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Abstract
For most bones, elongation is driven primarily by chondrogenesis at the growth plates.

This process results from chondrocyte proliferation, hypertrophy, and extracellular matrix

secretion, and it is carefully orchestrated by complex networks of local paracrine factors and

modulated by endocrine factors. We review here recent advances in the understanding of

growth plate physiology. These advances include new approaches to study expression

patterns of large numbers of genes in the growth plate, using microdissection followed by

microarray. This approach has been combined with genome-wide association studies to

provide insights into the regulation of the human growth plate. We also review recent

studies elucidating the roles of bone morphogenetic proteins, fibroblast growth factors,

C-type natriuretic peptide, and suppressor of cytokine signaling in the local regulation of

growth plate chondrogenesis and longitudinal bone growth.
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Introduction
In the postnatal mammal, elongation of tubular bones

occurs at the growth plate. This cartilaginous structure

comprises three zones that contain chondrocytes at

different stages of differentiation (Kronenberg 2003). The

zone closest to the epiphysis is termed the resting zone.

The resting zone is thought to contain chondrocytes that

serve as progenitor cells, which can generate new clones of

rapidly proliferating chondrocytes (Abad et al. 2002). Each

derivative clone forms a cell column aligned parallel to

the long axis of the bone. As these cells replicate, the two

daughters line up parallel to the long axis to maintain the

columnar organization. The chondrocytes farther from

the epiphysis undergo termination differentiation, in

which they cease proliferating and enlarge to form the

hypertrophic zone. Throughout the growth plate,
chondrocytes secrete proteins and proteoglycans that

form the cartilage extracellular matrix. In the resting and

proliferative zones, collagen II represents a major com-

ponent of this matrix, whereas in the hypertrophic zone,

there is a shift to production of collagen X (Kronenberg

2003). The hypertrophic chondrocytes farthest from the

epiphysis undergo cell death. This cell death has been

attributed to apoptosis, but more recent evidence chal-

lenges this conclusion (Emons et al. 2009). This region is

then invaded from the metaphyseal bone by blood vessels

and differentiating osteoblasts and osteoclasts, which

remodel the cartilage into bone tissue. The net result of

this chondrogenesis and ossification is the formation of

new bone underneath the growth plate and therefore

bone elongation.
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The integrated processes of chondrocyte differen-

tiation, proliferation, cartilage matrix secretion, cell

death, and vascular and bone cell invasion are regulated

and coordinated by a complex array of paracrine signaling

molecules, which includes insulin-like growth factors

(IGFs), fibroblast growth factors (FGFs), Indian hedgehog

(IHH) and parathyroid hormone-related protein (PTHrP),

bonemorphogenetic proteins (BMPs), WNTs, and vascular

endothelial growth factors (VEGFs). In addition, the rate

of endochondral bone formation at the growth plate

is regulated by an array of endocrine signals, including

growth hormone (GH), IGF1, thyroid hormone, gluco-

corticoids, androgens, and estrogens. One of the principal

apparent functions of this endocrine system is to allow

rapid growth only when the organism is able to consume

abundant nutrients.

Because the growth plate requires so many paracrine

and endocrine signaling pathways to function normally,

mutations in many genes involved in these signaling

pathways lead to bones that are short, which in humans

presents as short stature, and often malformed, which

presents as a skeletal dysplasia. Thus, mutations in more

than 200 genes cause distinct skeletal dysplasias (Warman

et al. 2011).

Although there has been remarkable progress recently

in our understanding of these signaling pathways that

regulate the postnatal growth plate, much remains to be

learned. In this review, we present some recent studies

givingnew insights into these control systems. Thenumber

of studies to be reviewed had to be limited, and therefore

not all important areas of progress could be included.
Delineating gene expression patterns in the
mammalian postnatal growth plate

In the past, gene expression within the growth plate

has typically been studied by in situ hybridization, which

providesmuch useful information but necessarily involves

studying one candidate gene at a time. However, recently,

methods have been developed to study expression

patterns of large numbers of genes in the growth plate,

using microdissection, followed by microarray analysis

(Nilsson et al. 2007). Frozen sections of the growth plate

are first microdissected into their constituent zones

after which RNA is isolated and mRNA patterns are

assessed by microarray analysis. Presumably, the method

could readily be modified to use RNA sequencing in place

of microarray analysis.

This approach was applied to the proximal tibiae of

1-week-old rats and the resulting expression data were
http://jme.endocrinology-journals.org
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analyzed using bioinformatic algorithms (Lui et al. 2010).

Expression in the resting and the proliferative zones

were compared to identify pathways involved in the

differentiation of resting zone to proliferative zone

chondrocytes. This analysis implicated vitamin D recep-

tor/retinoid X receptor (VDR/RXR) activation, platelet-

derived growth factor (PDGF) signaling, BMP signaling,

and notch signaling. Similar analyses of the proliferative

to hypertrophic differentiation step implicated p53

signaling, ephrin receptor signaling, oncostatin M signal-

ing, and BMP signaling (Lui et al. 2010).
Evidence for a BMP signaling gradient across
the growth plate

As noted above, microarray analysis implicated BMP

signaling in both the differentiation of resting zone

chondrocytes to proliferative zone chondrocytes and of

proliferative zone chondrocytes to hypertrophic zone

chondrocytes. More extensive analysis of the BMP signal-

ing pathway using microdissection followed by real-time

PCR has shown evidence for a BMP signaling gradient

across the growth plate with the greatest BMP signaling

occurring in the hypertrophic zone and the least in the

resting zone (Nilsson et al. 2007). Consistent with this

concept, immunolocalization of phosphorylated SMAD1,

SMAD5, and SMAD8 in the growth plate increases with

increasing distance from the epiphysis (Yoon et al. 2006).

These patterns indicate that a BMP signaling gradient

across the growth plate may contribute to the progressive

differentiation of resting to proliferative to hypertrophic

chondrocytes (Fig. 1). Low levels of BMP signaling in the

resting zone may help maintain the progenitor cell state.

Farther from the epiphysis, greater BMP signaling may

induce differentiation to proliferative chondrocytes and,

even farther from the epiphysis, yet greater BMP signaling

may induce terminal differentiation to hypertrophic

chondrocytes. Functional studies support this model.

BMP2 stimulates resting zone chondrocytes to proliferate

and stimulates proliferative zone chondrocytes to hyper-

trophy in an organ culture model (De Luca et al. 2001).

In vivo overexpression of constitutively active Bmpr1a

in mice has no effect on proliferation but accelerates

hypertrophic differentiation (Kobayashi et al. 2005).

Recent evidence specifically implicates Bmp2 in this

process. In mice, conditional targeted ablation of Bmp2

causes severe defects in chondrocyte proliferation and

differentiation through a mechanism involving RUNX2

protein levels (Shu et al. 2011). The effects of BMPs on the

growth plate appear to involve the canonical BMP
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Figure 1

Hypothesized BMP action gradient in the growth plate. Based on

microarray and real-time PCR data, BMP agonists (green) and antagonists

(red) are expressed primarily in the hypertrophic zone and resting zone

respectively. These findings are indicative of a BMP signaling gradient

across the growth plate that may be important for spatial control of

chondrocyte differentiation within the growth plate.
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signaling pathway in that combined loss of regulatory

Smad1 and Smad5 inmice causes a severe skeletal dysplasia

with impaired proliferation and hypertrophic differen-

tiation (Retting et al. 2009). Although this review focuses

on the function of the postnatal growth plate, it is

important to recognize that BMP signaling affects

embryonic development of the cartilaginous skeleton

and thus genetic manipulations in mice may have

combined embryonic and postnatal effects.

In addition to BMPs, other paracrine systems also

appear to form gradients across the growth plate. Of these,

the best studied one involves PTHrP. In the embryonic

skeleton, PTHrP is secreted by periarticular chondrocytes of

long bones (Kronenberg 2003). PTHrP diffuses across the

growth cartilage maintaining chondrocytes in the proli-

ferative state (Hirai et al. 2011). Cells more distant from

the source of PTHrP undergo hypertrophic differentiation.

The prehypertrophic and hypertrophic chondrocytes then

secrete IHH, which positively regulates PTHrP production

and also has independent effects on chondrocyte
http://jme.endocrinology-journals.org
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differentiation. More recent evidence has indicated that

the IHH–PTHrP system is maintained in the postnatal

growth plate, but that the PTHrP source shifts to the resting

zone (Koziel et al. 2005, Chau et al. 2011, Hirai et al. 2011).
Genome-wide association studies provide
insights into the regulation of the human
growth plate

A recent large meta-analysis of genome-wide association

(GWA) studies identified at least 180 loci that influence

adult height (Lango et al. 2010). Some of the genes within

these loci probably affect height through endocrine

mechanisms, such as GH1, which encodes GH, and GHSR,

which encodes the GH secretagogue receptor. However,

other genes probably affect height through a direct, local

effect on the growth plate, such as ACAN, which encodes

aggrecan, a critical proteoglycan component of the

cartilage matrix. Thus, GWA studies of height have the

potential to provide important insights into themolecular

pathways regulating the human growth plate.

However, one challenge in the analysis of GWA data is

identification thecausative gene(s) at eachposition.Atmost

positions, there aremultiple genes that are sufficiently close

to account for the linkage to adult stature, and thus

additional information is needed to determine which of

these genes modulates height andwhich aremerely located

close to the causative genes. We therefore used a mouse

knockoutphenotypedatabase andhumandisease databases

to identify genes within the GWA loci that are probably

required for normal growth plate function. We also used

expressionmicroarray studies ofmouse and rat growthplate

to identifygenes thathavehigher expression ingrowthplate

cartilage than in other tissues, genes that are spatially

regulated across different zones in the growth plate and/or

genes that are temporally regulated in the growth plate

during postnatal life, as growth plate function declines.

The combined phenotype–expression–GWA analysis

implicated 78 genes in human growth plate function (Lui

et al. 2012). Of these, some were already known to function

in the human growth plate because human mutations

affect the growth plate. In addition, many of the implicated

genes participate in molecular pathways that have pre-

viously been implicated in the regulation of growth plate

chondrocyte proliferation and differentiation in themouse,

such as the IHH–PTHrP system (GLI2, IHH, HHIP, PTCH1,

and PTHLH lie within GWA loci), BMP/TGF superfamily

signaling (TGFB2, BMP6, LTBP3, NOG, BMP2, and GDF5),

C-type natriuretic peptide signaling (NPPC, PRKG2, and

NPR3), GH–IGF1 signaling (IGF2BP2, IGF2BP3, and IGF1R),
Published by Bioscientifica Ltd

Downloaded from Bioscientifica.com at 01/08/2025 03:19:49AM
via free access

http://jme.endocrinology-journals.org
http://dx.doi.org/10.1530/JME-14-0022


Jo
u
rn
a
l
o
f
M
o
le
cu

la
r
E
n
d
o
cr
in
o
lo
g
y

Thematic Review J C LUI and others Molecular pathways in
growth plate

53 :1 T4
and FGF signaling (FGF18). This analysis indicates that

these pathways are important not only in the mouse but

also in the human growth plate.

In addition, the method implicates many genes not

previously known to regulate either the mouse or human

growth plate (Lui et al. 2012). For example, the analysis

implicates IGF2BP2 and IGF2BP3 based on presence in the

GWA loci and expression patterns in the growth plate.

These mRNA-binding proteins have previously been

implicated in mRNA localization, turnover, and trans-

lational control (Christiansen et al. 2009), and mRNA

targets include IGF2, H19, c-Myc, b-actin (ACTB) and

GDF1. Although neither IGF2BP2 nor IGF2BP3 has a

recognized mouse or human phenotype, targeted ablation

of the third member of the gene family, IGF2BP1, impairs

bone growth and advances mineralization (Hansen et al.

2004). Thus, the data indicate that this family of proteins

regulates growth plate chondrogenesis in both mice and

humans.
Loss-of-function mutations of CNP impair
and gain-of-function mutations stimulate
bone growth

One interesting pathway implicated by the combined

microarray–GWA analysis and by previous studies is

C-type natriuretic peptide (CNP or NPPC) signaling (Lui

et al. 2012). CNP belongs to a family of three natriuretic

peptides, with ANP and BNP being the other two members

(Potter et al. 2006). Unlike the other two members, CNP

does not stimulate ‘natriuresis’ at physiological concen-

trations. Instead, CNP is found at high concentrations

in cartilage (Hagiwara et al. 1994) and functions primarily

as a local cartilage growth factor to stimulate growth plate

chondrocytes (Pejchalova et al. 2007). Interestingly,

homozygous loss-of-function mutations of the CNP

receptor, natriuretic peptide receptor B (NPRB or NPR2),

which is also highly expressed in the growth plate, cause

acromesomelic dysplasia type Maroteaux in humans

(Bartels et al. 2004), while heterozygous mutations of

NPR2 are associated with short stature (Olney et al. 2006,

Vasques et al. 2013). Conversely, activating mutations

of NPR2 (Miura et al. 2012, Hannema et al. 2013) and

overexpression of NPPC (Agoston et al. 2007) in humans

both cause overgrowth disorders. These growth phenotypes

have been replicated in knockout and transgenicmice, with

Nppc or Npr2 knockout causing severely shortened bones

(Chusho et al. 2001, Tsuji & Kunieda 2005) and transgenic

expression of activated Npr2 causing increased bone length

(Miura et al. 2012). At the cellular level, CNP stimulates
http://jme.endocrinology-journals.org
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chondrocyte proliferation, chondrocyte hypertrophy, and

cartilage matrix production (Mericq et al. 2000, Agoston

et al. 2007). At the molecular level, CNP inhibits the ERK

and p38 MAPK pathways (Ozasa et al. 2005), therefore

counteracting the growth-inhibitory downstream signaling

of FGFs in the growth plate (Yasoda et al. 2004), which will

be discussed in the next section. Owing to its potent effect

on offsetting FGF signaling, the use of CNP in treating

achondroplasia (ACH) caused by activating mutation of

FGF receptor 3 (FGFR3) is under active investigation. It is

currently unclear whether all the growth-stimulating

effects of CNP on chondrocytes are dependent on FGF

signaling.

In addition to CNP, a related peptide, brain natriuretic

peptide (BNP), also has been implicated in growth plate

regulation. There is evidence that BNP is transcriptionally

regulated by the transcription factor SHOX (Marchini et al.

2007). As SHOX deficiency underlies the growth plate

dysfunction in Leri–Weill, Langer mesomelic dysplasia,

and Turner’s syndromes, the findings indicate that

decreased NPPB expression may play a role in the

pathogenesis of these disorders.
Elucidating the role of FGFs in growth plate

FGF signaling is important for growth plate development,

as mutations in various FGFR genes can lead to skeletal

disease in humans (Chen & Deng 2005). Results from

various in in vivo studies indicate that FGFR1 and FGFR3

signaling are growth-inhibiting, while FGFR2 signaling is

growth-promoting. Cartilage-specific (Col2a1-Cre) inacti-

vation of Fgfr1 in mice showed a transient increase in

height of the hypertrophic zone, and delayed terminal

differentiation of hypertrophic chondrocytes (Jacob et al.

2006). However, an increase in adult body length has not

been reported. In contrast, inactivation of Fgfr2 in the

mesenchymal condensations (Dermo1-cre), which affects

both the osteoblast and chondrocyte lineages, resulted in

mice with skeletal dwarfism (Yu et al. 2003), indicating

a growth-promoting effect of FGFR2 signaling. Clinically,

FGFR3 signaling is perhaps most relevant to growth plate

development, as gain-of-function mutations of FGFR3 in

humans cause ACH, hypochondroplasia, and thanato-

phoric dysplasia (Rousseau et al. 1994, Shiang et al. 1994,

Foldynova-Trantirkova et al. 2012).

Consistently, transgenic mice with activated Fgfr3 in

the growth plate show reduced chondrocyte proliferation,

decreased numbers of hypertrophic chondrocytes, and

decreased height of the hypertrophic zone (Chen et al.

1999), while Fgfr3 knockout mice showed increased
Published by Bioscientifica Ltd
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Proposed role of FGF21 in fasting-induced growth inhibition. Green

arrows, stimulation; red blunt-ended arrows, inhibition; and gray arrows,

production. Evidence indicates that fasting-induced FGF21 inhibits

GH-induced IGF1 production in the liver, as well as the local effects of GH

(IGF1-dependent and IGF1-independent) at the growth plate.
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chondrocyte proliferation, increased height of the hyper-

trophic zone, and increased skeletal growth (Eswarakumar

& Schlessinger 2007).

Several signaling pathways downstream of FGFR3

activation have been elucidated, including the phosphoi-

nositide 3-kinase–AKT pathway (Priore et al. 2006, Ulici

et al. 2010), the ERK and p38 MAPK pathway (Krejci et al.

2008, Matsushita et al. 2009), and the STAT pathway

(Li et al. 1999). These advancements in our understanding

of the FGFR3 signaling pathway have contributed to the

ongoing development of therapeutics for ACH. For

example, growth-plate-specific overexpression of CNP

(Col2a1-Nppc) or administration of a CNP analog has

been shown to counteract FGF-induced MAPK activation

and rescue the growth phenotype of ACH mice (Yasoda

et al. 2004, Lorget et al. 2012). Other recently described

potential therapeutics for ACH include meclizine, an anti-

histaminic drug that promotes chondrocyte proliferation

(Matsushita et al. 2013); and a soluble form of human

FGFR3 (sFGFR3) that acts as a decoy receptor to interfere

with FGF binding and signaling (Garcia et al. 2013).

Expression studies in rodents have provided clues

about the physiological ligands for FGFRs in the growth

plate. In growth plates of 1-week-old rats, only Fgf2, Fgf7,

Fgf18, and Fgf22 expression were detectable by real-time

PCR (Lazarus et al. 2007), whereas expression was far

higher in the perichondrium adjacent to the growth plate,

particularly for Fgf1, Fgf2, Fgf6, Fgf7, Fgf9, and Fgf18

(Lazarus et al. 2007). In human fetal growth plate,

expression of FGF1, FGF2, FGF5, FGF8–FGF14, FGF16–

FGF19, and FGF21 were detected at the mRNA level and

FGF1, FGF2, FGF17, and FGF19 at the protein level (Krejci

et al. 2007). Functional studies in mice indicate signaling

by FGF9 and FGF18 both contribute to growth plate

development. Knockout mouse models of Fgf9 (Hung et al.

2007) and Fgf18 (Liu et al. 2002) indicate that both Fgf9

and Fgf18 promote chondrocyte proliferation during early

development of the growth plate, but then function to

inhibit chondrocyte proliferation and promote hyper-

trophic differentiation at later stages of development.

An interesting crosstalk between FGF signaling and

GH–IGF1 signaling in the growth plate has recently been

discovered that primarily involves FGF21 (Inagaki et al.

2008). FGF21 is a part of a subfamily of FGFs (other

members include FGF15, FGF19 and FGF23) that lack the

FGF heparin-binding domain (Kharitonenkov et al. 2005),

and therefore can act both locally in a paracrine fashion

and diffuse from the tissue of synthesis to act as an

endocrine factor. FGF21 can activate FGFR1 and FGFR3

(Suzuki et al. 2008), both of which elicit growth-inhibitory
http://jme.endocrinology-journals.org
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� 2014 Society for Endocrinology
Printed in Great Britain
signaling as discussed earlier. Consistently, transgenic mice

overexpressing Fgf21 exhibit reduced bone growth, and

interestingly, hepatic GH insensitivity (Inagaki et al. 2008).

FGF21 expression does not seem to be required for

normal development of the growth plate, as Fgf21 knock-

out mice showed no significant difference in body weight

and body length as compared withWTmice (Kubicky et al.

2012). However, mounting evidence indicates that FGF21

plays an important role in fasting-induced growth

inhibition (Fig. 2). It is well established that reduced

caloric intake in mammals causes reduced skeletal growth

and hepatic GH insensitivity, which is partly attributed

to decreased GH receptor (GHR) expression in the liver

(Bornfeldt et al. 1989, Straus & Takemoto 1990). Numer-

ous studies have shown that FGF21 expression is induced

by fasting (Galman et al. 2008). Interestingly, when WT

and Fgf21 knockout mice were placed under food

restriction, Fgf21 knockout mice showed significantly

greater linear growth and growth plate thickness when

compared with WT mice, indicating that the growth

suppression induced by fasting is elicited by Fgf21

(Kubicky et al. 2012). Most importantly, many of the

molecular changes induced by fasting, including
Published by Bioscientifica Ltd
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decreased hepatic GH sensitivity and decreased GHR and

IGF1 expression in the growth plate, were corrected by

Fgf21 deletion (Kubicky et al. 2012). More recently, results

from in vitro studies using cultured growth plate chon-

drocytes have indicated that FGF21 may inhibit bone

growth by directly suppressing chondrogenesis and GH

action locally at the growth plate (Wu et al. 2012, 2013).

Whether FGF21 mediates the effects of malnutrition on

childhood growth in humans is less clear. Circulating

FGF21 levels in humans appear to be less responsive to

fasting than those in rodents and are actually elevated in

obese humans (Woo et al. 2013).
Modulation of the GH/IGF1 axis by suppressor
of cytokine signaling 2

The importance of GH and IGF1 in stimulating longitudi-

nal growth has long been established. GH excess caused by

pituitary adenomas in childhood can lead to gigantism.

Conversely, GH deficiency or GH insensitivity caused by

mutations in the GHR or signaling pathways markedly

impairs postnatal growth (Rosenfeld et al. 2007). Patients

with untreated isolated GH deficiency have an average

final height standard deviation scores of K4.7 (range:

K6.1 to K3.9) (Wit et al. 1996). Interestingly, GH has no

apparent role in fetal growth, despite the presence of its

receptor (GHR) in embryos (Garcia-Aragon et al. 1992).

Experimental ablation of the pituitary in animals, or

mutations of GHR that affect GH actions in both mice and

humans have no significant effect on prenatal growth

(Laron et al. 1993, Lupu et al. 2001). In contrast, IGF1 is

important for both fetal and postnatal growth, as

indicated by the observations that mutations of IGF1 or

IGF1R, the gene encoding its receptor, in humans lead to

intrauterine (Abuzzahab et al. 2003, Fang et al. 2012) and

postnatal (Baker et al. 1993) growth retardation.

GH affects the growth plate through several

mechanisms. Some stimulatory effects are mediated

through circulating IGF1, as evidenced by the observation

that combined deficiency in the acid-labile subunit and

liver-specific deficiency of IGF1 modestly decreases longi-

tudinal bone growth in mice (Yakar et al. 2002). However,

Col2-driven ablation of IGF1 in mice also decreases linear

growth indicating a role for local skeletal IGF1 production

in regulating growth plate function (Govoni et al. 2007),

although not necessarily from chondrocytes (Parker et al.

2007). Furthermore, mice lacking both GHR and IGF1

have shorter bones than mice lacking only IGF1, indicat-

ing that GH, at least at supraphysiological circulating
http://jme.endocrinology-journals.org
DOI: 10.1530/JME-14-0022
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concentrations, has an IGF1-independent effect on bone

growth (Lupu et al. 2001).

Much work has been devoted to distinguish between

the effects of GH, and excellent reviews on this subject are

available elsewhere (Ahmed & Farquharson 2010, Wit &

Camacho-Hubner 2011) and therefore will not be dis-

cussed further. Instead, herein, we highlight some of the

recent work that established suppressor of cytokine

signaling 2 (SOCS2) as a key modulator of local GH action

in the growth plate.

The SOCS family contains eight members, SOCS1–

SOCS7 and cytokine inducible SH2-containing protein

(CISH). SOCS proteins are upregulated in response to

cytokine stimulation and can subsequently bind through

their SH2 domain to phosphorylated tyrosines in the

cytokine receptor–JAK complex to inhibit further cytokine

receptor activation. As such, SOCS proteins form part of a

classical negative feedback circuit (Krebs & Hilton 2001).

The role of SOCS2 in postnatal growth was demonstrated

by the overgrowth phenotype of Socs2 knockout mice

(Metcalf et al. 2000), Socs2K/K mice showed increased

body length and body weight, and increased GH/IGF1

signaling with wider proliferative and hypertrophic zones

in the growth plate (Metcalf et al. 2000, MacRae et al.

2009). Recent evidence has indicated that SOCS2 acts

locally at the growth plate to modulate GH signaling.

Chondrocytes isolated from Socs2K/K mice showed

increased phosphorylation of STATs upon incubation

with GH (Pass et al. 2012), while cells overexpressing

SOCS2 did not. Similarly, GHwas able to stimulate growth

in fetal metatarsals isolated from Socs2K/K mice, but not

that from WT mice (Pass et al. 2012), indicating that local

GH action at the growth plate is negatively regulated by

SOCS2. Some evidence indicates such local modulation

of GH action is IGF-independent, as the GH-induced

Socs2K/K metatarsal bone growth is not accompanied by

an increase in Igf1 or Igfbp3 transcript levels and occurred

in the presence of an IGF1 receptor inhibitor (NVP-

AEW541) (Dobie et al. 2013). A role for SOCS2 in human

growth is indicated by the identification of SOCS2 at a

locus associated with human height variation in GWA

studies (Weedon et al. 2008, Lango et al. 2010, Lui et al.

2012). Interestingly, a missense mutation in SOCS2 has

been reported (in meeting abstract form) to cause

gigantism (Suda et al. 2011).
Summary and future prospects

The understanding of the paracrine regulation of longi-

tudinal bone growth at the growth plate has advanced
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substantially in recent years. In this brief review, we have

focused on some of the recent advances that have been

possible due to microdissection, microarray analysis,

inducible and tissue-specific gene targeting in mice, GWA

studies, and genetic studies of rare diseases. These studies

have not only described important biological mechanisms

and processes, but also identified many new genes and

indicated a promising potential treatment for ACH that is

currently being evaluated in human studies. However,

many important questions remain to be elucidated. For

example, information on how the endocrine system

interacts with the paracrine signals to regulate growth

plate chondrogenesis is mostly lacking, as well as infor-

mation on molecular mechanisms for the orientation of

proliferative chondrocytes into columns and mechanisms,

which cause the proliferation rate and growth rate to slow

with age and thus limit the overall size of the skeleton and

thus the organism. Continued methodological advance-

ments promise to accelerate progress in our understanding

of skeletal development, skeletal growth, and the disorders

affecting these processes and will probably yield new

therapeutic targets and approaches.
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