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Abstract

Recent advances in our understanding of the dynamics of cellular cross-talk have highlighted the significance of
host-versus-tumor effect that can be harnessed with immune therapies. Tumors exploit immune checkpoints to
evade adaptive immune responses. Cancer immunotherapy has witnessed a revolution in the past decade with the
development of immune checkpoint inhibitors (ICIs), monoclonal antibodies against cytotoxic T lymphocyte
antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1) or their ligands, such as PD1 ligand 1 (PD-L1). ICIs
have been reported to have activity against a broad range of tumor types, in both solid organ and hematologic
malignancy contexts. However, less than one-third of the patients achieve a durable and meaningful treatment
response. Expression of immune checkpoint ligands (e.g., PD-L1), mutational burden and tumor-infiltrating
lymphocytes are currently used as biomarkers for predicting response to ICIs. However, they do not reliably predict
which patients will benefit from these therapies. There is dire need to discover novel biomarkers to predict
treatment efficacy and to identify areas for development of combination strategies to improve response rates.
Emerging evidence suggests key roles of tumor extracellular matrix (ECM) components and their proteolytic
remodeling products in regulating each step of the cancer-immunity cycle. Here we review tumor matrix dynamics
and matrix remodeling in context of anti-tumor immune responses and immunotherapy and propose the
exploration of matrix-based biomarkers to identify candidates for immune therapy.
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Background
The adaptive immune response protects against foreign
threats, including infections and tumors. The therapeutic
potential of host-versus-tumor effect can be harnessed
with novel immune therapies. CD4+ and CD8+ T lympho-
cytes comprise primary effector cells against tumors. Ini-
tial antigen-mediated activation of T cells is modulated by
several regulatory mechanisms, including engagement
co-stimulatory signals like the binding of CD28 on T cells
to CD80/B7-1 and/or CD86/B7-2 on antigen-presenting
cells. Immune checkpoint pathways that have evolved as a

mechanism to avoid auto-immunity, can be targeted with
immune checkpoint inhibitors (ICIs). Immune check-
points are inhibitory regulators that act as “breaks” on the
immune response. Cytotoxic T lymphocyte antigen 4
(CTLA-4; CD152) competes with CD28 for the ligands
CD80 and CD86, and antagonizes T cell receptor (TCR)
signaling [1–3]. Programmed cell death protein 1 (PD-1;
CD279) counters positive signaling by the TCR by en-
gaging its ligands programmed cell death 1 ligand 1
(PD-L1; CD274/B7-H1), and/or PD-L2 (CD273/B7-DC)
[4–7]. The generation of an inflammatory milieu in the
tumor microenvironment (TME) and infiltration of acti-
vated lymphocytes induce tumor escape mechanisms that
exploit immune checkpoints to evade adaptive immune
responses, including up-regulation of PD-L1 in TME and
CTLA-4 in peripheral lymphoid tissues [8–10].
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Immune checkpoint inhibitors: urgent need for predictive
biomarkers
Tumor immunotherapy has witnessed a revolution in the
past decade. The clinical successes of ICIs, monoclonal
antibodies (mAb) against CTLA-4 and PD-1 pathways,
was a breakthrough achievement. In 2010, a randomized
phase III trial reported remarkable response to Ipilimu-
mab, mAb against CTLA-4, in melanoma patients [11].
Ipilimumab was the first checkpoint inhibitor to be ap-
proved by the Food and Drug Administration (FDA).
Pembrolizumab and nivolumab, mAbs against PD-1,
were FDA-approved in 2014. Atezolizumab, mAb against
PD-L1, was FDA-approved in 2016. Two mAbs to PD-L1,
Durvalumab and Avelumab, were granted breakthrough
FDA approval in 2017 after promising results in non-small
cell lung cancer (NSCLC), urothelial carcinoma and
Merkel cell carcinoma [12–14].
Despite the rapid progress of approvals for these clas-

ses of agents, the accumulated experience demonstrated
that overall, only one-third of the patients achieve a dur-
able and meaningful response. With CTLA-4 blockade
by Ipilimumab or PD-1 inhibition with Nivolumab, re-
sponse rates of 30-40% were observed in melanoma pa-
tients as monotherapies and combination therapy achieved
a response rate of over 50% [15–18]. In NSCLC, a response
rate of about 20% is observed with Nivolumab, Pembroli-
zumab and Atezolizumab [19–22]. Response rates of 13%
(head and neck squamous cell cancer), 25%-40% (renal cell
cancer), and 31% (microsatellite-unstable colon cancers)
have been reported with PD-1 blockade [23–25]. In re-
lapsed/refractory Hodgkin's lymphoma, a complete re-
sponse rate of 17% and partial response rate of 70% has
been reported with Nivolumab [26]. A complete remission
rate of 22% is noted in relapsed/refractory acute myeloid
leukemia with Nivolumab combined with a hypomethylat-
ing agent [27]. There are several on-going bench and clin-
ical trials for ICIs across all tumor types. However, it is
clear that to-date, the majority of patients do not benefit
from checkpoint inhibition immunotherapy. There is dire
need to explore biomarkers to predict response to treat-
ment and to identify areas for development of combination
agents to improve response rates and mitigate toxicities.

Predictors of response to immune checkpoint inhibitors:
current limitations
Expression of immune checkpoints: challenges and pitfalls
High expression of PD-L1 is regarded as a marker of an
active anti-tumor immune response and correlates with
adaptive immune resistance in several tumor types, in-
cluding melanoma, NSCLC, Merkel cell carcinoma, breast
cancer, mismatch-repair deficient tumors, and Hodgkin's
lymphoma [10, 19, 21, 22, 26, 28–34]. However, expres-
sion of PD-L1 does not reliably predict response to ICI
[18, 35, 36]. In NSCLC, no association of PD-L1

expression with response has been reported with Nivo-
lumab [20]; however, high PD-L1 expression in NSCLC
almost doubled the response rate to Pembrolizumab to
about 45% from 19% [37]. In melanoma, tumor tissue
PD-L1 expression showed significant correlation with
response in five out of eight PD-1 ICI studies but did
not predict response to CTLA-4 ICI therapy [38]. Not-
ably, there are several limitations concerning PD-L1
expression assays, including membranous versus cyto-
plasmic expression, expression by multiple cell types in
the TME, focal expression in tumor samples, changes
in expression over the course of disease progression
and with radiation and epigenetic chemotherapy, as
well as variability in laboratory techniques and anti-
bodies used in the assay [35].
Discordance between PD-L1 expression in metastatic

sites and primary tumors has been noted in bladder can-
cer patients, suggesting the dynamic nature of TME [39].
In contrast to pre-treatment biopsies, tumor biopsies in
early treatment phase in metastatic melanoma patients
treated with sequential CTLA-4 and PD-1 blockade
showed high expression of PD-1 and PD-L1 in responders
[40]. In NSCLC cells, PD-L1 genomic locus amplification
correlated with expression of PD-L1 and antitumor bene-
fit [41]. CTLA-4 and PD-L2 genes were expressed at
higher levels in the pretreatment melanoma tumors of pa-
tients who derived benefit from CTLA-4 antibodies [42].
However, PD-L1, PD-L2 and CTLA-4 did not demon-
strate higher expression in anti-PD-1-responsive melan-
oma patients [43].

Somatic mutations and neoantigen load
A systemic review of melanoma patients showed that re-
sponses to ICIs correlated with mutational load, neoanti-
gen load, and immune-related gene expression [38].
High mutational burden and neo-epitope density have
been noted in responding tumors; however, there is sig-
nificant overlap with non-responding tumors [34, 42, 44].
Colon cancers with microsatellite instability (MSI) have
large mutational burdens and higher response rates to
PD-1 blockade [23, 33]. However, high mutational bur-
dens do not always predict responders to ICI therapy, pri-
marily because of an extremely diverse array of resultant
somatic mutations [34, 42–44]. Neoantigen heterogeneity
influences immune surveillance. Clonal neoantigens have
been reported to induce immune reactivity and sensitivity
to immune checkpoint blockade [45].

Immune profiling signatures
Genetic and immune heterogeneity has been observed in
melanoma tumors responding to immunotherapy [46]:
individual gene-based expression analysis has revealed
that mesenchymal and T cell-suppressive inflammatory
or angiogenic tumor phenotypes are associated with
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innate anti-PD-1 resistance [43]. Genes expressed higher
in non-responding pre-treatment tumors included mes-
enchymal transition genes, immunosuppressive genes,
and monocyte and macrophage chemotactic genes [43].

Tumor-infiltrating cytotoxic lymphocytes (CTL)
The success of checkpoint blockade depends on prior re-
cruitment of tumor-infiltrating lymphocytes, particularly
CD8+ cytotoxic T- lymphocytes (CTL), in the TME. These
CTL are located at the invasive tumor margin and
intratumorally, and are negatively regulated by PD-1/
PD-L1-mediated adaptive immune resistance. In meta-
static melanoma, the detection of CTL at the tumor
margin predicted better response to ICI [10, 38, 40, 47].
Colon cancers with MSI are highly infiltrated with T
cells relative to microsatellite-stable (MSS) colon cancers,
particularly with CTL [48]. Chemokines of CCL and
CXCL family have been associated with CTL recruitment
to melanoma metastases [49]. Higher levels of CCL2,
CXCL4 and CXCL12 have been noted in responding tu-
mors [47]. Clonal T cell responses have been associated
with ICI clinical responses [10, 50–52]. It remains unclear
how ICIs affect CD8+ effector memory cells that might ex-
plain durable response observed in many patients [53].
Conversely, brisk CTL infiltrates at time of progression in
patients on immune checkpoint blockade has also been
noted, suggesting that effector immune cells are impaired
by the TME leading to therapeutic resistance [54].

Tumor-infiltrating regulatory T cells (Tregs)
Tumor-infiltrating Tregs, in particular, CD4+ T cells ex-
pressing interleukin-2 receptor chair-alpha (IL2Rα; CD25)
and transcription factor forkhead-box P3 (FOXP3), sup-
press CTL and contribute to a tumorigenic TME. They
promote tumor growth by diverse mechanisms, including
expression of immune checkpoints (CTLA-4, PD-1 and
others) as well as production of IL10 and transforming
growth factor-beta (TGF-β) [55, 56]. CTLA-4 blockade
expands the population of Tregs and high levels of soluble
CD25 (IL2Rα) has been correlated with resistance to
anti-CTLA-4 therapy [57]. PD-1 blockade with Nivolu-
mab promoted CTL proliferation and resistance to
Treg-mediated suppression, by down-regulating intra-
cellular expression of FOXP3 [58]. An increased ratio
of CTL compared with Treg in tumor tissue has been
associated with response to CTLA-4 and PD-1 block-
ade [27, 59].

Tumor-infiltrating regulatory myeloid cells
Tumor-infiltrating myeloid cells, including myeloid-deri-
ved-suppressor cells (MDSCs), tumor-associated gran-
ulocytes, tumor-associated macrophages (TAMs) and
dendritic cells (DCs), generate and promote both im-
munogenic and tolerogenic responses [60–63]. MDSCs

are immune-suppressive immature myeloid cells that sup-
port tumor growth and predict poor prognosis [64–67].
MDSCs exert their effects by various mechanisms includ-
ing arginine 1 expression [68], nitric oxide [69], cyclooxy-
genase 2 [70], reactive oxygen species [71], and Treg
activation via CD40–CD40L interactions [72]. In melan-
oma, an elevated level of CXCL17, which recruits MDSCs,
predicts non-responders to ICI [47, 73].
Tumor-associated neutrophils (TANs) and TAMs have

been classified to have an anti-tumor (type 1) or pro-
tumor (type 2) phenotype [74–77]. Pro-tumor effects of
TANs include dampening of CTL response, increased
angiogenesis, and modulation of cellular trafficking [78].
Type 1 TAMs (M1) produce immune-stimulatory cyto-
kines, like IL6, IL12 and CXCL9, that promote infiltra-
tion of CTLs whereas type 2 TAMs (M2) support tumor
growth by diverse pathways, including production of an-
giogenic factors like IL-10 and CCL22, matrix remodel-
ing by proteases, and inhibition of CTLs and DCs [79].
PD-L1 expression by monocytes and TAMs promote
immune evasion and correlate with disease progression
in hepatocellular carcinoma [80]. Fc-gamma receptors
(FcγRs) expressed by M2 TAMs facilitate anti-tumor
response to CTLA-4 inhibition through Treg depletion
[81, 82]. Tumor-infiltrating eosinophils promote infiltra-
tion of CTLs, by varied machnisms, including polarization
of TAMs and normalization of tumor vasculature, and
predict a better prognosis in colon cancer [83, 84].
Tumor-infiltrating mast cells recruit MDSCs and upregu-
late production of pro-inflammatory cytokines resulting in
Treg infiltration and immune suppression [85–87].
DCs, including classical (cDCs) and plasmacytoid DCs

(pDCs), are antigen-presenting cells that prime and regulate
CTL responses. Anti-viral immune responses rely heavily on
pDC-derived type I interferons (IFN) [88]; however in tu-
mors pDCs often play potent immunosuppressive roles [89].
Tumor-infiltrating cDC increase Tcell activation in lung can-
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determining responses to ICI therapy [97]. The com-
position of the gut microbiome has been associated
with response to ICI in pre-clinical models [98, 99]. In
melanoma murine models, commensal Bifidobacterium
has been reported to promote the efficacy of anti–PD-L1
therapy by augmenting the function of DCs leading to
CTL priming and infiltration [98]. Recent studies in
melanoma, lung and kidney cancer patients have
demonstrated association of commensal gut micro-
biome with response to ICI and fecal transplant from
responding patients in germ-free mice resulted in en-
hanced anti-tumor response [100–103]. In melanoma
patients responding to ICI, more abundant species in-
cluded Bifidobacterium, Collinsella, Enterococcus, Clostri-
diales, Rominococcus and Faecalibacterium while low
levels of Akkermansia muciniphila were observed in epi-
thelial cancers not responding to ICI [100–102]. Patients
with a favorable gut microbiota had increased expres-
sion of cytolytic T cell markers, antigen processing and
presentation, and increased ratio of CD8+ CTLs to
FoxP3+CD4+ Tregs [104]. Modulation of gut microbiome
can augment anti-tumor immunotherapy; however, there
are several challenges including optimal composition of
gut microbiome and therapeutic strategy to achieve that
composition.

Matrix remodeling and the inflamed immune
microenvironment: untapped predictive and therapeutic
potential
The tumor microenvironment (TME) is an intricate mi-
lieu of cells hosting the tumor, including endothelial,
mesenchymal and immune cells, along with the extracel-
lular matrix (ECM) [105]. Both cellular and extracellular
components of the TME play a pivotal role in tumor
growth and metastasis [60], and matrix remodeling has
an established role in tumor progression and invasion
[106, 107]. Profiling of evolving TME in the ovarian
cancer metastases revealed a distinct ECM-associated
molecular signature comprising of 22 matrisome genes
that predicted poor overall survival in 13 solid tumors
suggesting a common and potentially targetable matrix
response that influences the course of disease [108].
However, the contribution of the ECM remodeling in
shaping the inflammatory and immune milieu of the
tumor is only beginning to be systematically explored.
(Fig. 1)

Immune-cell trafficking in the TME: mechanisms and
impact on immunotherapy responses
The trafficking of CTLs, Tregs and immune-suppressive
myeloid cells is dependent on several factors encountered
in the ECM, including matrix components, vascular endo-
thelial cells and cell surface glycoproteins [105, 109].
Leakiness of tumor blood vessels regulated by endothelial

cells and pericytes is important for cellular migration, in-
cluding tumor-infiltrating immune cells [110]. Endothelial
cells of the blood and lymphatic vessels proliferate in re-
sponse to vascular endothelial growth factor (VEGF) result-
ing in neoangiogenesis [111, 112]. Angiogenic growth
factors, including VEGF, decrease the expression of cell sur-
face glycoproteins, including selectins, and intercellular and
vascular cell adhesion molecules (ICAM-1 & 2 and
VCAM-1) that mediate cell-cell surface interactions critical
for CTL infiltration [110, 113]. Although endothelial cells
impair CTL infiltration, they selectively promote transmi-
gration of Tregs by upregulation of specific adhesion mole-
cules and receptors like common lymphatic endothelial
and vascular endothelial receptor-1 (CLEVER-1) [114, 115].
In renal cell carcinoma, inhibition of VEGF has resulted in
improved survival through decrease of tumor-infiltrating
Tregs and MDSCs [116, 117]. In renal cancer, combined
PD-1 and VEGF blockade resulted in a response rate of
73%, almost double the response rates seen with ICI mono-
therapy [118]. VEGF inhibits T-cell development in thymus
and VEGF blockade induces preferential commitment of
lymphoid progenitors to the T lineage [119]. VEGF-A is
proangiogenic but also plays a key role in immune
modulation. VEGF-A enhances PD-1 expression on VEGFR-
expressing CD8+ T cells, and promotes an immuno-
suppressive TME by inhibition of DC maturation and
induction of Tregs and MDSCs [120]. VEGF-A block-
ade inhibits Treg proliferation in colorectal cancer
[121]. In melanoma murine models, a combination of
PD-1 with VEGF-A blockade induced a strong and
synergic anti-tumor effect in tumors expressing high
levels of VEGF-A [120]. Decreased VEGF-A gene ex-
pression has been observed in melanoma patients
responding to ICI [40].
ECM cytoskeleton remodeling, structural plasticity and

mechanical forces are increasingly recognized as crucial fac-
tors in immune cell trafficking, activation and immuno-
logical synapse formation [122]. Density of ECM and
basement membrane composition is regulated by stromal
matrix components and plays a key role in immune cell mi-
gration and spatial distribution [123, 124]. DCs and T cells
are able to migrate along collagen type 1 fibrils independent
of integrins and adhesion molecules whereas tumor and
mesenchymal cells use protease and integrin-dependent
migration as they are not able to penetrate dense fibrils
[125–127]. In lung cancer, chemokine-dependent T cell in-
filtration occurs in loose fibronectin and collagen regions
whereas it is impaired in dense matrix fibers surrounding
tumor islets, leading to preferential stromal T cell accu-
mulation and restricted tumor infiltration [128]. Hya-
luronan interacts with T cells to facilitate adhesion and
migration and this interaction is prevented by versican,
highlighting interplay of stromal ECM components in
leukocyte trafficking [129].
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Stromal and matrix-producer cells in the TME:
immunomodulatory roles
Matrix components in the TME are produced by mes-
enchymal stem cells (MSCs), pericytes and cancer-asso-
ciated fibroblasts (CAFs). Tumor-associated MSCs
promote tumor growth and differentiate into pericytes
and CAFs in response to stromal growth factors, in-
cluding platelet-derived growth factor-β (PDGF-β) and
fibroblast growth factors (FGF) [130, 131]. Pericytes
promote structural dysfunction of blood vessels and
suppress host immune response. In melanoma and
colon cancer, pericytes promote T cell anergy [132]. In
hepatocellular carcinoma, pericytes upregulate angio-
genesis and facilitate the influx of immune suppressive
cells [133]. In glioma, increase in pericytes results in

decreased CTLs [134]. In melanoma, reduction in peri-
cytes results in tumor infiltration of CTLs [135].
CAFs regulate the stromal matrix and serve as a pri-

mary source of matrix-associated proteins [131, 136].
CAFs express chemokines of CXC and CC family and
cytokines of IL, IFN and TGF-β family. These orches-
trate the immune-cell crosstalk and play an essential
role in the infiltration of leukocytes in TME [105]. In
gastric and colon cancer models, fibroblast activation
protein-α (FAP)+ CAFs correlate with an immune sup-
pressive phenotype, with increased CCL2 expression
and decreased IFN-gamma and granzyme-B expres-
sion, promoting resistance to ICI therapy that is re-
versed by FAP+ CAF inhibition [137, 138]. However, in
pancreatic cancer models, inhibition of CAFs resulted

Fig. 1 Extracellular matrix (ECM) and the inflamed tumor microenvironment. The TME is an intricate milieu of cells hosting the tumor, including
infiltrating myeloid and lymphoid cells, stromal and mesenchymal cells, and ECM components. Matrix remodeling shapes the inflamed immune
microenvironment. Tumor-infiltrating Tregs and regulatory myeloid cells, including MDSCs, TAMs and TANs, promote a tolerogenic TME.
Tumor-infiltrating CTLs, dendritic cells, matrix components (like CAFs, HA, HSPGs, SLRPs, and VCAN), matrikines (e.g., versikine) and matrix-remodeling
enzymes (MMPs and ADAMTSs) play a vital role in the generation and amplification of the host immune response. Abbreviations: TME; tumor
microenvironment, ECM; extracellular matrix, CTL; cytotoxic lymphocytes, Treg; regulatory T cells, TAM 1 and 2; tumor-associated macrophages types 1
and 2, TAN 1 and 2; tumor-associated neutrophils types 1 and 2, MDSC; myeloid-derived-suppressor cells, PDL1; programmed cell death protein ligand
1, CAFs; cancer-associated fibroblasts, SLRPs; small leucine-rich proteoglycans, HA; hyaluronan, HSPGs; heparin sulfate proteoglycans, VCAN; versican,
MMPs; matrix metalloproteinases, ADAMTSs, A disintegrin and metalloproteinase with thrombospondin motifs
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in immune suppression through infiltration of Tregs
and increased tumor metastasis through disruption of
the stromal fabric [139, 140]. Matrix stiffness by dense
deposition of CAFs and shear stress has shown to activate
the TGF-β pathway [141]. TGF-β in turn, modulates fibro-
blasts, collagens, and matrix enzymes to exert pleiotropic
functional effects by either dampening or promoting T cell
responses [131, 142, 143]. TGF-β also promotes metastasis
by driving epithelial-to-mesenchymal transition [144].

Extracellular matrix components and their role in tumor
inflammation and tumor innate sensing
The extracellular matrix consists of hundreds of different
components that together constitute the matrisome, in-
cluding collagens, glycoproteins, and proteoglycans [145].
About one-third of matrisome proteins are tissue-specific
both in normal and tumor extracellular matrix [146].

Collagens
Collagens provide tensile strength to the stroma and base-
ment membrane. Collagen deposition is primarily medi-
ated by fibroblasts and has a critical role in tumorigenesis
and immune modulation. In colorectal cancer, tumor in-
vasion and growth by increased collagen deposition and
cross-linking has been observed [147]. Collagens act as
functional ligands for the immune inhibitory receptor,
Leukocyte Associated Ig-like Receptor-1 (LAIR-1), and
tumor-expressed collagens can trigger immune inhibitory
signaling via LAIR-1 [148].

Glycoproteins
There are several matrisome glycoproteins that mediate
cellular interactions and define the structure of a tissue
along with collagens. Laminins form the basement mem-
brane that is a potentially important barrier to infiltra-
tion of immune cells in the matrix. Laminins, especially
laminin 411 (α4) and 511 (α5), modulate migration and
polarization of the leukocytes [149]. A higher ratio of
laminin-α4 to laminin-α5 was seen in immune-tolerant
lymph nodes and reducing laminin-α4 induced immune-
mediated rejection in organ transplant murine models
[150]. Laminin-α5 have been shown to inhibit leukocyte
transmigration [151]. Laminins, in particular laminin
511, regulate structural intregrity of basement mem-
brane and promote epithelial-to-mesenchymal transi-
tion (EMT) resulting in tumor invasion and metastases
[152, 153]. Fibronectin and elastin comprise the inter-
stitial matrix and are modulated by fibroblasts. Fibronec-
tin is upregulated by angiogenic growth factors including
VEGF. In lung cancer and melanoma pre-metastatic
niches, hematopoietic cells bind with fibronectin via an in-
tegrin, VLA-4 (Very Late Antigen-4, CD49d/CD29), to
form cellular clusters that precede the arrival of tumor

cells, providing a permissive microenvironment for tumor
growth [154].

Glucosaminoglycans
Glycosaminoglycans, including hyaluronan (HA), heparin,
heparan sulfate, and chondroitin sulfate, are key macro-
molecules that affect cell migration and growth by acting
directly on cell receptors or via interactions with growth
factors [155]. HA is an abundant component of the matrix
that modulates immune cells, by interactions with TLRs
and CD44, and influences tumor growth via regulation of
cellular differentiation and angiogenesis [156]. HA give
dense architecture to TME impeding the infiltration of
drugs and effector immune cells [157]. Functions of HA
vary according to the size. Low molecular weight HA
induces inflammation and angiogenesis, inhibits fibro-
blast differentiation and stimulates pattern-recognition
receptors [156, 158–160]. High molecular weight HA is
anti-angiogenic, promotes structural integrity, and sup-
presses the immune system by increasing activity of
Tregs [156, 160, 161].

Proteoglycans
Proteoglycans contain repeating glycosaminoglycans that
bind several cytokines and growth factors in the matrix.
Heparan sulfate proteoglycans (HSPGs), including trans-
membrane (syndecan), glycosylphosphatidylinisotol (GPI)-
anchored (glypican), secretory granule-derived (serglycin)
and secreted HSPGs (perlecan, agrin and betaglycan), are
large heterogeneous molecules that interact with growth
factors, chemokines and structural proteins of the ECM to
influence cellular differentiation and tumor progression
[162–164]. Enzymatic degradation of HSPGs has been
demonstrated to promote tumor infiltration and antitu-
mor activity of chimeric antigen receptor (CAR)-T cells
[165]. Small leucine-rich proteoglycans (SLRPs), include
decorin, biglycan, fibromodulin, podocan, keratocan, and
others. SLRPs can bind collagens and other matrix com-
ponents; modulate immune cells by TLR, tumor necrosis
factor-alpha (TNFα), and TGF-β pathways; and influence
tumor growth and matrix remodeling by interaction with
growth factors to modulate cellular differentiation and
proliferation [166].
Versican (VCAN), a chondroitin sulfate proteoglycan,

is normally present in small quantities in soft tissues
but it accumulates in the inflamed cancerous and non-
cancerous tissues [167]. It interacts with cells and stromal
matrix components to regulate cell proliferation, migra-
tion, and activation. VCAN accumulation induces inflam-
mation, and recruits and activates immune-suppressive
myeloid cells [168–173]. It exerts tolerogenic effects by
binding to TLR-2 in the tumor-infiltrating myeloid cells
to promote immune evasion and tumor progression
[26, 168, 174–177]. Increased stromal VCAN is associated
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with a decrease in tumor-infiltrating CTLs [178
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VCAN proteolysis and T-cell inflammation appears to
be independent of neoantigen load- VCAN proteolysis
predicted T-cell inflammation in both MSI and MSS
colorectal cancers [186].

Conclusions
The development of novel immunotherapies, including
ICIs, was the twenty-first century breakthrough in oncol-
ogy. Six ICI drugs have been FDA approved and many are
in the pipeline. Although there have been durable remis-
sions with the use of ICIs, less than third of the patients
derive a benefit from these therapies. An often overlooked
facet of immune regulation is the tumor matrix: a diverse
and highly dynamic contributor that plays a vital role in
the generation and proliferation of the host immune re-
sponse. Exploring transcriptional imprint and proteomic
expression of stromal matrix components may identify
promising predictive and prognostic biomarkers. VCAN
proteolysis is one emerging paradigm of matrix remodeling
and immune modulation. Matrix-derived immune bio-
markers promise to generate novel approaches to improve
patient stratification and optimize therapeutic strategies
employing novel immunotherapies.
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