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ABSTRACT 1 

The characteristics of motor unit force twitch profiles provide important information for 2 

the understanding of the muscle force generation. The twitch force is commonly estimated 3 

with the spike-triggered averaging technique, which, despite the many limitations, has been 4 

important for clarifying central issues in force generation. In this study, we propose a new 5 

technique for the estimation of the average twitch profile of populations of motor units 6 

with uniform contractile properties. The method encompasses a model-based 7 

deconvolution of the force signal using the identified discharge times of a population of 8 

motor units. The proposed technique was validated using simulations and tested on signals 9 

recorded during voluntary activation. The results of the simulations showed that the 10 

proposed method provides accurate estimates (relative error <25%) of the main parameters 11 

of the average twitch force when the number of identified motor units is between 5% and 12 

15% of the total number of active motor units. It is discussed that current detection and 13 

decomposition methods of multi-channel surface EMG signals allow decoding this relative 14 

sample of the active motor unit pool. However, even when this condition is not met, our 15 

results show that the estimates provided by the new method are anyway always superior to 16 

those obtained by the spike triggered average approach, especially for high motor unit 17 

synchronization levels and when a relatively small number of triggers is available. In 18 

conclusion, we present a new method that overcome the main limitations of the spike-19 

triggered average for the study of contractile properties of individual motor units. The 20 

method provides a new reliable tool for the investigation of the determinants of muscle 21 

force.     22 

23 
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INTRODUCTION 1 

The contraction of a muscle is the result of the summation of sequences of twitch 2 

forces of the muscle units. The superimposition of all motor unit (MU) twitches is the total 3 

force generated by the muscle (Heckman and Enoka, 2004). In general, the identification 4 

of the twitch temporal profiles at the motor unit level provides important information on 5 

the characteristics of the investigated motor units (Bagust et al., 1973; Burke et al., 1974; 6 

Heckman and Enoka, 2004; Macefield et al., 1996; McNulty and Macefield, 2005; Thomas, 7 

1995). Unfortunately, due to the fusion and summation of hundreds of motor unit forces, 8 

the extraction of the motor unit twitch characteristics is a complex problem. Currently, 9 

there are no robust methods for estimating the contractile properties of individual muscle 10 

units, therefore our understanding of acute and chronic adaptations of muscular and neural 11 

mechanisms of movement is limited (Enoka and Fuglevand, 2001). For example, during 12 

sustained contractions, muscle fatigue determines changes in both the discharge rate of the 13 

motor neurons (Carpentier et al., 2001; Gandevia, 2001) and the contractile properties of 14 

the muscle fibers (Nordstrom and Miles, 1990), although the links between these two 15 

effects are debated (Fuglevand, 1996).  16 

The only available method for the estimation of the motor unit temporal twitch 17 

profiles in vivo during voluntary contractions is the spike-triggered averaging (STA) 18 

(Gossen, 2003; Milner-Brown et al., 1973; Thomas, 1995) technique. Under the 19 

assumptions of uncorrelated activity of the motor units, the STA performs an average of 20 

the force signal triggered by the discharge times of one motor unit, usually identified by 21 

decomposition of intramuscular EMG (Farina et al., 2008, 2005; Milner-Brown et al., 22 

1973; Roatta et al., 2008). The averaging process increases the signal-to-noise ratio (SNR) 23 
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for the force generated by the triggered unit with respect to the summation of the forces 1 

produced by the other active motor units. One of the main problems in this approach is that 2 

the average inter-spike interval of MU during voluntary contraction is smaller than their 3 

twitch duration. On this basis, the STA estimation is always biased (Gossen et al., 2003; 4 

Negro et al., 2014). This effect alters the STA estimates substantially, especially during the 5 

relaxation time (Kossev et al., 1994). Another limitation of the STA for twitch estimation 6 

is the need for relatively long signal recordings (usually >2 min) to obtain stable estimates 7 

(Nordstrom and Miles, 1990). This impedes the use of STA for assessing changes of twitch 8 

force over short time intervals, for example during fast fatigue development. Finally, the 9 

synchronization between motor unit spike trains also negatively influences the STA 10 

estimates of motor unit twitch forces (Keen, 2004; Kutch et al., 2007). Because of these 11 

important limitations, a few alternative methods and models have been proposed to extract 12 

the contributions of individual MU to the force profile in human (Andreassen and Bar-On, 13 

1983; Kutch et al., 2010; Lim et al., 1995) and animal recordings (Drzymała-Celichowska 14 

et al., 2016), but without an extensive validation and with very limited use.  15 

In this study, we approach the problem of estimating twitch forces in motor units 16 

by deconvolution. To overcome the problem of low SNR for individual motor unit 17 

twitches, our approach will aim at the estimation of the average twitch in populations of 18 

motor units having similar recruitment thresholds and hence presumably similar force 19 

twitches. We extensively validate the method on simulated and experimental signals and 20 

prove that its application is feasible in a variety of conditions. The method provides for the 21 

first time the possibility of accurately estimate the twitch contractile properties of motor 22 

units in voluntary contractions. 23 
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   1 

MATERIALS & METHODS 2 

Theory 3 

The generation of the muscle force signal can be modelled as a spatial and temporal 4 

summation of motor unit twitch forces, as: 5 

𝑌(𝑡) = ∑ 𝑋𝑖(𝑡) ∗ 𝑔𝑖(𝑡)𝑁
𝑖=1  (1) 6 

where 𝑋𝑖(𝑡)  and 𝑔𝑖(𝑡) are respectively the spike train and the twitch force of the i-th motor 7 

unit and N is the total number of active motor units (Negro et al., 2014). In general, it is 8 

not possible to identify all motor units that are active during a voluntary contraction, even 9 

at very low contraction levels (Farina et al., 2010). However, recent advances in the 10 

detection and decomposition of intramuscular (iEMG) and surface EMG (sEMG) allow to 11 

the reliable identification of several (>10) concurrently active motor units (Farina et al., 12 

2016; Holobar et al., 2010; Nawab et al., 2008; Negro et al., 2016a, 2009; Francesco Negro 13 

and Farina, 2011).  14 

We can rewrite Eq. (1) as 15 

 𝑌(𝑡) = ∑ 𝑋𝑖(𝑡) ∗ 𝑔𝑖(𝑡) + 𝑊(𝑡)𝑀
𝑖=1   (2) 16 

where M<<N is the number of spike trains identified reliably from EMG decomposition 17 

and W(t) is the activity of the remaining motor units that can be seen as additive noise. In 18 

general, we are interested in the estimation of the twitch force waveforms gi(t). From this 19 

equation, we can define a signal-to-noise (SNR) measure as 20 

𝑆𝑁𝑅 =  10𝑙𝑜𝑔10 (
𝑃𝑀

𝑃𝑤
) (3) 21 

where PM  is the power of the force signal generated by the M detected units and Pw the 22 

power of the additive noise introduced by the force of the remaining motor units.  23 
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 1 

Description of the method 2 

In order to solve this underestimated problem, we implemented a time-domain 3 

deconvolution technique. The optimization technique estimates a model with a set of 4 

parameters θ (the parameters describe the average twitch of the M motor units, see below) 5 

in order to solve the least-mean-square (LMS) problem 6 

min
𝜃

‖[∑ 𝑋𝑖(𝑡) ∗ 𝑔𝜃(𝑡)𝑀−1
𝑖=0 ] − 𝑌̂(𝑡)‖

2

2
 (4) 7 

where M is the number of known motor unit spike trains. In general, the problem 8 

of estimation the twitch parameters has an unbiased solution only if the activation of all 9 

sources is known and a correct parameterization of the sources is available. However, only 10 

in the case of electrically stimulated twitches, the full activation pattern is known. 11 

Additionally, the frequency and variability in the discharge timing of individual motor units 12 

in physiological conditions does not allow the correct estimation of the twitch waveform, 13 

as previously demonstrated (Negro et al., 2014). Finally, the estimation of each individual 14 

motor unit twitch waveform is not feasible due to the low SNR (see Results section). For 15 

this reason, we focused this study on the estimation of the properties of the average twitch 16 

of the motor units identified. Therefore the estimation provided is related to an averaged 17 

twitch extracted using the composite spike train (CST) (Castronovo et al., 2015; Farina et 18 

al., 2014; Farina and Negro, 2015; Negro et al., 2016b; Francesco Negro and Farina, 2011; 19 

Negro and Farina, 2012) of the M identified motor units. This is not a limiting factor since, 20 

for low contraction forces, the motor units have similar recruitment threshold and therefore 21 

similar parameters. The set of parameters θ in Eq. (4) includes three variables to 22 

characterize the average twitch profile and one to provide a better estimation in case of 23 
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underdetermined systems. The twitch response was modeled using a modified version of 1 

the impulse response described by Fuglevand et al. (Fuglevand et al., 1993) that has been 2 

proposed by Roatta and Farina (Roatta and Farina, 2011) in a previous study: 3 
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 5 

where iP , 
1

iT  and 
2

3

5
iT are the peak amplitude, the rising time and the half 6 

relaxation time (HR) for the motor unit i. Figure 1 shows two examples of twitch 7 

waveforms described by this model.  8 

FIGURE 1 HERE 9 

An additional parameter was added for the estimation of the bias of the unidentified 10 

motor units. This model was used since it allowed having a direct measure of the three 11 

parameters independently. The optimization problem of Eq. (4) was performed using an 12 

iterative algorithm for time-domain deconvolution (trust-region-reflective, (Absil et al., 13 

2007)). The Levenberg–Marquardt algorithm (Levenberg, 1944) provided similar results.  14 

In order to limit the number of iterations, upper and lower ranges for each parameter should 15 

be set. In the simulations, the upper and lower limits for P, T1, T2 and the Bias were 16 

respectively: 0.1-100 AU, 30-120 ms, 30-120 ms, 0-Max_Force. For the experimental 17 
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signals, they were: 0 Nm – 0.03 Nm, 30-120 ms, 30-120 ms and 0-Max_Force. The starting 1 

point was chosen as a random variable uniformly distributed between the range values.  2 

Simulations 3 

The simulations performed on this study were based on a model of integrate-and-4 

fire motor neurons with discharge characteristics similar to a previous model by Fuglevand 5 

et al. (Fuglevand et al., 1993). Each motor neuron received a synaptic input current that 6 

was a linear combination of shared and independent Gaussian stochastic processes (0-50 7 

Hz). The shared synaptic input simulates the summation of all inputs that project 8 

commonly to the motor neuron pool (Farina and Negro, 2015). On the other hand, the 9 

independent noise resembles the fluctuation of the membrane potential generated by the 10 

summation of synaptic inputs that are individual for each motor neuron. The motor neuron 11 

pool include a number of motor neurons equal to 300, similar to histological findings in 12 

the abductor digiti minimi (ADM) muscle (Santo Neto et al., 1985), which was the muscle 13 

used for the experimental analyses (see “experimental recordings” section below). The 14 

model described the motor units with an exponential variation of the recruitment threshold, 15 

peak-to-peak and twitch forces. The range of discharge rate was set between 8 and 35 pps. 16 

The level of force at which all the motor units were recruited corresponded to 50 % (Burke 17 

et al., 1974; Milner-Brown et al., 1973) of maximal synaptic input. The rising time of the 18 

smallest motor unit was set to 90 ms. The range of twitch tensions was set to 100 and the 19 

range of contraction times was set to 3 (Fuglevand et al., 1993).  20 

The proposed technique was applied on simulated forces corresponding to 5% of synaptic 21 

input (equivalent to approximately 3% MVC). This level was chosen to be similar to the 22 
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typical experimentally recorded level of force used for the estimation of the twitch 1 

properties with the STA technique (Roatta et al., 2008).  2 

To study the influence of motor unit synchronization on the twitch estimation, we 3 

performed simulations with a moderate level of synchronization among the spike trains. 4 

The synchronization was imposed injecting correlated synaptic noise into the motor 5 

neurons (Negro et al., 2016b; F. Negro and Farina, 2011; Negro and Farina, 2012). Motor 6 

unit synchronization was quantified with the common input strength (CIS) index as the 7 

frequency of extra synchronous discharges (Nordstrom et al., 1992) between all pairs of 8 

active motor units. The proportion of shared synaptic noise was selected in order to obtain 9 

physiological levels of synchronization (Keen et al., 2012).  10 

Simulation analysis 11 

For assessing the performance of the proposed technique, the composite spike train of 5, 12 

15, 25, 50, 75 and 100 % of the active motor units was estimated by the proposed algorithm. 13 

The duration of the analyzed segment was set to 5, 10 and 30 s. For each case, 100 14 

simulations were performed with a random selection (normal distribution) of the motor 15 

units in each simulation. The results were compared with the parameters extracted from 16 

the average twitch force of all motor units selected for the calculation. For each simulation, 17 

the STA twitch force was extracted for the motor unit with the lowest discharge rate (~ 8 18 

pps) and compared with the estimated parameters calculated by the algorithm. The duration 19 

of the segment used for the calculation of the twitch parameters using the STA technique 20 

was 120 s, much longer than the interval used for the deconvolution methods. The STA 21 

twitch was measured 50 ms prior to and 150 ms after the reference action potential. The 22 
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intervals preceding and succeeding the reference action potential were required to have 1 

durations of ≥110 ms (Nordstrom et al., 1989; Taylor et al., 2002). 2 

Experiments  3 

Subjects. 5 healthy men participated in the main experiment (mean ± SD, age: 26.1 4 

± 2.5 yrs; range, 25-31 yrs).  5 

The experiments were conducted in accordance with the Declaration of Helsinki 6 

and approved by the ethics committee (approval number N-20090019 and 01/10/12). All 7 

participants self reported to be right handed and signed a written informed consent form 8 

before inclusion.  9 

Recordings. Individual motor unit action potentials were recorded from the 10 

abductor digiti minimi muscle with Teflon-coated stainless steel wires (diameter 0.1 mm; 11 

A-M Systems, Carlsborg, WA) inserted into the muscle with 25-gauge hypodermic 12 

needles. Each wire was cut to expose the cross section of the tip without insulation. In order 13 

to increase the number of identified motor units, two pairs of wires were placed 14 

approximately 1 cm apart in the transverse direction in the proximal portion of the muscle. 15 

The needles were inserted and removed after the insertion, leaving the wires inside the 16 

muscle. The two bipolar intramuscular EMG signals were amplified (Counterpoint EMG, 17 

Dantec Medical, Skovlunde, Denmark), band-pass filtered (1000 Hz to 5 kHz), and 18 

sampled at 10 kHz.  19 

Procedures. The subject was seated on an adjustable chair with the right arm 20 

extended in a force brace (Aalborg University). The fifth finger was fixed in the isometric 21 

device for the measurement of finger-abduction forces. The forearm and the four digits 22 

were secured with Velcro straps. The force produced by the fifth finger was measured using 23 
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two force transducers (Interface, Arizona USA), one in the transverse plane (abduction 1 

force) and the other in the sagittal plane (flexion force). The force signal was sampled at 2 

10 kHz. Visual feedback on the finger abduction force was provided on an oscilloscope. 3 

 The subjects performed three maximal voluntary contractions (MVCs) of finger 4 

abduction with a rest of 3 min in between. The force generated during the maximal 5 

contractions was considered as the reference MVC. Afterward, the subject performed one 6 

contraction of 60–s duration at 5% MVC with visual feedback. During each contraction, 7 

the flexion force was also monitored and contractions with not significant flexion force 8 

were repeated. 9 

Experimental signal analysis.  10 

Individual motor units were identified from the intramuscular EMG signals 11 

recorded from the two locations in the muscle by the use of a decomposition algorithm 12 

(McGill et al., 2005). Each motor unit spike train was manually edited by an experienced 13 

operator and any unusually long (>250 ms) or short (<20 ms) inter-spike intervals (ISIs) 14 

were manually inspected for checking potential discrimination errors. From the results of 15 

the decomposition, spike trains of individual motor units were calculated with a sampling 16 

rate of 1000 Hz. The CST (composite spike train) was defined as the sum of the individual 17 

spike trains, as for the simulated signals. The calculation of the STA twitch was performed, 18 

for each contraction, on the motor units with the lowest discharge rate using a duration of 19 

60s.  20 

Statistical analysis. All variables were tested for normality prior statistical analysis. 21 

The experimental results are reported as mean ± SD. Comparison of the estimates 22 

performed with the proposed algorithm, the simulated values, and the STA technique were 23 
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analyzed using ANOVA. Statistical analyses were performed using Matlab® (Mathworks, 1 

Natick, Massachusetts, United States) and statistical significance was set at P < 0.05. 2 

RESULTS 3 

Simulations 4 

In general, the greater the number of motor units, the higher was the probability of 5 

convergence of the algorithm. This was due to the increase in the SNR defined in Eq. 3, as 6 

shown in Figure 2.  7 

 8 

FIGURE 2 HERE 9 

 10 

The proposed method was tested on simulated segments of 5, 10 and 30 s duration. At the 11 

end of the iterations, if anyone of the parameters had the value set for upper or lower bound, 12 

it was assumed that the algorithm did not converge. Figure 3 shows the percent of times in 13 

which the algorithm converged as a function of the number M of motor units used in the 14 

estimation.  15 

 16 

FIGURE 3 HERE 17 

 18 

The deconvolution method outperformed standard STA estimation in simulated 19 

contractions. Figure 4 shows the comparison between the simulated (correct) values for P, 20 

T and HR, the estimated ones using the proposed method and those obtained using the 21 

traditional STA technique. The values for all variables estimated with the proposed method 22 

were not statistically different (P>0.05) from the simulated ones when at least 15 % of the 23 
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motor units were used for the estimate (18 motor units in these simulations). Conversely, 1 

the estimates obtained with the STA were biased in all cases. 2 

 3 

FIGURE 4 HERE 4 

 5 

The error in the estimation was always lower with the proposed algorithm compared 6 

with standard STA estimation. Figure 5 shows the relative error in the estimation for the 7 

proposed algorithm and the STA technique compared with the simulated one. In this case, 8 

all three variables were statistically different (P<0.05) from the ones estimated with the 9 

STA technique when more that 15 % of available motor units were included in the analysis. 10 

In this case, the STA technique had an error approximately double than the one provided 11 

by the proposed method.   12 

 13 

FIGURE 5 HERE 14 

 15 

If the assumption of uncorrelated discharge timings is violated, the estimation of 16 

STA technique is always biased. Figure 6 shows the influence of the different levels of 17 

synchronization on the estimation performed with the proposed algorithm and the STA 18 

technique. The total amount of motor units used was fixed to 15 % and the duration of the 19 

segment was set to 30 s. The relative error of all parameters was found to be considerably 20 

lower than the estimation performed with the STA technique. The parameter that was most 21 

affected by the synchronization level was the peak amplitude.  22 
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FIGURE 6 HERE 2 

 3 

Experimental results 4 

The experimental results confirm the conclusions derived from the simulated 5 

signals. Figure 7 shows the estimated twitch using the STA and the proposed technique in 6 

three representative subjects. Ten segments of 5 s and 10, 12, 19 motor unit spike trains 7 

were used respectively. The STA estimations were calculated using motor units with an 8 

averaged inter-spike interval higher than 90 ms.  9 

 10 

FIGURE 7 HERE 11 

The direct comparison of the twitch estimated with the proposed and STA 12 

techniques is shown in Figure 7A in one representative subject. The results for all subjects 13 

are reported individually in Table 1 and averaged in Figure 7B.   14 

 15 

FIGURE 8 HERE 16 

 17 

DISCUSSION 18 

In this study, we proposed a new method for the estimation of the twitch forces of 19 

groups of motor units in vivo during voluntary isometric contractions. The STA technique 20 

has been proposed several decades ago for estimating the twitch force of individual motor 21 

units (Goldberg and Derfler, 1977; Stein et al., 1972), and it is still the only available 22 
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method to estimate the contractile properties of the muscle units (Enoka and Duchateau, 1 

2016) from voluntary contractions. Several studies have underlined the limitations of this 2 

technique that are mostly related with the fusion of the twitch forces (Negro et al., 2014; C 3 

K Thomas et al., 1990) and motor unit synchronization (Taylor et al., 2002). Both effects 4 

produce a bias in the estimation of the peak force, time to peak and, especially, half 5 

relaxation time of the motor units (Gossen et al., 2003; Nordstrom et al., 1989; Thomas, 6 

1995). These limitations are so severe that the results of the STA approach are often 7 

considered qualitative rather than quantitative.     8 

The convolution between the neural drive to the muscle and an average force twitch profile 9 

can be seen, in the frequency domain, as a sampling process. For example, a periodic spike 10 

train generates, in the Fourier domain, a line spectrum with equally spaced lines. Therefore, 11 

when the discharge rate is very high, the only frequency line with non-negligible amplitude 12 

may be the DC. In this case, the trains of twitches do only contain the information on the 13 

average force level. Practically, this means that the fusion of twitches is complete to 14 

generate a constant force value, from which there is not sufficient information to extract 15 

the individual components. However, if some ISI variability is introduced, an additional 16 

component (continuous spectrum) will be present and this component has values for any 17 

frequency since it is not a line spectrum (Dideriksen et al., 2012). Therefore, even in the 18 

case of a spike train with a relatively high discharge rates and a slow twitches, the 19 

reconstruction is still possible with a proper amount of variability (Negro et al., 2014). 20 

During voluntary contractions, the minimal discharge rate of the motor units ranges from 21 

~7 to ~20 pps (first dorsal interosseous) (Moritz, 2005) with a CoV of 15-20 %. In general, 22 

such ISI variability is not enough for a complete sampling of the twitch transfer function 23 
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(Negro et al., 2014). However, the concurrent activation of many motor units would 1 

improve the estimation since the continuous spectra will linearly sum. In this case, the 2 

result will be the average twitch of the decoded motor units. For these reasons, the method 3 

that we propose focuses on the estimation of the average twitch of a population of motor 4 

units, instead of the single motor unit twitch estimation. The underlying assumption is that 5 

the population of motor units selected is sufficiently homogeneous so that the differences 6 

between the individual twitches and the average twitch over this sub-population are 7 

negligible (at least with respect to the estimation errors). This practically implies to 8 

consider an average twitch of at least 10-15 motor units (see simulation results). Although 9 

the estimation of the average twitch in small populations of motor units may seem a very 10 

important drawback with respect to the scope of the STA approach to estimate the twitch 11 

properties of individual motor units, the estimated twitch with the current approach is much 12 

more representative of the individual twitches than any estimates provided by the STA 13 

method. Indeed, the estimation errors in the STA approach are so large (as also evidenced 14 

in previous literature, e.g. (C. K. Thomas et al., 1990; Thomas, 1995) that the result is only 15 

a crude approximation of the twitch properties of the active units (Figure 7 and 8). 16 

An additional reason for the population estimation has to be found in the low signal-to-17 

noise ratio of the force produced by the single motor unit when other motor units are active. 18 

Even at relatively low force levels, tens of motor units are concurrently active, resulting in 19 

a SNR for the single motor unit force of ~ -25 dB (Figure 2). There is no denoising 20 

technique that can work in these conditions unless the observation window is extremely 21 

long. For example, the STA technique needs at least a thousand triggers to have a correct 22 

estimation of the single motor unit twitch (Roatta et al., 2008). Assuming a low discharge 23 
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rate, required by the STA, this implies hundreds of seconds of recording with no changes 1 

in the contractile properties of the motor unit, a condition presumably not met in practice. 2 

Again, the high demands of the STA technique of estimating individual motor unit twitch 3 

properties implies strong limitations in applicability, e.g. too long estimation intervals. The 4 

proposed method, on the other hand, has good convergence properties as long as a 5 

relatively small population of motor units is used for the calculation, even for short 6 

segments of signals (Figure 3). In the simulations, the proposed algorithm demonstrated 7 

robustness in the estimation of the commonly used parameters P, T, and HR, even for 8 

intervals of 5-s duration (Figure 4).    9 

In comparison with the STA technique, the average error of the estimations provided by 10 

the proposed method was lower in most conditions (Figure 5). For example, in the case 11 

where the 15 % of the active motor units was used, the average error was approximately 12 

half of the one given by the STA technique for the P and T parameters. For this simulated 13 

contraction level, the average firing rate of the motor unit was 9.1 pps. However, if the 14 

discharge rates are forced to higher values (~ 30 pps) the estimation dramatically improves 15 

(0.5 % of error for 100 % MUs). The reason is that the continuous spectrum of the motor 16 

unit spike train is weighted by the average discharge rate frequency, therefore higher values 17 

implies better estimation of the twitch waveforms in the case of the same ISI variability. 18 

The presence of synchronization introduces a bias in the estimation of the different 19 

parameters for both techniques. However, the proposed method maintained a lower error 20 

for HR compared with the classic method (Figure 6).  21 

 The experimental results calculated during voluntary contractions provided 22 

estimations that differ substantially from the ones derived with the classical approach 23 
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(Figure 7). In these conditions, it is not possible to know the real values, but the comparison 1 

with the simulation results gives us confidence that the estimations with the proposed 2 

method are reasonable (Figure 8).  3 

The main requirement of the method described in this study is the need of decoding the 4 

activity of a relatively large number of motor units (10-15). However, recently, many 5 

techniques have been proposed to increase the number of motor unit spike trains that is 6 

possible to extract from iEMG (Farina et al., 2016; Florestal et al., 2009; Ge et al., 2011, 7 

2008; Marateb et al., 2011; McGill et al., 2005; Muceli et al., 2015; Negro et al., 2016a, 8 

2009) and sEMG (Castronovo et al., 2015; Holobar et al., 2009; Negro et al., 2016a, 2009; 9 

Yavuz et al., 2015) during voluntary contractions. Moreover, the combination of the 10 

proposed technique with high-density sEMG recordings can provide the possibility to track 11 

the twitch properties of the same motor units across several recording sessions (E. 12 

Martinez-Valdes et al., 2017; Eduardo Martinez-Valdes et al., 2017) and/or compare them 13 

with other peripheral characteristics (Del Vecchio et al., 2017a, 2017b). Finally, the 14 

proposed methodology can be usefully applied together with the maximal twitch scan 15 

suggested by Orizio et al (Orizio et al., 2016) to evaluate the prevalence of fast or slow 16 

contribution to the mechanical output of a specific muscle during stimulated contraction 17 

and the interpolated twitch technique (Maffiuletti et al., 2016; Zarkou et al., 2017). 18 

In conclusion, we showed that the proposed method could provide reliable average motor 19 

unit twitch estimations of the muscle in vivo during voluntary isometric contractions at 20 

moderate force levels. The combination of recent multi-unit EMG recordings and the 21 

optimization technique described in the present study offer the possibility to quantify motor 22 



 19 

unit twitch parameters reliably, even in relatively short segments. Therefore, the proposed 1 

method opens a new opportunity for neuromuscular assessments in clinical applications.        2 
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FIGURE CAPTIONS 1 

Figure 1. Twitch model used for validating the proposed technique. 2 

 3 

Figure 2. Signal-to-noise ratio for different percentages of motor units (the 0 % value shows 4 

the SNR calculated for one motor unit only). 5 

 6 

Figure 3. Convergence rate for the algorithm applied to simulated contractions of 5 (dark 7 

blue), 10 (blue) and 30 s (light blue) duration. 8 

 9 

Figure 4. P, T and HR for the simulated motor units when 5, 15 etc. % of the active motor 10 

units was used in the calculation. The values are reported for the average of the simulated 11 

twitch (red), estimated twitch with 5 (dark blue), 10 (blue), 30 s (light blue) segments and 12 

STA technique (black). 13 

 14 

Figure 5. Percent of error estimated for the variables P, T and HR in simulated conditions. 15 

Colors represent the variables extracted as described before.   16 

 17 

Figure 6. Influence of synchronization on the estimation of the twitch force provided by 18 

the proposed algorithm. The estimated parameters using a segment of 30 s and 15 % of the 19 

active motor units (dark blue) and the estimated values using STA technique (light blue). 20 

 21 

Figure 7. Estimation of twitch parameters using the STA and the proposed technique during 22 

sustained contractions at 5 % MVC in three representative subjects. Upper panels show the 23 

recorded (black) and estimated force (blue) signals. Middle panels show the twitches 24 

estimated with the proposed technique in several segments of 5 s duration and the averaged 25 

twitch (blue). Bottom panels show the STA estimations of the motor units with averaged 26 

inter-spike interval higher than 90 ms.    27 

 28 

Figure 8. Comparison of the STA and the proposed technique during sustained contractions 29 

at 5 % MVC. A. Twitch estimations calculated using the proposed method (blue), average 30 



 31 

value (red) and the STA twitch estimation (black) for one representative subject. B. 1 

Averaged values of P, T, and HR for all subjects.    2 

 3 
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TABLE 1. Parameters estimated for the five subjects during voluntary contractions.  

                 

  P (1e-4)  T  HR   

         

Sub. 1     1.31 (PM), 1.25 (STA) 112.6 (PM), 58.0 (STA)  142.1 (PM), 47.0 (STA) 

Sub. 2     1.31 (PM), 1.40 (STA)  93.1 (PM), 61.0 (STA) 146.3 (PM), 45.0 (STA) 

Sub. 3     1.00 (PM), 2.10 (STA) 102.2 (PM), 52.0 (STA) 120.6 (PM), 33.0 (STA) 

Sub. 4     1.20 (PM), 1.98 (STA) 99.6 (PM), 55.0 (STA) 115.3 (PM), 46.0 (STA) 

Sub. 5     1.21 (PM), 1.95 (STA) 99.3 (PM), 56.0 (STA) 113.2 (PM), 43.0 (STA) 

                   

P: Peak amplitude (Nm). T: Time peak (ms); HR: Half relaxation time (ms); PM: Proposed method; STA: Spike triggered averaging 

technique. 
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Fig 5. Influence of synchronization on the estimated twitch force parameters with the proposed method
(dark blue) and the STA technique (light blue) (for the deconvolution, segments of 30 s and 15 % of the
active motor units were used).
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