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ABSTRACT
Background: MicroRNAs have recently taken centre
stage as short non-coding RNAs that regulate mRNA
expression.
Aim/Methods: To assess the feasibility of using
microRNA techniques on routinely processed tissues, the
accessibility of two representative microRNAs was
examined by real-time quantitative PCR in 86 human
formalin-fixed paraffin-embedded (FFPE) samples from
liver, breast, bone marrow, lymphatic tissues and colon.
Murine liver was used to analyse the influence of fixation
time and different fixatives.
Results: High-quality microRNA was successfully
extracted from routinely processed formalin-fixed tissues,
resembling PCR amplification results from snap-frozen
material analysed in parallel. While fixation time did not
affect microRNA accessibility, non-buffered formalin or
fixative supplements such as glutaraldehyde influenced
PCR results. Storage of human tissues for up to 7 years
did not cause a significant deterioration of microRNA.
However, microRNA quality in human archival material
following routine processing 10–20 years ago was
decreased. Oxidation by ambient air during storage and
fixation in non-buffered formalin is a possible reason for
loss of microRNA quality.
Conclusion: The assessment of microRNAs in readily
obtained formalin-fixed paraffin-embedded samples is a
highly promising tool in molecular pathology when
similarly treated samples are analysed. Therefore,
microRNA analyses will gain wider acceptance as an
adjunct to morphological tissue assessment in routine
pathology and retrospective studies.

Extraordinary progress in molecular pathology has
been made during the last 10 years, and molecular
pathology techniques are moving rapidly from the
research bench to routine utilisation in diagnostic
pathology. Many molecular RNA-based techniques
suffer from challenges when routinely processed
tissues, which have passed through fixation and
embedding steps, are utilised.1–3 Commonly used
formaldehyde-containing fixatives cause cross-link-
age between nucleic acids and proteins, making
subsequent extraction and quantification of RNA
challenging.4–6 One advantage of PCR technologies
is that they do not require high amounts of target
molecules.7 However, a major obstacle to RNA
expression fingerprinting of formalin-fixed paraf-
fin-embedded (FFPE) tissues has been the uncer-
tainty about whether gene expression analyses
from routinely archived tissues accurately reflect
the expression before fixation8 because of poor
quality due to high fragmentation by tissue
processing.9 Since fragmentation does not cause
further loss of quality when naturally occurring

small RNAs are targeted, microRNA (miRNA)
might be ideal to be analysed by PCR in molecular
pathology applications. The recently discovered
miRNAs are non-coding RNAs that are not longer
than 22 bases in mature size and play a crucial
regulatory role in organ development, tumorigen-
esis and chronic disease.10–16 miRNA expression
profiling of human tumours has already identified
signatures associated with diagnosis, progression,
prognosis and response to treatment,11–16 but most
of these studies have used cell culture material or
snap-frozen tissue from rodents or humans.17–19

Although a number of authors have shown that
routinely processed FFPE tissue is suitable for real-
time quantitative PCR studies as long as the
amplicon sizes are shorter than 200 nucleotides
and normalisation to one or several housekeeping
genes is accomplished,5 8 9 20 21 there are only a few
detailed studies about the feasibility of PCR assays
from FFPE tissues for non-coding short RNAs.22–24

FFPE tissue samples have been collected through-
out decades of routine histopathological examina-
tion and are thus the most widely available
material in tissue archives around the world.4 9

Thus, if miRNAs could be analysed in FFPE
material, miRNAs could gain wider acceptance as
molecular markers in retrospective studies of large
tissue cohorts and as general diagnostic and
scientific tools. To our knowledge, no study has
systematically assessed the effects of formalin
fixation from 12 h onward, the effects of tissue
storage for more than 25 years, or the effects of
miRNA expression in a variety of human tissues
across the spectrum from highly adipose breast
parenchyma to cellular liver parenchyma and
decalcified bone marrow specimens.

The aims of this study are twofold: to demon-
strate the effects of fixatives and prolonged storage
in paraffin blocks on accessibility of two represen-
tative miRNAs and to show the suitability of
routine FFPE tissue for comprehensive miRNA
expression analyses using real-time PCR.

MATERIAL AND METHODS

Human snap-frozen and FFPE specimens
All specimens were obtained from the tumour
bank or from the archive of paraffin-embedded
diagnostic tissues of the Institute for Pathology at
the University Hospital of Cologne, Germany,
1980–2007, and were used in accordance with the
policies of the institutional review board of the
hospital.

Eighty-eight FFPE samples from different organs,
patients and diagnoses as well as matched snap-
frozen tissue from liver (n = 4) and colon (n = 3)
were selected (table 1).
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Mouse liver tissues
After killing FVB mice, liver samples were punched from one
liver segment using a 5 mm dermatological skin punch biopsy
instrument (Stiefel Laboratories, Coral Gables, Florida, USA)
and either immediately snap-frozen in liquid nitrogen or fixed in
10% neutral buffered formalin for 12, 24 and 72 h and
embedded in paraffin. In addition, 10% non-buffered formalin
(pH 3) and Schaefer solution25 were used to fix and decalcify the
sample for 24 h.

RNA isolation from snap-frozen and FFPE tissues
For total RNA isolation, N2-frozen tissues (,100 mg) were
homogenised in 500 ml Trizol reagent using a Precellys 24 tissue
homogeniser (Carlsbad, California, USA). Then, total RNA was
isolated by Trizol reagent extraction after homogenization,
following the instructions of the supplier (Invitrogen,
California, USA). The FFPE samples were deparaffinised in
xylene by incubation at 65uC for a total of 20 min, substituting
xylene twice. After two washes with 100% ethanol, samples
were lysed in 200 ml proteinase K buffer (500 mg/ml proteinase
K (Invitrogen), 50 mM Tris-HCl pH 7.4, and 5 mM EDTA
pH 8) overnight. Total RNA was extracted twice by phenol/
chloroform and precipitated with 200 mM sodium acetate and
isopropanol.

Reverse transcription and real-time PCR
Extracts of total RNA were resupended in 20 ml H2O, measured
with the ND-1000 NanoDrop spectrophotometer (NanoDrop,
Wilmington, Delaware, USA) and then treated with 30 U
DNase and 10 U RNase inhibitor, both from Roche Diagnostics
(Mannheim, Germany), for 30 min at 37uC in the presence of
1.5 mM MgCl2. A 35 ng quantity of human and mouse total
RNA was reverse transcribed in a 10 ml volume using the
TaqMan MicroRNA reverse transcriptase kit (Applied
Biosystems, Foster City, California, USA) according to the
manufacturer’s recommendations. A 3 ml volume of the reverse
transcription reaction was used in each of the real-time PCR
assays by means with the TaqMan MicroRNA assay kit
(Applied Biosystems) following the manufacturer’s instructions.

Data normalisation and statistical evaluation
A standard curve of every assay in each run was generated to
ascertain the specific amplification efficiency in order to avoid
quantification bias. To determine the amount of miR-16
microRNA, a dilution series of total RNA in five steps was
performed. Fixation kinetics of mouse livers and experiments
with different fixatives were normalised using miR-16 as a
reference, and this was followed by calculating the specific
calibrated mirR-122a microRNA expression of each mouse liver
sample. The mean values of normalised miR-122a levels of

Table 1 Human tissue sample origins and diagnoses

miR-16 expression
analysis Description of tissue sample

Human FFPE tissue
from different organs
(see fig 2)

Normal lymphoid tissue
(n = 8)

Intestine (n = 11):
tubular adenoma (3),
tubulo-villous adenoma
(1), tubular adenoma
high-grade dysplasia
(1), ulcerative colitis
(3), Crohn disease (1),
collagenous colitis (1)

Bone marrow (n = 9):
chronic idiopathic
myelofibrosis (3),
polycythaemia vera (3),
essential thrombocythaemia
(3)

Liver (n = 15): normal
transplant organ (2), breast
carcinoma metastasis (1),
colon carcinoma met (4),
small cell lung carcinoma
metastasis (1),
HCV+cirrhosis (1), HCV+mild
fibrosis (1), HBV+moderate
fibrosis (2), steatohepatitis
(3)

Breast (n = 15): fibroadenoma (4),
fibrocystic tissue (5), normal with
calcifications (1), invasive ductal
carcinoma (4), DCIS (1)

FFPE versus snap-
frozen tissues (see
fig 1C)

FFPE human liver tissue
(n = 4)

FFPE human colon
tissue (n = 3)

Snap-frozen human liver
tissue (n = 4)

Snap-frozen human colon
tissue (n = 3)

Length of archival
tissue storage (see
fig 4)

7 years: human lymph
nodes, FFPE (n = 7)

17 years: human lymph
nodes, FFPE (n = 7)

27 years: human lymph
nodes, FFPE (n = 7)

Present day: human lymph
nodes, FFPE (n = 11)

DCIS, ductal carcinoma in-situ; FFPE, formalin-fixed paraffin-embedded; HBV, hepatitis B virus; HCV, hepatitis C virus; miR-16, miR-16 microRNA.

Figure 1 Formalin-fixed paraffin-embedded (FFPE) versus snap-frozen samples of liver tissue. (A) Level of miR-122a microRNA normalised against
miR-16 microRNA in snap-frozen (n = 5) and in FFPE mouse liver tissues (n = 5). The mean value of the snap-frozen samples served as calibrator. Error
bars indicate SD. (B) miR-122a detection in snap-frozen and FFPE mouse liver tissues, and (C) miR-16 in matched samples of human snap-frozen and
FFPE tissues of liver and colon (see also table 1)
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snap-frozen liver tissues or after 12 h formalin fixation served
as calibrators, respectively.

A Student t test was performed for statistical analysis of the
data achieved by real time PCR after testing the normal
distribution with one-sample Kolmogoroff–Smirnov test. A
p value (0.05 was considered to be statistically significant.
Statistical analysis was performed using SPSS 14.0.1 software
(SPSS, Chicago, Illinois, USA).

RESULTS

Archival formalin-fixed specimens can be used reliably for
microRNA expression studies
In our study, we selected two miRNAs: one that is organ-
specific and highly expressed in liver and another one that

shows ubiquitous, but just moderate expression. We compared
the levels of these representative miRNAs in snap-frozen
material with FFPE tissues of mouse and human by real-time
PCR. Four snap-frozen murine liver biopsies were compared
with four FFPE liver samples from the same FVB mouse, and
their miR-122a and miR-16 levels were determined (fig 1).

Similarly, the amount of miR-16 in human matched samples
from a total of seven patients was assessed (fig 1C, table 1).
miR-122a was chosen as a liver-specific miRNA, while miR-16,
known to be ubiquitously expressed, was considered as a
representative miRNA of all other organs and tissues. The
expression of archival FFPE tissue for both miRNAs closely
mimicked that of snap-frozen tissue. Thus, miRNA expression
studies can be reliably performed with routinely obtained
pathological materials and the results are similar to the yield
from snap-frozen tissues.

High quality microRNA can be obtained from FFPE tissues of
different origin and pathological diversity
Tissues from different organs in the human body vary to large
degrees in their cellularity, infiltration by inflammatory cells,
epithelial/mesenchymal ratios, vascularity, fat and extracellular
matrix content etc. In order to demonstrate miRNA accessi-
bility in a wide range of tissues, we studied the ubiquitously
expressed miRNA-16 in 58 routinely obtained and processed
tissues from a variety of organs, consisting of benign and
malignant tissues (table 1). PCR analysis revealed some
variation in miRNA-16 level; this was expected because of the
unique nature of each sample and the wide morphological
differences. However, tissues that are traditionally challenging
to examine with regards to their nucleic acid contents (ie, bone
marrow) showed an acceptable miRNA yield (fig 2). As a
consequence, FFPE archival human tissues from many organs
and disease processes, including inflammatory and neoplastic,
are suitable for miRNA expression profiling.

Effects of different fixatives on microRNA acessibility
Although buffered formalin is currently the most widely used
tissue fixative worldwide, some tissues require additional
processing steps, such as decalcification of osseous specimens.
Since length of tissue fixation in formalin may range from a few
hours to multiple days due to departmental work-flow
variations, we also compared fixation times of 12, 24 and 72 h
in formalin. We showed that fixation in buffered formalin for
different time periods does not significantly alter the levels of
miRNA expression in the PCR assays (fig 3). Fixation in non-
buffered formalin or Schaefer solution resulted in different
miRNA yields, but was similar for each fixative and causes only
slight but significant variations in relative expression levels
compared to buffered formalin fixation (fig 3). Therefore,
samples should only be compared with others after treatment
with the same fixative.

Effects of length of FFPE tissue storage on microRNA acessibility
Tissue blocks after formalin-fixation and paraffin-embedding
are stored in most hospitals worldwide at room temperature
with the cut surface of the tissue exposed to ambient air. A loss
of miRNA quality during this time is possible. We compared
miR-16 accessibility in recently processed human tissues
samples with that in tissues that had been routinely processed
and stored 7, 17 and 27 years ago (fig 4). We found a decrease of
miR-16 accessibility by PCR assays with samples that had been
in long-term storage for several decades. However, overall,

Figure 2 Level of miR-16 microRNA in different formalin-fixed paraffin-
embedded tissues. Median of miR-16 level in different organs determined by
real-time PCR of 10 ng RNA for each sample. Outlying points are displayed
as circles and an extreme outlying point is displayed as an asterisk.

Figure 3 Quantitative real-time PCR expression of miR-122a microRNA
in correlation to different length of formalin fixation and different
fixatives. Quantitative real-time PCR analysis of miR-122a. The mean
values of normalised miR-122a levels of the 24 h snap-frozen samples
served as calibrator. Two asterisks indicate a high level of statistical
significance (p,0.01).
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miRNA levels were in the satisfactory range for all tissues, even
after prolonged tissue storage.

DISCUSSION
Molecular techniques are rapidly gaining importance as adjuncts
to histological tissue assessment. Since disease-related molecules
harbouring genetic as well as morphological disease character-
istics are locked away in the vast collection of formalin-fixed
paraffin-embedded FFPE tissues stored by the world’s patholo-
gists,4 9 it is crucial to evaluate the applicability of new
molecular tools for routinely stored human FFPE tissues.4 26

In the study presented herein, we demonstrate that miRNA
accessibility is not affected by prolonged formalin fixation
during routinely performed tissue processing, confirming the
results of previous studies.23 24 Our data reveal that the
accessibility of miRNA from FFPE tissue is comparable to
snap-frozen material for human and murine samples. These
findings confirm and expand the results of studies of other
authors, who used fixed cell culture material22 or mouse
tissues.23 The length of fixation time in formalin varies in most
pathology departments due to normal fluctuations of workflow
depending on the time of the day or the day of the week that
any given specimen reaches the pathology laboratory. Here, we
demonstrate that the time of formalin fixation up to 3 days did
not significantly alter miRNA detection by real-time PCR, thus
allowing miRNA analyses in routinely processed tissues.
Fixation in different solutions with or without buffering led
to different miRNA yields and slight but significant variations
of relative miRNA levels by real-time PCR; these variations
should prompt pathologists to compare only those tissues that
have been treated with the same fixative. In contrast to total
RNA, whose fragmentation has been shown to continue to
occur after dehydration and paraffin embedding of the formalin-
fixed specimens,27 miRNA levels of FFPE mice tissues are not
affected by a storage time of up to several months. Even
routinely processed human FFPE tissues showed only a
moderate but not significant loss of miRNA accessibility within

5–7 years. However, stored tissues processed more than 10 or 20
years ago showed nearly a 50% decrease in miRNA accessibility
by PCR. Although tissue exposure to ambient air during
prolonged storage might be one of the reasons for a loss in
miRNA quality, the utilisation of non-buffered formalin at that
time might have also contributed to low miRNA yield.

An additional major conclusion of our study is that miRNAs
can be assessed reliably by real-time PCR in tissues from various
organs and with different diagnoses (normal, neoplastic,
inflammatory) regardless of their cellularity, fat content,
inflammatory cell infiltrates and degree of stromal fibrosis. Li
et al have suggested in the past that further work may be
necessary to determine the precise effects of formalin fixation
and paraffin embedding on miRNA expression profiles across
different tissue samples.22 Thus, in the future, miRNA expres-
sion profiles of different benign and malignant diseased tissues
will be of crucial value to understand disease mechanisms.
Reliable miRNA accessibility in tissues of different origin is also
of special interest, because a detailed analysis of 345 miRNAs in
40 normal human tissues revealed a number of miRNAs that are
specific markers of certain tissue origins.28 Therefore, miRNA
accessibility in a wide spectrum of different FFPE tissues will
allow these organ-specific miRNA members to serve as markers
of the primary tumour site when metastases of unknown origin
are encountered by a pathologist.
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