
R157
REVIEW
Therapeutic potential of VIP vs PACAP in diabetes
Ahter D Sanlioglu1,2, Bahri Karacay4, Mustafa Kemal Balci1,3, Thomas S Griffith5 and
Salih Sanlioglu1,2

1Human Gene and Cell Therapy Center, Akdeniz University Hospitals and Clinics, B Block, 1st floor, Campus, Antalya 07058, Turkey

2Department of Medical Biology and Genetics and 3Division of Endocrinology and Metabolism, Department of Internal Medicine, Faculty of Medicine, Akdeniz University,
Antalya 07058, Turkey

4Division of Child Neurology, Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA

5Department of Urology, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Correspondence should be addressed to S Sanlioglu at Human Gene and Cell Therapy Center, Akdeniz University Hospitals and Clinics; Email: sanlioglu@akdeniz.edu.tr)
Abstract
Type 2 diabetes (T2D) is characterized by chronic insulin resistance and a progressive decline in beta-cell function.

Although rigorous glucose control can reduce morbidity and mortality associated with diabetes, achieving optimal long-

term glycemic control remains to be accomplished in many diabetic patients. As beta-cell mass and function inevitably

decline in T2D, exogenous insulin administration is almost unavoidable as a final outcome despite the use of oral

antihyperglycemic agents in many diabetic patients. Pancreatic islet cell death, but not the defect in new islet formation or

beta-cell replication, has been blamed for the decrease in beta-cell mass observed in T2D patients. Thus, therapeutic

approaches designed to protect islet cells from apoptosis could significantly improve themanagement of T2D, because of

its potential to reverse diabetes not just ameliorate glycemia. Therefore, an ideal beta-cell-preserving agent is expected

to protect beta cells from apoptosis and stimulate postprandial insulin secretion along with increasing beta-cell replication

and/or islet neogenesis. One such potential agent, the islet endocrine neuropeptide vasoactive intestinal peptide (VIP)

strongly stimulates postprandial insulin secretion. Because of its broad spectrum of biological functions such as acting as

a potent anti-inflammatory factor through suppression of Th1 immune response, and induction of immune tolerance via

regulatory T cells, VIP has emerged as a promising therapeutic agent for the treatment of many autoimmune diseases

including diabetes.
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Obesity and inflammation

Diabetes is the third most common disease and fourth
leading cause of death in the world (Tabak et al. 2012).
Insulin resistance, impaired glucose tolerance, and
excessive glucagon secretion are the prominent
features of type 2 diabetes (T2D; Knop et al. 2009). As
improper environmental factors (i.e. sedentary lifestyle
and unhealthy eating habits) increase the frequency of
T2D, failure to develop effective treatments also
contributes to the widespread prevalence of diabetes.
Metabolic imbalance between food intake (excessive
eating) and energy expenditure (loss of physical
activity) contributes to the accumulation of toxic
metabolites (diacyl glycerol and ceramide) in liver
and muscle triggering insulin resistance. The buildup
of toxic metabolites increases internal fat deposition,
which serves as a main source of inflammation
ultimately predisposing individuals to a variety of
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diseases including diabetes. Although inflammation is
not always responsible for altered insulin sensitivity, it
has long been suspected that chronic inflammatory
signals may eventually produce insulin resistance. It is
still a matter of debate, however, whether the inflam-
mation associated with obesity is a cause or an effect in
induction of insulin resistance. Nonetheless, obesity is
characterized by the chronic low-level state of inflam-
mation. Accordingly, pancreatic beta cells eventually
fail and die because of the tremendous stress associated
with the need for excessive insulin production.
Insulin resistance, glucose intolerance, and
islet cell loss

Insulin resistance, a major risk factor for cardiovascular
diseases (Niswender 2010), is manifested by the
inability of glucose to enter into peripheral tissues
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leading to hyperglycemia. As long-lasting hyper-
glycemia is toxic to vital organs including the heart,
blood vessels, eyes, kidneys, and nerves, the mortality
rate of diabetics is five times greater than that of
nondiabetics. Insulin resistance combined with
environmental and/or genetic factors can cause
pancreatic beta-cell failure. Genetic modifications, as
a result of improper environmental factors, were initially
held responsible for insulin resistance phenotype
observed in T2D-susceptible individuals. Genome-wide
association studies (GWAS) were recently conducted in
T2D patients, revealing T2D-associated small nucleotide
polymorphisms (SNPs) located on 24 different genetic
loci (Stolerman & Florez 2009). In these studies, the
T2D-related SNP profile was mostly related to insulin
secretion pathways rather than insulin sensitivity. As
single-marker GWAS may generally overlook the
potential interaction of multiple genes responsible for
the development of disease phenotype, pathway-based
GWAS analysis was conducted to identify genes/variants
and relevant biological pathways predisposing individuals
to complex diseases such as diabetes (Liu et al.
2010). Analysis of the data generated from 1000 US
citizens involving screening of 500 000 SNPs demon-
strated that the vasoactive intestinal peptide (VIP)
pathway was significantly associated with both BMI and
fat mass, suggesting the importance of the VIP pathway
in the development of obesity.

During the development of T2D, glucose tolerance
is generally lost long before the actual appearance of
disease. Insulin resistance accompanied by a functional
loss of beta cells leads to hyperglycemia in newly
diagnosed T2D patients, as revealed by a 50% decrease
in pancreatic beta-cell function and 40% loss in islet cell
mass. The fact that no hyperglycemia has been reported
without the functional loss of beta cells supports this
notion. An intense insulin regimen can delay functional
deterioration of pancreatic beta cells in newly diag-
nosed T2D patients, but it cannot entirely prevent it
from happening. Consequently, glycemic control can
be lost despite the use of antiglycemic medications.
Endoplasmic reticulum stress induced by an intense
demand for insulin production has been considered as
the main cause of functional loss of beta cells ultimately
crippling beta-cell function (Leibowitz et al. 2011). In
this scenario, glucose toxicity acting together with
saturated fatty acids, lipoproteins, and proinflamma-
tory cytokines induces inflammation in the pancreas
leading to apoptotic beta-cell destruction.

Weight loss or insulin-sensitizing agents cannot
simply cure obese diabetics, because insulin-resistant
obese individuals may develop a compensatory
mechanism of boosting insulin secretion via increasing
beta-cell mass and stay healthy without developing
diabetes for years. Nevertheless, diabetic patients
(regardless of being obese or lean) possess less
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beta-cell mass compared with healthy individuals due
to eventual destruction of pancreatic beta cells. T2D
only becomes evident when beta-cell mass can no
longer compensate for physiological insulin need. An
increase in beta-cell apoptosis, but not a decrease in
beta-cell replication or new islet formation, has been
blamed for the loss of beta-cell mass observed in T2D
patients (Butler et al. 2003). In this scenario, antigens
from apoptotic beta cells stimulate autoreactive T cells
leading to the autoimmune destruction of pancreatic
beta cells both in T2D and in T1D. Medical intervention
may be useful in recovering beta-cell function or
restoring beta-cell mass, but only during early stages
of T2D. Because the decrease in beta-cell mass is
considered to be one of the most important defects in
T2D patients, antiapoptotic strategies are very crucial in
protecting pancreatic islets from destruction. While the
potential need for an anti-inflammatory medication is
appreciated, both targeted and efficacious anti-inflam-
matory drugs are yet to be developed for the treatment
of T2D. As impaired insulin secretion is the primary
defect in diabetics, agents that stimulate glucose-
induced insulin secretion (insulinotropic agents)
while protecting cells from apoptosis represent a
novel class of medications for the treatment of diabetes.
We will focus this review on the antidiabetic potential of
pituitary adenylate cyclase-activating polypeptide
(PACAP) and VIP – two agents with antiapoptotic and
insulinotropic effects that can augment insulin release
from pancreatic beta cells (Vaudry et al. 2009, Moody
et al. 2011).
Basic mechanism of glucose-induced
insulin secretion

Pancreatic beta cells (islets of Langerhans) are mainly
responsible for controlling blood glucose levels
through insulin secretion. Insufficient release of insulin
from pancreatic islets results in glucose toxicity leading
to T2D (Ahren & Pacini 2005). Glucose is the most
potent stimulator of insulin secretion, but the amount
of insulin released from pancreatic beta cells is
determined by both extracellular and intracellular
signaling including nutritional, neuronal, and hormo-
nal factors. Glucose breakdown in beta cells increases
ATP/ADP ratio, then closes KATP channels. Membrane
depolarization followed by Ca2C influx into the cell
results in insulin secretion (Henquin 2009). In addition
to glucose, gastrointestinal hormones, amino acids,
fatty acids, and neurotransmitters can modulate
glucose-induced insulin secretion via cAMP-mediated
pathways (Henquin 2000). Insulin secretion is naturally
increased following meals, a physiological phenom-
enon known as postprandial insulin secretion. This
process involves the combined action of glucose,
www.endocrinology-journals.org
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Figure 1 Mechanism of VIP-augmented glucose-induced insulin
secretion. While VPAC1 and VPAC2 receptors can be activated
by both VIP and PACAP, PAC1 can only selectively interact with
PACAP. G protein-coupled receptors stimulate G proteins
resulting in the activation of AC, a cAMP-producing enzyme from
ATP. Binding of cAMP to PKA results in dissociation of catalytic
subunits of PKA from regulatory subunits phosphorylating several
cytoplasmic proteins involved in exocytosis of insulin. However,
VIP-induced insulin secretion takes place only in the presence of
glucose. VIP and PACAP have insulinotropic effects on pancreatic
beta cells. Full colour version of this figure available via http://dx.
doi.org/10.1530/JME-12-0156.
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gastrointestinal hormones, and neurotransmitters
released from autonomic nerves. Acetylcholine
released as a result of vagal nerve activation triggers
insulin secretion during the early phase of meal
ingestion (Ahren 2000). Thus, there is a sudden
increase in plasma insulin levels right before digestion
of the meal even before blood glucose excursion
(Ahren & Holst 2001). Apart from acetylcholine,
there are other neurotransmitters that stimulate insulin
secretion via vagal nerve activation.

VIP is a single 28-amino acid peptide hormone
involved in the regulation of the secretory function
of the endocrine pancreas. PACAP, sharing 68% amino
acid sequence identity to VIP, exists in two amidated
forms known as PACAP38 and PACAP27. VIP
expression is exclusively limited to parasympathetic
neurons, whereas PACAP expression is localized to
postganglionic parasympathetic, sympathetic, and sen-
sory neurons in the pancreas. Nonetheless, PACAP and
VIP are both released from the pancreas upon
parasympathetic nerve activation (Hannibal & Fahrenk-
rug 2000). The fact that VIP and PACAP expressions are
also localized to pancreatic islets suggested that PACAP
and VIP could function both as neurotransmitters
released from islet neurons and as endocrine peptides
secreted from pancreatic islets (Yada et al. 1997). Owing
to pleiotropic effects of these neurotransmitters on islet
cell mass and function, numerous studies have
explored the antidiabetic potential of VIP and PACAP
including their potential to modulate glucose-induced
insulin secretion (Nakata et al. 2010, Sakurai et al. 2011).
PACAP/VIP-modified glucose-induced
insulin secretion

PACAP- and VIP-induced signalings are carried out
by two VIP-shared type 2 receptors (VIP/PACAP
receptor 1 (VPAC1) and VPAC2, and one PACAP-
specific type 1 (PAC1) receptor; Fig. 1; Harmar et al.
2012). In situ hybridization studies of pancreatic islets
demonstrated the presence of both PAC1 and VPAC2
expressions in islets, but not VPAC1 (Inagaki et al. 1994,
Kulkarni et al. 1995). PAC1, VPAC1, and VPAC2
expressions were confirmed in pancreatic beta cells
only after using very sensitive RT-PCR methods
(Borboni et al. 1999). These three receptors belong to
the G protein-coupled receptor family and activate
adenylate cyclase (AC) through G proteins (Ahren
2009). As a result of AC activation, cAMP is produced
from ATP and acts as a second messenger for both
PACAP- and VIP-mediated signaling. The increase in
cAMP production also stimulates protein kinase A
(PKA) and/or cAMP exchange factor of EPAC family,
closing KATP channels and leading to Ca2C influx into
cells, and finally inducing insulin secretion from
www.endocrinology-journals.org
secretory vesicles (Eliasson et al. 2003). PACAP is the
most potent insulinotropic peptide presently known,
because it induces insulin secretion even at subpico-
molar concentrations (10K13 M). By comparison,
PACAP and VIP concentrations between the range of
10K11 and 10K8 M are equipotent in stimulating
glucose-induced insulin secretion from beta cells
(Bertrand et al. 1996). Interestingly, VIP- and/or
PACAP-induced Ca2C increase can only take place in
the presence of glucose. While glucose initiates insulin
secretion, VIP and PACAP amplify glucose-induced
insulin secretion pathways. For example, an increase in
the ATP/ADP ratio as a result of glucose breakdown
activates L-type calcium channels via membrane
depolarization, which is induced by the closing of
KATP channels. Further increase in the cytoplasmic
concentration of calcium can be achieved either with
activation of PKA and/or opening of nonselective
cation channels, both of which are activated by VIP
and PACAP signaling (Ahren 2008).

To determine the extent to which age or metabolic
status influence insulin response of pancreatic islets
to PACAP and VIP, the insulin response has been
investigated in obese vs lean, young vs aged mice
(Persson-Sjogren et al. 2006). Intriguingly, VIP and
PACAP induced strong insulin secretion from islets
isolated from young and obese mice, while islets
isolated from lean mice exhibited only a modest effect.
As islets isolated from the aged mice, regardless of
Journal of Molecular Endocrinology (2012) 49, R157–R167
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being lean or obese, displayed less sensitivity toward
these neuropeptides, both age and metabolic status
have to be taken into account when considering
optimum insulin secretion induced by PACAP and
VIP. Thus, deregulated PACAP and VIP signaling might
be responsible for the reduced glucose-induced
insulin secretion observed in patients with T2D and/or
elderly individuals.

PAC1 activates phospholipase C (PLC) in some
tissues (Spengler et al. 1993), but the extent to which
PACAP can activate PLC signaling has yet to be proven
as enhanced inositol phosphate production has not
been observed in pancreatic islets (Jamen et al. 2002).
The fact that intracellular Ca2C concentrations
increase in isolated pancreatic alpha cells (just like in
beta cells), leading to glucagon secretion following
PACAP stimulation, demonstrates that similar signal
transduction pathways are in place in both pancreatic
cell types.
Use of genetically modified mouse models
to determine islet-related functional roles
of PACAP and VIP

To reveal functional roles of PACAP and VIP on
pancreatic islets, PACAPK/K mice (Hashimoto et al.
2001), VIPK/K mice (Martin et al. 2010), and
transgenic mice overexpressing PACAP (Yamamoto
et al. 2003) or VIP (Kato et al. 1996) specifically in
beta cells have been generated. Hyperactivity, reduced
fertility, increased mortality, and altered brain functions
were detected in PACAPK/K mice (Shintani et al. 2003).
Although reduced insulin secretion was detected
following i.p. glucose injections in PACAPK/K mice,
no change in glucose tolerance was evident. Interest-
ingly, both glucose tolerance and insulin sensitivity were
altered in diabetic obese mice upon injection with
PACAP receptor antagonist (Green et al. 2006). Despite
having elevated plasma glucose, insulin, and leptin
levels, there was no alteration in islet cell mass in
VIPK/K mice (Martin et al. 2010). The lack of alteration
in islet cell mass (including subtle phenotypic vari-
ations) in VIPK/K mice was attributed to the presence
of some compensatory mechanisms indulging PACAP-
induced activation of VPAC1 and/or VPAC2 receptors
that may potentially substitute for VIP activity in
VIPK/K mice. While a diabetic-like state was evident
in the VIPK/K mice, a series of physiological alterations
such as reduced leptin receptor activity and increased
glucagon-like peptide 1 (GLP1) expression in the
tongue occurred in knockout animals as means to
ameliorate diabetic-like pathology. Additional studies
with VIP/PHI-deficient mice showed the inability of
these mice to follow a coherent circadian rhythm
Journal of Molecular Endocrinology (2012) 49, R157–R167
(Colwell et al. 2003) and moderate pulmonary arterial
hypertension (PAH; Said et al. 2007).

PACAP has been primarily evaluated as an insulin
secretagogue in numerous studies, but transgenic
expression of PACAP revealed additional information
about its proliferative effect on islet cell mass.
Transgenic mice overexpressing PACAP in pancreatic
beta cells displayed elevated insulin secretion after oral
glucose loading, but no change in plasma glucose
and glucagon levels was reported (Yamamoto et al.
2003). In addition to attenuating streptozotocin
(STZ)-induced hyperglycemia, morphometric analysis
revealed increased beta-cell mass in PACAP-transgenic
mice, suggesting an essential role for PACAP in islet cell
proliferation and differentiation. Intriguingly, PACAP
has opposing mitogenic effects depending on target
cell type (Sherwood et al. 2000). For example, PAC1
activation may result in either the activation of
peripheral sympathetic neuroblasts or inhibition of
cerebral cortical precursors (Lu et al. 1998). The
differences in PACAP action are mainly attributed to
the presence of alternative splice variants of PAC1
receptor resulting in the activation of divergent
signaling pathways (Meyer 2006). PACAP in the CNS
plays very important roles in neuroprotection of the
adult brain through inhibition of the MAPK family
(JNK/SAPK and P38). PACAP can also induce astrocyte
differentiation by stimulating IL6 secretion during
development (Shioda et al. 2006). Despite the
coronary vasodilatative effects of PACAP and VIP,
VIP possesses antiproliferative effects both on vascular
(Hultgardh-Nilsson et al. 1988) and airway (Maruno
et al. 1995) smooth muscle cells. The fact that VIPK/K

mice displayed PAH supports this observation
(Said et al. 2007).

Transgenic mice overexpressing VIP in pancreatic
beta cells manifested reduced plasma glucose levels
(Kato et al. 1994), but more importantly VIP expression
in beta cells ameliorated glucose intolerance in
70% of depancreatized mice. These data suggest that
VIP secreted from the transgenic beta cells effectively
augmented glucose-induced insulin secretion (Fig. 2).
VIP and PACAP have similar functions in beta cells, but
the differences in glucose tolerance suggest that these
neuroendocrine hormones have different roles on
peripheral tissues. For example, adrenalin-induced
hepatic glucose production occurred after PACAP
administration but not after VIP administration (Yokota
et al. 1995). Despite the ability of VIP to augment
glucose-induced insulin secretion, it has yet to be
determined to what extent VIP overexpression in
pancreatic beta cells influences islet cell mass (Fig. 2).

Examining PACAP or VIP receptor knockout mice is
another way of assessing functional roles of PACAP and
VIP on pancreatic islets. PAC1K/K mice displayed
50% decrease in PACAP-mediated glucose-induced
www.endocrinology-journals.org
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Figure 2 Potential functional roles of VIP on pancreatic beta cells. VIP treatment
augments glucose-induced insulin secretion lowering blood glucose of diabetics.
Although ectopic PACAP expression has been shown to enhance proliferation of
pancreatic beta cells in STZ-induced diabetes, whether or not VIP overexpression in
pancreatic beta cells would result in a similar phenotype has not been tested yet. Full
colour version of this figure available via http://dx.doi.org/10.1530/JME-12-0156.
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insulin secretion without any change in basal insulin or
plasma glucose levels (Jamen et al. 2000). Glucose-
induced insulin secretion was also reduced in PAC1K/K

mice as revealed by oral and i.v. glucose administration.
Consequently, PAC1 receptors are needed not only for
PACAP-mediated insulin secretion but also for glucose-
induced insulin secretion, suggesting that effective
glucose-induced insulin secretion requires PACAP
signaling pathways just like with GLP1 (Vilsboll &
Holst 2004). The fact that glucose-induced insulin
secretion is decreased from freshly isolated islets when
PACAP neutralizing antibodies are added confirmed
that PACAP is an autocrine and/or paracrine acting
islet neuropeptide necessary for optimal glucose-
induced insulin secretion (Yada et al. 1997, Filipsson
et al. 1999). In addition, reduced glucagon response was
reported in insulin-mediated experimentally induced
hypoglycemia in PAC1K/K mice (Persson & Ahren
2002). Thus, PACAP-stimulated PAC1 receptor acti-
vation mediates glucagon response to insulin-induced
hypoglycemia.

Assessments of VIP receptor knockout mice revealed
improved lean mass but decreased fat mass associated
with a reduction in body weight in VPAC2K/K mice
(Asnicar et al. 2002). Although glucose-induced insulin
secretion was decreased, no alteration on glucose
tolerance was reported in oral glucose tolerance tests
performed in VPAC2K/K mice. Moreover, the fact that
glucose is cleared faster from the blood upon insulin
injection suggests that the VPAC2 knockout phenotype
increased insulin sensitivity. These results demonstrate
www.endocrinology-journals.org
that VPAC2 receptors are also needed for optimum
insulin release from pancreatic islets as well.

VPAC1-null mutant mice have recently been
generated resulting in fetal, neonatal, and postnatal
death due to growth retardation, intestinal obstruc-
tions, and hypoglycemia (Fabricius et al. 2011).
Intriguingly, VPAC1 knockout mice manifested
lower baseline blood glucose levels compared with
wild-type littermates. Oral glucose challenge demon-
strated rapid hypoglycemia and a failure to restore
blood glucose to normal levels by 2 h. These results
demonstrated that VPAC1 is required for both
embryonic/neonatal development and proper func-
tion of endocrine pancreas.
Insulinotropic agents for the treatment of
diabetes

Restoring plasma glucose to prediabetic levels can
reduce microvascular and neurological complications
of diabetes. However, current antidiabetic drugs such
as sulphonylurea, metphormin, and insulin provide
limited long-term glycemic control due to the pro-
gressive nature of diabetes (Peterson 2012). By
comparison, incretin-based therapeutics have the
potential to restore beta-cell function and reverse islet
cell loss observed in T2D (Aroda et al. 2012, Vilsboll et al.
2012). As demonstrated in experimental animal
models, GLP1 is one of the most potent insulinotropic
peptides having a significant impact on beta-cell mass
Journal of Molecular Endocrinology (2012) 49, R157–R167
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(Ahren et al. 2003). Just like VIP and PACAP, GLP1
belongs to the secretin family of proteins and is
currently in clinical use for the treatment of patients
with T2D (Dejager & Schweizer 2012). GLP1 is naturally
released from the gut into circulation after a meal.
Because natural peptide forms of GLP1 and glucose-
dependent insulinotropic peptide (GIP; incretins) are
quickly destroyed by dipeptidyl peptidases 4 (DPP4),
these intestinal hormones currently have limited
clinical utility (Vilsboll 2009). As a result, DPP4-resistant
GLP1 receptor agonists (Exendin 4; exanatide) and
DPP inhibitors that increase the stability of endogenous
incretin hormones were developed (Aroda et al. 2012).
DDP4 inhibitors were recently recommended by the
American Diabetes Association (ADA) and the
European Association for the Study of Diabetes
(EASD) as an add-on therapy to metphormin, especially
when patients are intolerant of or have contraindica-
tions to sulfonylurea and insulin. However, gastro-
intestinal side effects (45% of the diabetic patients
using exanatide) and pancreatitis risk observed in some
patients impose a restriction in clinical use of exanatide
as a therapeutic agent, prompting scientists to
explore safer and more effective new alternatives to
antidiabetic agents.
Glucagon receptor antagonists and VPAC2
selective agonists for T2D

Because VIP and PACAP are insulinotropic peptides,
activation of PAC1 or VPAC2 receptors potentially
represents a novel treatment modality for T2D in
terms of insulin secretion. For example, daily PACAP
injection in high-fat diet-induced obesity or Goto-
Kakizaki rats enhanced glucose tolerance and reduced
circulating glucose levels (Yada et al. 2000). However,
PACAP-mediated epinephrine secretion and plasma
glucagon levels may worsen prognosis of T2D instead of
improving it. More importantly, PACAP-induced severe
vasodilatation (hypotension) precludes its future utility
as a therapeutic agent for T2D (Zhu et al. 2003). VIP-
mediated glucagon secretion has also been reported by
previous studies (Ahren 1991). Interestingly, both VIP
and PACAP stimulated glucagon secretion from pan-
creas perfused with only 2.8 mM glucose but not with
8.3 mM of glucose. It is well established that VIP is
released from the pancreas during vagal nerve stimu-
lation. Parasympathetic nerve activation induced by
hypoglycemia results in VIP release from pancreas
stimulating glucagon secretion to maintain euglycemia.
Thus, VIP-induced glucagon secretion has been
suggested to be a mechanism to counterbalance insulin-
induced hypoglycemia (Havel et al. 1997). In accordance
with this observation, experimental and clinical studies
employing VIP have not been associated with any
Journal of Molecular Endocrinology (2012) 49, R157–R167
concerns regarding its potential effect on glucagon levels.
Nevertheless, because constant hyperglucagonemia is
the main contributor to hyperglycemia (Reaven et al.
1987), blocking glucagon signaling was tested as a
therapeutic strategy for T2D (Sloop et al. 2005). By this
token, injection of a glucagon receptor antagonist
developed for high-fat diet-induced insulin resistance
decreased hyperglycemia and augmented islet function
improving insulin sensitivity (Winzell et al. 2007).

On the other hand, VPAC2 receptors are highly
expressed on pancreatic islets and they are not involved
in glycogen breakdown in the liver. Therefore, the
extent to which VPAC2 selective agonists enhance
insulin secretion and facilitate glucose tolerance with-
out stimulating hepatic glucose production has been
investigated. VPAC2 selective agonists were very effec-
tive in augmenting insulin secretion without causing
hypoglycemia (Tsutsumi et al. 2002). However, as the
first generation of VPAC2 selective agonists manifested
stability problems in vivo, new DPP4-resistant VPAC2
analogs were generated (Pan et al. 2007) and studies are
underway to determine the efficacy of these new
therapeutic compounds. Because VPAC2 selective
agonists are considered to be new therapeutic agents
for the treatment of T2D, and VIP is the natural
ligand for VPAC2, VIP-mediated gene transfer
strategies also represent an experimental treatment
modality for diabetes.
VIP-mediated gene transfer studies

T1D, also known as insulin-dependent diabetes
mellitus, is a metabolic disease caused by autoimmune
destruction of pancreatic beta cells secreting insulin
(Dirice et al. 2009). Natural immune cells and Th1
cytokines (Sanlioglu et al. 2008b) play key roles in the
generation of inflammation causing pancreatic tissue
damage during the early phase of T1D (Sanlioglu et al.
2008a). As VIP can skew the proinflammatory cytokine
profile to an anti-inflammatory response, the extent to
which VIP has any therapeutic effect on autoimmune
model of diabetes has been tested. VIP injection
prevented the development of T1D in non-obese
diabetic (NOD) mice (Rosignoli et al. 2006). Protection
from diabetes was attributed to regulatory T cell
activation, suppression of Th1 cytokines, and increased
synthesis of IL10. As diabetes naturally develops in
NOD mice, the process can be enhanced and
synchronized using cyclophosphamide (CYD), a drug
that disrupts the Th1/Th2 balance favoring Th1 type
response (Dirice et al. 2011). Transfer of plasmid DNA
encoding VIP also reduced the incidence of diabetes
in CYD-injected NOD mice (Herrera et al. 2006),
where the observed therapeutic effect was ascribed to
the immune regulatory function of VIP modifying the
www.endocrinology-journals.org
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cytokine profile from Th1 to Th2. VIP-mediated gene
transfer studies are not only limited to autoimmune
diabetes but also include other autoimmune diseases,
as explained below.

NOD mice exhibit decreased salivary gland function
and lymphocytic infiltration on exocrine glands, similar
to what is seen in humans with Sjogren’s syndrome (Kok
et al. 2003). Administration of rAAV-2 vector encoding
human VIP gene into submandibular glands of NOD
mice resulted in immunosuppression of the Sjogren’s
phenotype improving salivary gland flow (Lodde et al.
2006). Rheumatoid arthritis (RA) is another inflam-
matory disease characterized by uncontrollable prolifer-
ation of synovial cells (Bisgin et al. 2010). Experimental
gene therapy modalities are being developed to
facilitate the death of apoptosis-resistant synovial cells
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Figure 3 VIP-induced immune tolerance. V
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in RA (Terzioglu et al. 2007). TNFa inhibitors have the
potential for serious side effects due to systemic
immunosuppression, so the anti-inflammatory proper-
ties of VIP have been explored in an experimental
model of collagen-induced arthritis (CIA). Delivery of
VIP resulted in a therapeutic benefit in CIA involving
CD4CCD25C regulatory T cells (Gonzalez-Rey et al.
2006). Likewise, intraperitoneal delivery of lentiviral
vectors encoding VIP (LentiVIP), generated an anti-
inflammatory response inducing CD4CCD25CFoxP3C

regulatory T cell activation characterized by an increase
in IL10 and TGFb synthesis within lymph nodes and
joints (Delgado et al. 2008). Lastly, the argument of VIP
as a potential therapeutic agent has been revealed in
patients with PAH (St Hilaire et al. 2009), where there is
insufficient VIP expression detected in serum and lung
+ Cd25–
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tissue (Petkov et al. 2003). All these results suggest that
VIP-mediated gene therapy is a viable strategy against
autoimmune diseases including autoimmune diabetes.
Current status of VIP-mediated therapy and
future scenarios for diabetes treatment

All patients with T1D and most patients with T2D
become insulin dependent due to the progressive
nature of the disease, eventually leading to beta-cell
loss (Sanlioglu et al. 2012). The increase in apoptosis,
but not the decrease in new islet formation or beta-cell
replication, is blamed for the loss of beta-cell mass
observed in patients with T2D (Butler et al. 2003). Thus,
therapeutic approaches that either interfere with
apoptosis of beta cells and/or increase beta-cell mass
have the potential not only for managing hyperglycemia
but also for reversing disease progression (Peters 2010).

VIP is a neuropeptide of the secretin family just like
GLP1 and PACAP with equipotent insulinotropic
effects. More importantly, it is an effective anti-
inflammatory agent involved in suppression of Th1
immune response and activation of regulatory Tcells for
inducing immune tolerance (Fig. 3). For this reason,
VIP is now considered to be an emerging therapeutic
agent for autoimmune diseases such as RA, ulcerative
colitis, multiple sclerosis, uveoretinitis, and T1D.
Consequently, therapeutic efficacy of VIP has been
tested in clinical trials of obstructive pulmonary disease,
pulmonary hypertension, sepsis, and migraine (Clin-
icalTrials.gov identifiers: NCT00272896, NCT00464932,
NCT00004494, and NCT00255320). These clinical trials
demonstrated that VIP is well tolerated and manifested
only minor side effects in treated patients.

Despite all these advantages, VIP is extremely
sensitive to peptidases (DPP4) present in most tissues.
Thus, multiple injections of VIP at high doses are
required to observe any therapeutic effect. DPP4
degradation of VIP and PACAP has drastic conse-
quences in the clinical utility of these neuropeptides.
DPP4 is a cell surface serine dipeptidase involved in the
regulation of the functional activities of many natural
peptides including GLP1, GIP, VIP, and PACAP (Zhu
et al. 2003). This ubiquitous N-terminal dipeptidase
functions to liberate dipeptides (Xaa-Pro or Xaa-Ala)
from the N-terminus of regulatory peptides (Mentlein
1999). Because the amino terminal domains of VIP and
PACAP are crucial for the activation of their cognitive
receptors, cleavage of these peptides by DPP4 blocks
their agonistic activity (Lambeir et al. 2001). Further-
more, the N-terminally truncated peptides generated by
DPP-4 function as antagonists (Robberecht et al. 1992).

Contrary to using peptide forms of therapeutic
agents, some gene therapy vectors can provide long-
term and stable gene expression. Thus, viral and
Journal of Molecular Endocrinology (2012) 49, R157–R167
nonviral VIP gene delivery methods have been under
development (Lodde et al. 2004, Herrera et al. 2006).
Despite the successful results obtained from these
studies, especially against autoimmune diseases, some
limitations of using gene therapy vectors were revealed
in recent studies. For example, the clinical efficacy of
plasmid DNA transfer is low. Adenoviral vectors only
provide transient gene expression due to the antigenic
character of adenoviral epitopes (Doerschug et al.
2002). AAV has limited cargo capacity and low
transduction efficiency (Sanlioglu et al. 2001).
Compared with other gene therapy vectors, lentiviral
vectors appear to be the vector of choice when
considering long-term gene expression, transduction
efficacy, and safety (Elsner et al. 2012). As third-
generation lentiviral vectors can inactivate themselves
following integration into the genome, they do not
possess the insertional mutagenesis risk associated with
retroviral vectors inducing oncogene activation.
However, the efficacy of lentivirus-mediated VIP
delivery remains to be tested in experimental animal
model of diabetes. Thus, gene therapy approaches can
be employed to generate functional VIP rather than
VIP precursors having little or no biological activity.

To give an example of such a scenario, a high-fat
diet/low-dose STZ diabetic animal model (Srinivasan
et al. 2005) can be used to test the therapeutic efficacy of
lentivirus-mediated VIP gene delivery against T2D. In
this model, insulin resistance is generated via feeding
animals with diets enriched in fat (Winzell & Ahren
2004), and hyperglycemia is induced by STZ injection.
Because of induction of insulin resistance and obesity,
high-fat diet/low-dose STZ-treated rodents simulate
natural disease progression and metabolic charac-
teristics typical of individuals at increased risk for
developing T2D. Consequently, the high-fat diet/
low-dose STZ model would be very valuable in testing
of the therapeutic efficacy of lentivirus-mediated islet-
restricted VIP gene expression. Properties of VIP
relevant to T2D therapy may include but are not limited
to insulinotropic action to avoid glucose intolerance
(Fig. 2), anti-inflammatory properties to avert apoptosis
(Fig. 3), and stimulation of islet cell proliferation/
differentiation (?) to compensate beta-cell loss (Fig. 2).

In conclusion, despite the presence of numerous
novel therapeutic agents developed against T2D, a rare
disease of the past became a modern day pandemic.
Hence, discovery of novel therapeutic interventions
with the potential to rejuvenate beta-cell function and
mass will be very crucial in bringing a modern day
pandemic disease down to its original rare status.
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