10:30 − 12:00, 13:00–14:30, 15:30 − 17:00, 
18:00–19:30, and 20:30 − 21:30  h). Participants received 
up to four reminders spaced 10 min apart for each of the 
first five EMA surveys and up to two reminders spaced 
10  min apart for the last EMA survey. The reminders 
were sent via app push notifications before participants 
responded to the survey.

The first EMA survey of the day asked participants 
to report food intake, if any, for two occasions: one for 
intake after the last EMA survey and before sleep yester-
day (applicable to the 2nd to 9th day only) and one for 
food intake since waking up. The other five EMA surveys 
asked about any food intake since the last EMA survey. 
Participants reported meal time in ‘HH: MM’ format, 
which was integrated with the automatically recorded 
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EMA response date to form the full meal timestamp. For 
meals taken after the last EMA and before sleep yester-
day with a meal time before midnight, the meal date was 
the day before EMA response date. For the other meals, 
the meal date was the EMA response date. Given our 
EMA design with a high sampling rate, we assumed par-
ticipants had at most one meal and had one meal time to 
report on each occasion. Participants also recorded their 
post-meal satiety level using a 6-point scale, with 1 refer-
ring to ‘still hungry’ and 6 referring to ‘extremely full’. To 
reduce participant burden and improve response rates, 
we did not ask for detailed information on the consumed 
foods (e.g., portion size information). Instead, we pro-
vided three pre-defined Singapore-specific food group 
lists for participants to select the food groups eaten using 
three check-all-that-apply questions (details in Supple-
mentary Methods).

Physical activity and sleep measures via accelerometers
During the nine free-living days, we instructed partici-
pants to wear an accelerometer (AX3; Axivity Ltd) on 
the non-dominant wrist at all times to collect movement 
behavior at a frequency of 100  Hz. The paired Axivity 
Wrist Band was used to fit AX3 following the recom-
mended mounting convention, with the arrow mark 
on the wristband aligned with the arrow on AX3 [8]. 
Raw accelerometer data were processed using R pack-
age GGIR (version 3.1-1) to derive durations of physical 
activity and sleep specific to each meal, including light-
intensity physical activity (LPA) and moderate-to-vig-
orous-intensity physical activity (MVPA) within the 2-h 
postprandial window, daily LPA and MVPA during the 

24 h before the meal, and sleep duration the night before 
[9–11]. GGIR performed an auto-calibration using local 
gravity and detected non-wear time based on the stan-
dard deviation and the range of raw acceleration sig-
nals in three axes. Technical details for autocalibration 
and non-wear detection were published by the GGIR 
developers online elsewhere [10–13]. Raw accelerom-
eter data were aggregated into epochs of 5  s in ‘Euclid-
ean Norm Minus One’ (ENMO), which were extracted 
from the GGIR output metadata to identify LPA and 
MVPA epochs using ENMO thresholds of 40 milligrav-
ity for LPA and 100 milligravity for MVPA [11, 14–16]. 
Subsequently, we computed total physical activity dura-
tions regardless of bout length, consistent with the 
updated 2020 World Health Organization physical activ-
ity guidelines [17]. The total LPA duration was defined as 
the sum of LPA epochs (number of LPA epochs * 5 s) in 
the respective time window (2-h postprandial window or 
24-h window before the meal). The same calculation was 
applied to MVPA. Of note, the mean proportion of accel-
erometer wear time exceeded 99% of the 24 h on all the 
days included in our final analysis, with each day having 
over 16 h of wear time. This high accelerometer wearing 
compliance was consistent with this study’s strict inclu-
sion criteria for meals mentioned in the subsequent sec-
tion. More details are in Supplementary Methods.

Glucose measures via CGM
Participants’ interstitial glucose was measured every 
15 min throughout the nine days via a CGM device (Free-
style Libre Pro iQ; Abbott Diabetes Care) fitted on the 
upper, non-dominant arm. The CGM data were masked 

Fig. 1  Overview of study design

 



Page 4 of 11Yao et al. International Journal of Behavioral Nutrition and Physical Activity          (2024) 21:142 

to the participants. The data were used to compute the 
study outcome postprandial glucose response and the 
pre-prandial glucose level for each meal. The postpran-
dial glucose response was calculated using the 2-h incre-
mental area under the curve (iAUC) of postprandial 
glucose levels based on the trapezoidal rule [18]. Mean 
glucose level within the 2-h window before each meal 
was computed to reflect the pre-prandial glucose level.

Statistical analysis
A meal event was included in the analysis if all of the 
following criteria were met: (1) the presence of time-
matched CGM measures, (2) no food intake within 2.5 h 
prior to the meal, and (3) consumed between 6:00 and 
24:00 h (98.5% meals). We excluded participants with less 
than three qualifying meals from the analysis.

For the included participants and meals, baseline char-
acteristics and longitudinal free-living measures were 
summarized using mean with standard deviation for con-
tinuous variables and count with percentage for categori-
cal variables. The summary of longitudinal measures was 
based on each person’s average level over the free-living 
period.

A longitudinal repeated measure collected from mul-
tiple participants naturally contains two components: a 
between-person component reflecting the stable char-
acteristic difference varying between individuals and a 
within-person component reflecting the situational fluc-
tuations within individuals. We used the person-mean 
centering approach to separate the two components for 
each longitudinal free-living diet, physical activity, and 
sleep measure to derive the corresponding within-person 
and between-person variables [6] (Supplementary Meth-
ods). We also assessed the proportion of total variance 
attributable to the between-person variability component 
for each longitudinal measure using intraclass correla-
tion coefficients (ICC). The proportion of total variance 
attributable to the within-person variability component 
equals 1 – ICC. Variance decomposition for ICC estima-
tion was conducted using linear mixed-effect models (for 
continuous measures) or generalized linear mixed-effect 
models (for binary measures) with person-specific ran-
dom intercepts.

Linear mixed-effect models with person-specific ran-
dom intercepts were used to estimate the associations 
between the exposures and the outcome postpran-
dial glucose iAUC. The exposures included the derived 
between-person and within-person lifestyle variables 
(i.e., diet, physical activity, and sleep measures) and meal 
time. The covariates included baseline characteristics 
(i.e., age, sex, ethnicity, education level, cigarette smok-
ing, alcohol consumption, and body mass index) and 
mean 2-h pre-prandial glucose level. For each exposure, 
the association with the outcome was assessed in two 

models: a basic model adjusted for the covariates and a 
full model mutually adjusted for all other exposures in 
addition to the covariates. Bootstrapping was used to 
estimate 95% confidence intervals of regression coeffi-
cients. A positive between-person regression coefficient 
reflects that, on average, people with higher habitual 
levels of the lifestyle variable tended to have higher post-
prandial glucose iAUC. In contrast, a positive within-
person regression coefficient reflects that, on average, a 
person tended to have higher postprandial glucose iAUC 
at meals when their lifestyle variable was higher than 
their usual level. An advantage of the analysis of within-
person associations is that individuals act as their own 
control, removing influence from between-person varia-
tion that may result in imprecision and confounding. Of 
note, given the compositional nature of the movement 
behaviors (sleep, LPA, MVPA, and inactivity) and the 
near full accelerometer wear time for the data used, the 
regression estimates for sleep, LPA, and MVPA in our full 
model implicitly accounted for the isotemporal substitu-
tion of inactivity with these behaviors.

Because of known differences in metabolic regula-
tion between sexes and individuals with different glyce-
mic statuses, we conducted sensitivity analyses to check 
whether our main results were consistent in these sub-
groups [19]. We tested for interaction by including mul-
tiplicative interaction terms of sex or prediabetes status 
with exposure variables in the multivariable models. We 
also conducted stratified analyses by sex and prediabetes 
status. Because we only had two potential effect modifiers 
of interest and the stratified analyses are of general clini-
cal relevance, we computed all stratified results instead 
of using models with interaction terms to pre-screen the 
potential effect modifiers. Because models with interac-
tion terms had more independent variable terms and par-
ticipant subgroups had smaller sample sizes, we excluded 
the between-person lifestyle exposures from models in 
the sensitivity analyses to limit loss in statistical power.

All analyses were conducted using R software (version 
4.3.1). R packages ‘lme4’ and ‘lmerTest’ were used for lin-
ear mixed-effect models. Hypothesis tests were 2-sided. 
P-values less than 0.05 were considered statistically sig-
nificant. P-values for interaction between 0.05 and 0.10 
were considered marginally statistically significant.

Results
Baseline characteristics and longitudinal measures
The meal analysis included 789 participants with a 
mean age of 41 (SD 14) years (Table  1). Of these par-
ticipants, 36% were males, 75% were ethnic Chinese, 
and 25% were ethnic Malay or Indian. During the study 
period, participants responded to 92% of EMA surveys 
and reported 13,424 meals, 11,333 (84%) of which met 
the inclusion criteria for the analyses (Supplementary 
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eTable  1, Table  1). Refined grains were the most con-
sumed meal food (68% of meals), followed by vegetables 
(42%), chicken (25%), red meat (24%), eggs (22%), seafood 
(21%), whole grains (17%), fruits (13%), soy food (10%), 
deep-fried food (10%), beans or nuts (8%), dairy (7%), 
and sweet desserts (7%). The mean postprandial glucose 
iAUC was 137.4 (SD 71.0) mmol/l*minute. The mean 
duration of postprandial physical activity was 0.3 (SD 0.1) 
hours for LPA and 0.2 (SD 0.1) hours for MVPA. Further-
more, the mean daily physical activity duration was 2.8 

(SD 0.8) hours for LPA and 1.6 (SD 0.6) hours for MVPA. 
The mean sleep duration was 5.5 (SD 1.0) hours.

Within-person and between-person variation in 
longitudinal measures
Figure  2 illustrates the relative contribution of within-
person and between-person variations in longitudinal 
measures related to meals over the study period. For 
postprandial glucose responses (iAUC), the proportion of 
variation due to within-person variation was 77%, indi-
cating greater variation within than between persons. 
Furthermore, all dietary and lifestyle factors varied more 
within than between individuals, except for daily MVPA.

Association of lifestyle and contextual measures with 
postprandial glucose
We observed stronger associations at the within-person 
than the between-person level. At the within-person level 
(Table  2), participants had higher postprandial glucose 
responses (iAUC in mmol/l*min) when their meals con-
tained refined grains (β: 46.2; 95% CI: 40.3, 52.1), whole 
grains (β: 23.8; 95% CI: 16.6, 31.0), and deep-fried food 
(β: 11.6; 95% CI: 4.3, 19.0) and when they had higher-
than-usual post-meal satiety (β: 7.7; 95% CI: 5.1, 10.4) in 
the fully adjusted model. In comparison, participants had 
lower postprandial glucose iAUC when they consumed 
seafood (β: -8.6; 95% CI: -13.9, -3.3), eggs (β: -5.2; 95% 
CI: -10.2, -0.2), dairy (β: -13.5; 95% CI: -21.4, -5.6), beans 
or nuts (β: -9.2; 95% CI: -17.0, -1.4), fruits (β: -7.1; 95% 
CI: -13.5, -0.6), and non-sugary beverages (β: -9.5; 95% 
CI: -16.3, -2.8). Directions of associations changed from 
the basic to the fully adjusted model for whole grains. 
Correlation analysis suggested that this may be due to 
confounding by refined grains consumption that had a 
strong inverse correlation with whole grains consump-
tion (Supplementary eFigure 1). Participants had lower 
postprandial glucose iAUC when they engaged in lon-
ger postprandial MVPA (β: -58.0; 95% CI: -73.8, -42.3), 
postprandial LPA (β: -24.7; 95% -39.5, -9.9), daily LPA 
during 24 h before the meal (β: -7.5; 95% CI: -10.7, -4.2), 
and sleep the night before (β: -2.7; 95% CI: -4.4, -1.0). At 
the between-person level, higher postprandial glucose 
responses were found in participants who habitually con-
sumed more refined grains (β: 51.7; 95% CI: 22.5, 80.1) 
(Supplementary eTable  2). Regarding time of the day, 
postprandial glucose responses were the lowest for meals 
consumed in the morning (06:00–12:00 h) and the high-
est for meals consumed in the afternoon (12:00–18:00 h) 
(Table 2).

Consistent results were found in the stratified analy-
sis by sex and prediabetes status, with a few exceptions 
(Fig.  3). Compared with females, males had a smaller 
increase in postprandial glucose responses in the after-
noon versus the morning. The association between 

Table 1  Participant characteristics and longitudinal free-living 
measures
Characteristics All par-

ticipants 
(N = 789)

Age (years) 41 ± 14
Sex: Male 286 (36%)
Ethnicity: Chinese 589 (75%)
  Malay 127 (16%)
  Indian 73 (9%)
Education: Secondary and below 92 (12%)
  A-level 229 (29%)
  University and above 468 (59%)
Current cigarette smoking 95 (12%)
Heavy alcohol consumption 64 (8%)
BMI (kg/m2) 24 ± 5
Fasting plasma glucose (mmol/l) 5.0 ± 0.5
HbA1c (%) 5.4 ± 0.3
Mean glucose by CGM (mmol/l) 5.6 ± 0.6
Coefficient of variation by CGM (%) 19.2 ± 4.7
Prediabetes: Yes 204 (26%)
Longitudinal free-living measures
Number of meals with CGM data (% total meals) 12,485 

(93%)
Number of meals included for analysis (% meals with CGM 
data)

11,333 
(91%)

% Meal time: 06:00–12:00 h 29 ± 17
  12:00–18:00 h 36 ± 15
  18:00–24:00 h 35 ± 15
Postmeal satiety (lowest 1 to highest 6) 3.8 ± 0.7
Pre-prandial mean blood glucose (mmol/l) 5.4 ± 0.6
Postprandial glucose iAUC (mmol/l*minute) 137.4 ± 71.0
Postprandial light-intensity physical activity (h) 0.3 ± 0.1
Postprandial moderate-to-vigorous-intensity physical 
activity (h)

0.2 ± 0.1

Daily light-intensity physical activity (h) 2.8 ± 0.8
Daily moderate-to-vigorous-intensity physical activity (h) 1.6 ± 0.6
Sleep duration (h) 5.5 ± 1.0
Data were in mean ± standard deviation or N (%). The definition for prediabetes 
was having fasting plasma glucose > = 5.6 mmol/l or HbA1c > = 5.7% measured 
during baseline physical examination. Criteria for meals to be included for 
analysis: (1) with time-matched CGM data, (2) consumed during 06:00–24:00 h 
of the day, and (3) without food consumption within 2.5  h before the meal. 
Postprandial measures were for the 2-h window after eating. Daily LPA and 
daily MVPA were measured during the 24 h before the meal. CGM: continuous 
glucose monitoring; iAUC: incremental area under the curve
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postprandial MVPA and lower postprandial glucose 
responses tended to be weaker in males than in females 
(p-value = 0.096). Participants with prediabetes had a 
larger increase in postprandial glucose responses when 
consuming refined grains and vegetables and a larger 
decrease in postprandial glucose responses when con-
suming fruits in meals.

Discussion
This intensive longitudinal observational study assessed 
associations of diet, physical activity, and sleep with 
postprandial glucose levels under free-living conditions 
for meals in Asian adults without diabetes. Higher con-
sumption of grains, particularly refined grains, and deep-
fried food and lower consumption of protein-rich foods 
as part of meals were associated with higher postpran-
dial glucose levels. Longer postprandial physical activ-
ity, especially postprandial MVPA, was associated with 
substantially lower postprandial glucose levels. Longer 
daily LPA and sleep duration during the previous night 

were also associated with lower postprandial glucose lev-
els. Finally, postprandial glucose levels were lower in the 
morning than later in the day.

Traditional epidemiological studies have focused pri-
marily on between-person differences in habitual levels 
of lifestyle behaviors. A growing appreciation of tem-
poral within-person variations of lifestyle behaviors has 
been fostered by recent studies facilitated by technologi-
cal advancements in data collection [20, 21]. Leveraging 
intensive longitudinal measures, we evaluated variances 
and associations at both between-person and within-
person levels. Notably, most of the examined lifestyle and 
glucose measures varied relatively more within persons 
than between persons, and associations of the lifestyle 
factors with postprandial glucose levels were stronger at 
the within-person level. The results of the within-person 
analysis indicate that lifestyle behaviors that individuals 
already engaged in some of the time in real-world set-
tings were associated with substantially lower postpran-
dial glucose levels. Hence, for many individuals, more 

Fig. 2  Relative contribution of within-person (in blue) and between-person (in orange) variation in longitudinal free-living measures. Postprandial mea-
sures were for the 2-h window after eating. Daily LPA and daily MVPA were measured during the 24 h before the meal. iAUC: incremental area under the 
curve; LPA: light-intensity physical activity; MVPA: moderate-to-vigorous-intensity physical activity

 



Page 7 of 11Yao et al. International Journal of Behavioral Nutrition and Physical Activity          (2024) 21:142 

consistent engagement in favorable lifestyle behaviors 
may be beneficial for postprandial glucose control even 
without the adoption of novel lifestyle behaviors.

Diet is a major determinant of the appearance and 
disposal of circulating glucose in the postprandial state 
[1, 5]. Informed mostly by studies with small samples 
or controlled meals, recent reviews have identified sev-
eral dietary strategies to attenuate postprandial glucose 
responses for individuals without diabetes, including 
reducing total carbohydrate intake, selecting carbo-
hydrates with lower glycemic index, adding fiber, and 
increasing proportions of healthy protein and fat [1, 5]. 
Consistent with these recommendations, we found signif-
icantly higher glucose levels following the consumption 
of carbohydrate-rich food. Particularly, the magnitude 
of glucose increment associated with refined grains con-
sumption was about double the increment associated 
with whole grains consumption. Given that refined grains 
were consumed much more frequently than whole grains 
in our Asian study population, population interventions 

encouraging switching from refined grains to whole 
grains may improve glucose control substantially. Protein 
and fat intake can blunt postprandial glucose responses 
by slowing carbohydrate digestion and influencing glu-
cose disposal [1, 5, 22, 23]. In our study, intake of pro-
tein-rich foods such as seafood and dairy was linked to 
substantially lower postprandial glucose levels. Con-
sumption of nuts or beans and fruits was also associated 
with lower postprandial glucose levels. In contrast, intake 
of deep-fried food was linked to higher postprandial glu-
cose levels. This may partly reflect the popularity of high-
carbohydrate deep-fried food in Singapore. Furthermore, 
fried food consumption was associated with a higher risk 
of type 2 diabetes in large US prospective cohorts [24, 
25].

Our results were largely consistent across subgroups 
by sex and prediabetes status. However, having pre-
diabetes amplified the increase in postprandial glucose 
levels when consuming refined grains and the decrease 
when consuming fruits. This result suggests that persons 

Table 2  Associations of within-person lifestyle exposures and eating time with postprandial glucose iAUC at 11,333 meals from 789 
participants

Basic model Full model
Estimate (95% CI) p-value Estimate (95% CI) p-value

Within-person exposures
Meal composition
  Refined grains 42.5 (37.6, 47.3) < 0.001 46.2 (40.3, 52.1) < 0.001
  Whole grains -18.7 (-24.8, -12.7) < 0.001 23.8 (16.6, 31.0) < 0.001
  Seafood 6.3 (1.0, 11.6) 0.020 -8.6 (-13.9, -3.3) 0.002
  Chicken 12.6 (7.4, 17.7) < 0.001 -2.6 (-7.8, 2.6) 0.330
  Red meat 12.5 (7.4, 17.6) < 0.001 -4.2 (-9.4, 1.0) 0.116
  Eggs -4.1 (-9.3, 1.1) 0.126 -5.2 (-10.2, -0.2) 0.042
  Dairy -29.4 (-37.5, -21.3) < 0.001 -13.5 (-21.4, -5.6) 0.001
  Soy food 6.4 (-0.9, 13.6) 0.084 -2.2 (-9.3, 4.8) 0.530
  Beans or nuts -9.5 (-17.7, -1.3) 0.023 -9.2 (-17.0, -1.4) 0.021
  Vegetables 20.0 (15.4, 24.5) < 0.001 0.8 (-4.0, 5.6) 0.742
  Fruits -11.0 (-17.7, -4.3) 0.001 -7.1 (-13.5, -0.6) 0.031
  Deep-fried food 9.3 (1.8, 16.8) 0.015 11.6 (4.3, 19.0) 0.002
  Sweet desserts -2.5 (-10.8, 5.9) 0.558 4.0 (-4.0, 12.0) 0.331
  Sugary beverages -5.6 (-12.1, 1.1) 0.099 -1.2 (-7.6, 5.2) 0.716
  Non-sugary beverages -21.5 (-28.4, -14.6) < 0.001 -9.5 (-16.3, -2.8) 0.006
Postmeal satiety 15.6 (13.0, 18.1) < 0.001 7.7 (5.1, 10.4) < 0.001
Postprandial light-intensity physical activity (h) -62.6 (-75.9, -49.2) < 0.001 -24.7 (-39.5, -9.9) 0.001
Postprandial moderate-to-vigorous-intensity physical activity (h) -87.8 (-102.0, -73.6) < 0.001 -58.0 (-73.8, -42.3) < 0.001
Daily light-intensity physical activity (h) -4.1 (-6.7, -1.6) 0.002 -7.5 (-10.7, -4.2) < 0.001
Daily moderate-to-vigorous-intensity physical activity (h) -1.8 (-5.3, 1.6) 0.304 1.8 (-2.5, 6.1) 0.411
Sleep duration (h) -1.8 (-3.6, 0.0) 0.055 -2.7 (-4.4, -1.0) 0.002
Meal time of the day
  06:00–12:00 h Reference
  12:00–18:00 h 62.5 (57.4, 67.6) < 0.001 54.4 (48.8, 59.9) < 0.001
  18:00–24:00 h 49.3 (44.1, 54.5) < 0.001 42.9 (36.9, 48.6) < 0.001
Basic models were adjusted for age, sex, ethnicity, education, smoking, alcohol, body mass index, and mean 2-h pre-prandial glucose level as covariates. The full 
model was additionally mutually adjusted for eating time and all within-person and between-person exposures of diet, physical activity, and sleep. The unit of 
outcome postprandial glucose iAUC is mmol/l*minute. Postprandial measures were taken during the 2-h window after eating. Daily light-intensity physical activity 
and daily moderate-to-vigorous-intensity physical activity were measured during the 24 h before the meal. iAUC: incremental area under the curve
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with prediabetes may benefit more from consuming less 
refined grains or more fruits for postprandial glucose 
control than normoglycemic individuals. Unlike partici-
pants without prediabetes, participants with prediabetes 
had higher postprandial glucose levels when consuming 
vegetables. This unexpected observation may be driven 
by the consumption of starchy vegetables, but requires 
further study. Our interaction analyses had lower statis-
tical power, so these results should be interpreted with 
caution and need to be confirmed in future studies.

Chrono-nutrition studies have consistently found 
higher postprandial glucose responses to standard-
ized isocaloric meals in the evening and at midnight 
than in the morning [1, 5]. Our results based on free-
choice meals are consistent with these earlier results. 

Nevertheless, few previous studies investigated postpran-
dial glucose responses to meals consumed in the after-
noon [26]. Our study addressed this gap and showed that 
postprandial glucose responses did not increase monot-
onously from the morning to the evening but peaked 
in the afternoon. This observation persisted in our full 
model, controlling for key lifestyle measures available, 
including meal food groups, physical activity, and post-
meal satiety. Several other factors may contribute to our 
observation, including circadian rhythms of glucose-reg-
ulating hormones and insulin resistance and fluctuations 
in psychological stress throughout the day [27, 28]. For 
example, insulin resistance and psychological stress have 
been linked to higher blood glucose levels [27, 28]. While 
insulin resistance tends to increase from morning to 

Fig. 3  Associations of lifestyle exposures and meal time with postprandial glucose iAUC, stratified by sex and prediabetes status subgroups. The models 
were adjusted for age, sex, ethnicity, education level, smoking, alcohol, body mass index, and mean 2-h pre-prandial glucose level, except when the 
covariate was used to stratify. The models were also mutually adjusted for meal time, diet, physical activity, and sleep measures. The ▲ symbol indicates 
a significant interaction term (p-value < 0.05), and the △ symbol indicates a marginally significant interaction term (0.05 < = p-value < 0.1) (for details, see 
Supplementary eTable 3). Postprandial measures were for the 2-h window after eating. Daily LPA and daily MVPA were measured during the 24 h before 
the meal. iAUC: incremental area under the curve. LPA: light-intensity physical activity; MVPA: moderate-to-vigorous-intensity physical activity
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evening, psychological stress might peak in the afternoon 
in adults and result in higher glucose levels in the after-
noon [27, 29]. It is also unclear whether our findings are 
specific to eating patterns in our Asian population. More 
research on chronological variation in detailed food 
choices and glucose metabolism in diverse populations is 
needed to better understand changes in postprandial glu-
cose responses during the day.

Physical activity improves insulin sensitivity and insu-
lin-independent muscle glucose uptake [1]. In our study, 
longer physical activity, particularly postprandial MVPA, 
was associated with substantially lower glucose levels 
after meals. Of note, our study population had an average 
of about 10 min MVPA during the 2-h postprandial time 
window, 97% of which was of moderate intensity, and 
only 3% was of vigorous intensity (with ENMO > = 400 
milligravity). Postprandial vigorous-intensity physical 
activity may be more effective than light- or moderate-
intensity physical activity in reducing postprandial glu-
cose levels but is often less feasible under real-world 
conditions [30, 31]. Our results suggest that promoting 
postprandial physical activity, especially moderate inten-
sity activities such as brisk walking after eating, may 
considerably improve glucose control. Our findings are 
consistent with previous experimental studies investi-
gating activity timing in adults with and without diabe-
tes [1, 31–36]. For example, in the randomized crossover 
trials by DiPietro et al. and Pahra et al., three 15-minute 
bouts of postmeal walking were more effective in lower-
ing postprandial glucose levels than 45 min of sustained 
morning or afternoon walking [35, 37]. In addition to the 
associations for postprandial physical activity, we found 
that engaging in daily LPA during the 24  h before the 
meal was modestly linked to lower postprandial glucose 
levels. In contrast, daily MVPA showed no such associa-
tions. This contradicts our hypothesis that daily MVPA 
would have a stronger inverse association than daily LPA. 
However, this observation aligns with the findings of a 
randomized crossover trial showing that LPA, but not 
MVPA, reduced glucose in persons with diabetes over 
the subsequent 24 h [38]. Further research is needed to 
elucidate how the interplay between the intensity and 
timing of physical activity affects glucose control. Over-
all, our findings support the glycemic benefits of physical 
activity and indicate that benefits for postprandial glu-
cose control may be substantially enhanced by timing the 
activity after meals.

The link between sleep and glucose metabolism is well 
established [39–41]. However, few studies have been 
conducted on the relationship between sleep and post-
prandial glucose responses in free-living adults with-
out diabetes. Tsereteli et al. recently found that short 
sleep duration interacted with meal type, observing a 
stronger association between short sleep duration and 

higher postprandial glucose responses to pure glucose 
than high-carbohydrate and high-fat breakfasts in 953 
free-living healthy adults [40]. However, in contrast to 
our study they did not find a significant marginal asso-
ciation between sleep duration and postprandial glucose 
responses. The two studies differed in participant char-
acteristics and study designs. For example, standardized 
meals were provided in Tsereteli et al.’s study, and the 
participants had a longer average sleep duration of 7.7 h 
(vs. 5.5  h in our study) [40]. Nevertheless, both results 
agree with evidence from laboratory and epidemiologi-
cal studies that longer sleep durations generally improve 
postprandial glucose control [39–41].

This study has several strengths. First, we collected life-
style and glycemic data continuously in real-time using 
mobile technologies. Instead of traditional methods rely-
ing on recalls, smartphone-based EMA surveys were 
used to collect data on recent food consumption. Glucose 
levels, physical activity, and sleep were objectively and 
frequently measured using CGM and accelerometers. 
These intensive longitudinal data enable analysis at the 
resolution of meal events and at both between-person 
and within-person levels. Second, our study had good 
compliance and response rates to continuous free-living 
measures. Participants responded to over 90% of EMA 
prompts. Furthermore, previous studies on lifestyle fac-
tors and postprandial glucose responses in free-living 
individuals were mostly conducted in Western popula-
tions. Our study provides insights into Asian populations.

Our study also had several limitations. To reduce par-
ticipant burden and maintain high response rates, we did 
not include detailed dietary assessments. As a result, we 
were not able to estimate portion sizes or calculate nutri-
ent intakes. Future studies with more detailed dietary 
assessments can provide further insights, especially with 
technologies allowing detailed dietary data collection 
with limited participant burden. Secondly, the timing 
of meals was self-reported, potentially leading to non-
differential misclassification and reducing the strength 
of associations. Thirdly, our study assessed movement 
behaviors using data from wrist-worn accelerometers 
and did not cover the full complexity of these behav-
iors. The total duration of LPA and MVPA were derived 
based on activity intensity thresholds, which could 
introduce some misclassification. Moreover, the wrist-
worn accelerometer data lacked the ability to accurately 
assess sedentary behavior due to the absence of posture 
information, so we did not specifically analyze seden-
tary behavior [42]. Future studies dedicated to a broader 
range of movement measures are warranted, especially 
those that leverage advanced methodologies such as 
machine learning algorithms and combined sensing (e.g., 
wrist- and thigh-worn accelerometers) for more accurate 
classification of movement behaviors. Fourthly, our study 
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was observational, so we cannot rule out the possibility 
of residual confounding. Nevertheless, the extensive lon-
gitudinal measures enabled evaluations of within-person 
associations unaffected by confounding due to between-
person differences. Fifthly, our participants were of work-
ing age without major chronic diseases. They had higher 
education levels, with 57% holding at least a university 
degree, compared to 37% in the general adult population 
of Singapore [43]. Therefore, their lifestyle behaviors may 
not fully represent those of the broader Singapore popu-
lation. However, the lifestyle measures of our participants 
provided sufficient variability, which was more critical for 
our association study. In addition, given the difference 
across populations (e.g., distinct diet patterns compared 
to non-Asian countries), further research on other popu-
lations across the world is needed to evaluate the gener-
alizability of our findings [44, 45]. Furthermore, although 
our study focuses on postprandial glucose levels, influ-
ences on non-glycemic aspects of health should also be 
considered in lifestyle choices.

Conclusions
In summary, lower consumption of carbohydrate-rich 
foods (particularly refined grains) and deep-fried foods 
and higher consumption of protein-rich foods were asso-
ciated with lower postprandial glucose levels in real-life 
settings. Longer durations of physical activity (particu-
larly during the postprandial period) and sleep were also 
associated with lower postprandial glucose levels. Our 
results support multi-component lifestyle modifications 
focusing on diet, physical activity, and sleep behaviors 
to improve postprandial glucose control in adults with-
out diabetes. Taking into account the timing of eating 
and physical activity may enhance the impact of these 
interventions.

Abbreviations
CGM	� Continuous glucose monitor
EMA	� Ecological momentary assessment
iAUC	� Incremental area under the curve
LPA	� Light-intensity physical activity
MVPA	� Moderate-to-vigorous-intensity physical activity

Supplementary Information
The online version contains supplementary material available at ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​
g​/​1​0​.​1​1​8​6​/​s​1​2​9​6​6​-​0​2​4​-​0​1​6​9​3​-​5​​​​​.​​

Supplementary Material 1

Supplementary Material 2

Acknowledgements
This research was implemented through resources from the Singapore 
Population Health Studies at the National University of Singapore. The authors 
thank the team and participants involved in the Singapore Population Health 
Studies for their contributions to this study. We also thank Zoey Tay for 
supporting the food data cleaning.

Author contributions
R.M.v.D., F.M.R., and X.S. conceived and supervised the study. R.M.v.D., F.M.R., 
S.M.E., and X.S. contributed to the study design and data acquisition. J.Y. 
conducted data analysis and drafted the manuscript. V.K.B. conducted 
the pilot analysis. R.M.v.D., J.Y., F.M.R., X.S., and E.S.T contributed to result 
interpretation and critical revision of the manuscript. All authors reviewed and 
approved the final manuscript. R.M.v.D. is the guarantor of this work and, as 
such, has full access to all the data in the study and takes responsibility for the 
integrity of the data and the accuracy of the data analysis.

Funding
This research is supported by the Singapore Ministry of Health’s National 
Medical Research Council under its Large Collaborative Grant scheme (grant 
no. MOH-000271-00). This study was also supported by Physical Activity 
and Nutrition Determinants in Asia research program at the Saw Swee 
Hock School of Public Health at the National University of Singapore. The 
funders were not involved in the study design, implementation, analysis, 
interpretation, manuscript preparation, or manuscript submission.

Data availability
The data used for this study are held by the Saw Swee Hock School of Public 
Health at the National University of Singapore. The data may be released to 
bona fide researchers upon reasonable requests and agreements via ​h​t​t​​p​s​
:​/​​/​b​l​​o​g​​.​n​u​s​.​e​d​u​.​s​g​/​s​p​h​s​/​d​a​t​a​-​a​n​d​-​s​a​m​p​l​e​s​-​r​e​q​u​e​s​t​/​​​​​. The data release must 
conform to the Personal Data Protection Act in Singapore.

Declarations

Ethics approval and consent to participate
All participants provided informed consent. Ethical approval was obtained 
from the Institutional Review Board of the National University of Singapore 
(NUS ref: NUS-IRB-2020-50).

Consent for publication
Not applicable.

Competing interests
No potential conflicts of interest relevant to this article were reported.

Author details
1Saw Swee Hock School of Public Health, National University of 
Singapore, Singapore, Singapore
2Epidemiology, Biostatistics and Prevention Institute, University of Zurich, 
Zurich, Switzerland
3Yong Loo Lin School of Medicine, National University of Singapore, 
Singapore, Singapore
4Digital Health Center, Berlin Institute of Health, Charité-
Universitätsmedizin Berlin, Berlin, Germany
5Department of Exercise and Nutrition Sciences, Milken Institute School 
of Public Health, The George Washington University, Washington, DC, USA
6Department of Nutrition, Harvard T.H. Chan School of Public Health, 
Boston, MA, USA

Received: 25 August 2024 / Accepted: 9 December 2024

References
1.	 Jarvis PRE, Cardin JL, Nisevich-Bede PM, McCarter JP. Continuous glucose 

monitoring in a healthy population: understanding the post-prandial 
glycemic response in individuals without diabetes mellitus. Metabolism. 
2023;146:155640.

2.	 Berry SE, Valdes AM, Drew DA, Asnicar F, Mazidi M, Wolf J, et al. Human post-
prandial responses to food and potential for precision nutrition. Nat Med. 
2020;26:964–73.

3.	 Gerich J. Pathogenesis and management of postprandial hyperglycemia: role 
of incretin-based therapies. Int J Gen Med. 2013;6:877–95.

4.	 Gerich JE. Clinical significance, Pathogenesis, and management of Postpran-
dial Hyperglycemia. Arch Intern Med. 2003;163:1306.

https://doi.org/10.1186/s12966-024-01693-5
https://doi.org/10.1186/s12966-024-01693-5
https://blog.nus.edu.sg/sphs/data-and-samples-request/
https://blog.nus.edu.sg/sphs/data-and-samples-request/


Page 11 of 11Yao et al. International Journal of Behavioral Nutrition and Physical Activity          (2024) 21:142 

5.	 Pasmans K, Meex RCR, van Loon LJC, Blaak EE. Nutritional strategies to attenu-
ate postprandial glycemic response. Obes Rev. 2022;23:e13486.

6.	 Curran PJ, Bauer DJ. The disaggregation of within-person and between-
person effects in longitudinal models of change. Annu Rev Psychol. 
2011;62:583–619. http://​www.ncb​i.nlm.n​ih.g​ov/pubmed/19575624

7.	 Edney SM, Park SH, Tan L, Chua XH, Dickens BSL, Rebello SA et al. Advancing 
understanding of dietary and movement behaviours in an Asian population 
through real-time monitoring: protocol of the continuous observations of 
behavioural risk factors in Asia study (COBRA). Digit Health. 2022;8.

8.	 Axivity Ltd. AX3 User Manual - Using your AX3 device. ​h​t​t​​p​s​:​/​​/​a​x​​i​v​​i​t​y​.​c​o​m​/​u​s​e​
r​g​u​i​d​e​s​/​a​x​3​/​u​s​i​n​g​/​​​​​​​

9.	 van Hees VT, Sabia S, Jones SE, Wood AR, Anderson KN, Kivimäki M, et al. 
Estimating sleep parameters using an accelerometer without sleep diary. Sci 
Rep. 2018;8:12975.

10.	 van Hees VT, Gorzelniak L, Dean León EC, Eder M, Pias M, Taherian S, et al. 
Separating Movement and gravity components in an acceleration Signal and 
implications for the Assessment of Human Daily Physical Activity. PLoS ONE. 
2013;8:e61691.

11.	 Migueles JH, Rowlands AV, Huber F, Sabia S, van Hees VT. GGIR: A Research 
Community–Driven Open Source R Package for Generating Physical Activity 
and Sleep outcomes from Multi-day Raw Accelerometer Data. J Meas Phys 
Behav. 2019;2:188–96.

12.	 Vincent T, van Hees JHMMRCU. GGIR Data Quality Assurance. ​h​t​t​​p​s​:​/​​/​w​a​​d​p​​a​c​.​​
g​i​t​h​​u​b​.​​i​o​​/​G​G​​I​R​/​a​​r​t​i​​c​l​​e​s​/​c​h​a​p​t​e​r​3​_​Q​u​a​l​i​t​y​A​s​s​e​s​s​m​e​n​t​.​h​t​m​l​#​t​i​m​e​-​g​a​p​s​-​i​d​e​n​t​i​f​i​
c​a​t​i​o​n​-​a​n​d​-​i​m​p​u​t​a​t​i​o​n​​​​​​​

13.	 van Hees VT, Fang Z, Langford J, Assah F, Mohammad A, da Silva ICM, et al. 
Autocalibration of accelerometer data for free-living physical activity assess-
ment using local gravity and temperature: an evaluation on four continents. J 
Appl Physiol (1985). 2014;117:738–44.

14.	 Le Cornu Q, Chen M, van Hees V, Léger D, Fayosse A, Yerramalla MS, et al. 
Association of physical activity, sedentary behaviour, and daylight exposure 
with sleep in an ageing population: findings from the Whitehall accelerom-
eter sub-study. Int J Behav Nutr Phys Activity. 2022;19:144.

15.	 Chen M, Landré B, Marques-Vidal P, van Hees VT, van Gennip ACE, Bloomberg 
M, et al. Identification of physical activity and sedentary behaviour dimen-
sions that predict mortality risk in older adults: development of a machine 
learning model in the Whitehall II accelerometer sub-study and external 
validation in the CoLaus study. EClinicalMedicine. 2023;55:101773.

16.	 Sabag A, Ahmadi MN, Francois ME, Postnova S, Cistulli PA, Fontana L, et al. 
Timing of moderate to vigorous physical activity, Mortality, Cardiovascular 
Disease, and Microvascular Disease in adults with obesity. Diabetes Care. 
2024;47:890–7.

17.	 Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World 
Health Organization 2020 guidelines on physical activity and sedentary 
behaviour. Br J Sports Med. 2020;54:1451–62.

18.	 Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, et al. Glycaemic index 
methodology. Nutr Res Rev. 2005;18:145–71.

19.	 Tramunt B, Smati S, Grandgeorge N, Lenfant F, Arnal J-F, Montagner A, et al. 
Sex differences in metabolic regulation and diabetes susceptibility. Diabeto-
logia. 2020;63:453–61.

20.	 Lev V, Oppezzo MA. Measuring intra-individual physical activity variability 
using consumer-grade activity devices. Front Digit Health. 2023;5:1239759.

21.	 Yoshimura E, Hamada Y, Hatanaka M, Nanri H, Nakagata T, Matsumoto N, et al. 
Relationship between intra-individual variability in nutrition-related lifestyle 
behaviors and blood glucose outcomes under free-living conditions in adults 
without type 2 diabetes. Diabetes Res Clin Pract. 2023;196:110231.

22.	 Ludwig DS, Willett WC, Volek JS, Neuhouser ML. Dietary fat: from foe to 
friend? Science. 2018;362:764–70.

23.	 Törrönen R, Järvinen S, Kolehmainen M. Postprandial glycemic responses to 
a high-protein dairy snack and energy-enriched berry snacks in older adults. 
Clin Nutr ESPEN. 2022;51:231–8.

24.	 Liu G, Zong G, Wu K, Hu Y, Li Y, Willett WC, et al. Meat cooking methods and 
risk of type 2 diabetes: results from three prospective cohort studies. Diabe-
tes Care. 2018;41:1049–60.

25.	 Cahill LE, Pan A, Chiuve SE, Sun Q, Willett WC, Hu FB, et al. Fried-food 
consumption and risk of type 2 diabetes and coronary artery disease: a 
prospective study in 2 cohorts of US women and men. Am J Clin Nutr. 
2014;100:667–75.

26.	 St-Onge M-P, Ard J, Baskin ML, Chiuve SE, Johnson HM, Kris-Etherton P 
et al. Meal timing and frequency: implications for Cardiovascular Disease 

Prevention: A Scientific Statement from the American Heart Association. 
Circulation. 2017;135.

27.	 Stenvers DJ, Scheer FAJL, Schrauwen P, la Fleur SE, Kalsbeek A. Circadian 
clocks and insulin resistance. Nat Rev Endocrinol. 2019;15:75–89.

28.	 Wiesli P, Schmid C, Kerwer O, Nigg-Koch C, Klaghofer R, Seifert B, et al. Acute 
psychological stress affects glucose concentrations in patients with type 1 
diabetes following food intake but not in the fasting state. Diabetes Care. 
2005;28:1910–5.

29.	 Wettstein A, Kühne F, Tschacher W, La Marca R. Ambulatory Assessment of 
Psychological and physiological stress on workdays and Free days among 
teachers. A preliminary study. Front Neurosci. 2020;14.

30.	 Terada T, Wilson BJ, Myette-Côté E, Kuzik N, Bell GJ, McCargar LJ, et al. 
Targeting specific interstitial glycemic parameters with high-intensity 
interval exercise and fasted-state exercise in type 2 diabetes. Metabolism. 
2016;65:599–608.

31.	 Solomon TPJ, Tarry E, Hudson CO, Fitt AI, Laye MJ. Immediate post-breakfast 
physical activity improves interstitial postprandial glycemia: a comparison of 
different activity-meal timings. Pflugers Arch. 2020;472:271–80.

32.	 Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. 
Physical Activity/Exercise and Diabetes: A position Statement of the Ameri-
can Diabetes Association. Diabetes Care. 2016;39:2065–79.

33.	 Engeroff T, Groneberg DA, Wilke J. After dinner rest a while, after supper walk 
a Mile? A systematic review with Meta-analysis on the Acute Postprandial 
Glycemic response to Exercise before and after meal ingestion in healthy 
subjects and patients with impaired glucose tolerance. Sports Med. 
2023;53:849–69.

34.	 Buffey AJ, Herring MP, Langley CK, Donnelly AE, Carson BP. The Acute 
effects of interrupting prolonged sitting time in adults with Standing and 
Light-Intensity Walking on Biomarkers of Cardiometabolic Health in adults: a 
systematic review and Meta-analysis. Sports Med. 2022;52:1765–87.

35.	 DiPietro L, Gribok A, Stevens MS, Hamm LF, Rumpler W. Three 15-min 
bouts of moderate postmeal walking significantly improves 24-h glycemic 
control in older people at risk for impaired glucose tolerance. Diabetes Care. 
2013;36:3262–8.

36.	 BELLINI A, NICOLÒ A, BAZZUCCHI I. Effects of different Exercise strategies to 
improve Postprandial Glycemia in healthy individuals. Med Sci Sports Exerc. 
2021;53:1334–44.

37.	 Pahra D, Sharma N, Ghai S, Hajela A, Bhansali S, Bhansali A. Impact of post-
meal and one-time daily exercise in patient with type 2 diabetes mellitus: a 
randomized crossover study. Diabetol Metab Syndr. 2017;9:64.

38.	 Manders RJF, Van Dijk J-WM, Van Loon LJC. Low-intensity Exercise reduces 
the prevalence of hyperglycemia in type 2 diabetes. Med Sci Sports Exerc. 
2010;42:219–25.

39.	 Spiegel K, Tasali E, Leproult R, Van Cauter E. Effects of poor and short sleep on 
glucose metabolism and obesity risk. Nat Rev Endocrinol. 2009;5:253–61.

40.	 Tsereteli N, Vallat R, Fernandez-Tajes J, Delahanty LM, Ordovas JM, Drew DA, 
et al. Impact of insufficient sleep on dysregulated blood glucose control 
under standardised meal conditions. Diabetologia. 2022;65:356–65.

41.	 Henson J, Covenant A, Hall AP, Herring L, Rowlands AV, Yates T, et al. Waking 
up to the importance of Sleep in Type 2 Diabetes Management: a narrative 
review. Diabetes Care. 2024;47:331–43.

42.	 Lee I-M, Shiroma EJ. Using accelerometers to measure physical activity in 
large-scale epidemiological studies: issues and challenges. Br J Sports Med. 
2014;48:197–201.

43.	 Singapore Department of Statistics. Popul Trends, 2024. ​h​t​t​​p​s​:​/​​/​w​w​​w​.​​s​i​n​​g​s​t​a​​t​.​
g​​o​v​​.​s​g​/​p​u​b​l​i​c​a​t​i​o​n​s​/​p​o​p​u​l​a​t​i​o​n​/​p​o​p​u​l​a​t​i​o​n​-​t​r​e​n​d​s​​​​​​​

44.	 Seow LSE, Tan XW, Chong SA, Vaingankar JA, Abdin E, Shafie S, et al. Inde-
pendent and combined associations of sleep duration and sleep quality 
with common physical and mental disorders: results from a multi-ethnic 
population-based study. PLoS ONE. 2020;15:e0235816.

45.	 Willoughby AR, Alikhani I, Karsikas M, Chua XY, Chee MWL. Country differ-
ences in nocturnal sleep variability: observations from a large-scale, long-
term sleep wearable study. Sleep Med. 2023;110:155–65.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

http://www.ncbi.nlm.nih.gov/pubmed/19575624
https://axivity.com/userguides/ax3/using/
https://axivity.com/userguides/ax3/using/
https://wadpac.github.io/GGIR/articles/chapter3_QualityAssessment.html#time-gaps-identification-and-imputation
https://wadpac.github.io/GGIR/articles/chapter3_QualityAssessment.html#time-gaps-identification-and-imputation
https://wadpac.github.io/GGIR/articles/chapter3_QualityAssessment.html#time-gaps-identification-and-imputation
https://www.singstat.gov.sg/publications/population/population-trends
https://www.singstat.gov.sg/publications/population/population-trends

	﻿Diet, physical activity, and sleep in relation to postprandial glucose responses under free-living conditions: an intensive longitudinal observational study
	﻿Abstract
	﻿Background
	﻿Methods
	﻿Study design and participants
	﻿Food logging via EMA surveys
	﻿Physical activity and sleep measures via accelerometers
	﻿Glucose measures via CGM
	﻿Statistical analysis

	﻿Results
	﻿Baseline characteristics and longitudinal measures
	﻿Within-person and between-person variation in longitudinal measures
	﻿Association of lifestyle and contextual measures with postprandial glucose

	﻿Discussion
	﻿Conclusions
	﻿References


