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Abstract 

Postoperative cognitive dysfunction (POCD) is a frequent neurological complication encountered during the periop-
erative period with unclear mechanisms and no effective treatments. Recent research into the pathogenesis of POCD 
has primarily focused on neuroinflammation, oxidative stress, changes in neural synaptic plasticity and neurotrans-
mitter imbalances. Given the high-energy metabolism of neurons and their critical dependency on mitochondria, 
mitochondrial dysfunction directly affects neuronal function. Additionally, as the primary organelles generating 
reactive oxygen species, mitochondria are closely linked to the pathological processes of neuroinflammation. Surgery 
and anesthesia can induce mitochondrial dysfunction, increase mitochondrial oxidative stress, and disrupt mito-
chondrial quality-control mechanisms via various pathways, hence serving as key initiators of the POCD pathological 
process. We conducted a review on the role and potential mechanisms of mitochondria in postoperative cognitive 
dysfunction by consulting relevant literature from the PubMed and EMBASE databases spanning the past 25 years. 
Our findings indicate that surgery and anesthesia can inhibit mitochondrial respiration, thereby reducing ATP pro-
duction, decreasing mitochondrial membrane potential, promoting mitochondrial fission, inducing mitochondrial 
calcium buffering abnormalities and iron accumulation, inhibiting mitophagy, and increasing mitochondrial oxidative 
stress. Mitochondrial dysfunction and damage can ultimately lead to impaired neuronal function, abnormal synaptic 
transmission, impaired synthesis and release of neurotransmitters, and even neuronal death, resulting in cognitive 
dysfunction. Targeted mitochondrial therapies have shown positive outcomes, holding promise as a novel treatment 
for POCD.
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Introduction
Postoperative cognitive dysfunction (POCD) is a fre-
quent complication of the central nervous system (CNS) 
after surgical anesthesia and is especially prevalent 
among older patients [1, 2]. The underlying mechanisms 
of POCD are complex and still not fully understood, but 
recent advancements have been made in research and 
treatment. The possible mechanisms of POCD include 
neuroinflammation, oxidative stress, neurotransmitter 
imbalances, and changes in neural synaptic plasticity [3]. 
Additionally, the occurrence of POCD is influenced by 
various factors such as age, preoperative cognitive status, 
type of surgery, anesthesia method, and postoperative 
pain [1]. Effective prevention and treatment methods for 
POCD are still lacking.

Based on the current research findings regarding the 
mechanism of POCD, surgery and anesthesia may trig-
ger neuronal death via mechanisms like neuroinflam-
mation and oxidative stress, ultimately resulting in 
cognitive impairment [4]. Anesthetic drugs can disrupt 
synaptic connections and communication among neu-
rons, causing a maladjustment within the neuronal net-
work, thereby affecting memory and cognitive abilities 
[5]. Neuroinflammation can also compromise the sta-
bility and plasticity of synaptic connections, leading to 
communication barriers between neurons [3]. Further-
more, certain anesthetic drugs may alter the activity of 
the brain’s enzyme system, impacting the synthesis and 
metabolism of neurotransmitters, which could poten-
tially exert adverse effects on cognitive function [6, 7]. 
Throughout these pathological processes, mitochondria 
are involved and exert a crucial regulatory function.

Mitochondria, known as the “energy factories” of cells, 
play a crucial role in the respiratory chain and in ATP 
production; they are abundantly present in nervous sys-
tem cells [8]. Given the specific nature of neuronal func-
tion, which requires a large amount of energy, there is 
a great dependence on mitochondria [8]. Factors such 
as surgical trauma, anesthetic drugs, and postoperative 
stress may interfere with the normal function of mito-
chondria, resulting in mitochondrial respiratory chain 
blockage, mitochondrial membrane potential decline, 
cytochrome C release, mitochondrial ion homeosta-
sis imbalance, and mitochondrial dynamics abnormali-
ties [6, 9–13]. These disruptions can lead to insufficient 
energy supply to neurons, potentially causing neuronal 
death and subsequently affecting the cognitive function 
of the brain [9]. The oxidative stress response gener-
ated during surgery and anesthesia can produce a large 
amount of free radicals and reactive oxygen species 
(ROS), leading to mitochondrial damage. Damaged mito-
chondria not only fail to effectively synthesize ATP but 
also further release ROS, thus forming a vicious cycle 

[14]. Synaptic transmission in neurons demands signifi-
cant energy support [15, 16]. Mitochondrial dysfunction 
and ATP production deficiencies, resulting from anesthe-
sia and surgery, can disrupt normal synaptic transmission 
and function [17]. Calcium ions play a pivotal regulatory 
role in neuronal synaptic connections [18]. Mitochon-
dria are instrumental in regulating intracellular calcium 
concentration, thereby ensuring the smooth operation of 
synaptic transmission [18]. An imbalance in mitochon-
drial calcium homeostasis due to anesthesia and surgery 
may cause abnormalities in neuronal synaptic connec-
tions [6]. During brain development, general anesthesia 
can cause long-term impairments in inhibitory synaptic 
transmission [5]. Mitochondrial damage serves as a sig-
nificant driver of neuroinflammation, ultimately leading 
to neuronal death and synaptic dysfunction [19].

The synthesis, release, and reuptake of neurotrans-
mitters also rely on mitochondrial energy supply and 
the regulation of ion homeostasis and redox status 
[20]. Additionally, quality control mechanisms, such as 
mitophagy, are essential for preserving normal mito-
chondrial function. Anesthesia and surgery-induced 
abnormalities in mitophagy constitute one of the poten-
tial factors contributing to POCD [21].

Hence, mitochondria may significantly influence the 
pathological process of POCD. A thorough understand-
ing of mitochondrial mechanisms is crucial to prevent 
and treat POCD. This article reviews the current research 
on the role and mechanisms of mitochondria in the 
development of POCD.

Methods
As a narrative review, we conducted a literature search 
in the PubMed and EMBASE databases. The search 
keywords included: Mitochondria, Mitochondrial Dys-
function, Mitochondrial Respiratory Chain Deficiency, 
Oxidative Phosphorylation Deficiency, Electron Trans-
port Chain Deficiency, Oxidative Stress, mitochondrial 
autophagy, mitophagy, Cognitive Dysfunction, Postop-
erative Cognitive Dysfunction, Postoperative Cognitive 
Complication, and Postoperative Cognitive Disorders. 
The search covered the period from 2000 to 2025, in Eng-
lish, and included both human and animal studies. We 
conducted a relevance screening of the search results and 
also performed a supplementary search for valuable ref-
erences in the included literature.

The effects of anesthesia and surgery 
on mitochondrial function
Mitochondrial dysfunction is linked to the early patho-
genesis of cognitive impairment caused by general anes-
thesia in both developing and aging mammalian brains 
[5, 22]. Mitochondria may be an important early target 
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of neuronal development and synaptic injury induced by 
general anesthesia [13].

Anesthesia and surgery lead to increased levels of mito-
chondrial oxidative stress by increasing malondialdehyde 
(MDA) activity and decreasing superoxide dismutase 
(SOD) activity [13, 23]. Studies have confirmed that 
volatile anesthetics, as well as pentobarbital and propo-
fol, can dose-dependently inhibit mitochondrial respira-
tion [9, 24] (Fig. 1). Isoflurane and sevoflurane selectively 
inhibit the respiratory chain complex I, and nitrous 
oxide inhibits complex IV [25]. Combined anesthesia 
with isoflurane, nitrous oxide, and midazolam induces 
mitochondrial swelling, impaired structural integrity, 
increased complex IV activity, and reduced distribution 
in the presynaptic neuronal distribution area in rats [5]. 
General anesthesia enhances complex IV activity while 

reducing mitochondrial SOD activity, thereby leading to 
excessive ROS production. This promotes mitochondrial 
fission and increases ROS generation, creating a vicious 
cycle of oxidative stress [13, 26, 27] (Fig. 1). In addition, 
anesthesia and surgery can lead to mitochondrial cal-
cium overload [28, 29] and iron homeostasis imbalance 
[30, 31], resulting in mitochondrial dysfunction (Fig. 1). 
In developing rats, general anesthesia induces excessive 
mitochondrial fission in the brain, promoting leakage 
of cytochrome C and subsequent neuronal apoptosis [5, 
13]. General anesthesia also affects mitochondrial qual-
ity control mechanisms, including the mitochondrial 
unfolded protein response [32].

Research has found that volatile anesthetics such as 
sevoflurane and isoflurane have the most significant 
impact on mitochondria (Fig.  1; Table  1). Sevoflurane 

Fig. 1  The impact of surgery and anesthesia on mitochondrial function. Surgery and anesthesia, especially general anesthesia, can have extensive 
effects on mitochondrial function during the perioperative period. Surgery and anesthesia can lead to increased levels of mitochondrial oxidative 
stress and further generation of ROS by promoting mitochondrial fission, forming a vicious cycle of oxidative stress. General anesthetic drugs can 
inhibit mitochondrial respiration and interfere with ATP production. Surgery and anesthesia can lead to mitochondrial calcium overload and iron 
homeostasis imbalance, and cause cell death (apoptosis and ferroptosis) through a series of downstream mechanisms. Surgery and anesthesia can 
affect mitochondrial biogenesis and dynamics (transport, fusion, fission), and interfere with important mitochondrial quality control mechanisms 
such as the unfolded protein response and mitophagy, leading to mitochondrial dysfunction. In addition, general anesthesia can also affect 
mitochondrial dynamics and mitochondrial function by increasing the phosphorylation of Tau protein
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increases neurotoxicity and reduces cognitive function 
in aged rodents by impairing mitochondrial dynamics, 
inducing mitochondrial dysfunction, and promoting cell 
apoptosis [33–35]. Sevoflurane can lead to a decrease 
in mitochondrial density in rat brain tissue [13, 36] and 
induce neurotoxicity in neonatal mice by promoting 
GSK3β/drp1-dependent mitochondrial fission [33]. Sevo-
flurane can induce the upregulation of specific protein 1 
(SP1) in POCD animal models; interfering with SP1 can 
significantly inhibit sevoflurane-induced oxidative stress 
and mitochondrial dysfunction [37]. Additionally, sevo-
flurane downregulates the expression of miR-145 in hip-
pocampal neurons [38] and upregulates the expression 
of miR-34c [39], thereby inducing apoptosis through the 
mitochondrial pathway. Sevoflurane also upregulates 
CypD expression, impairing mitochondrial function and 
leading to cognitive impairment in mice [40]. Moreover, 
it increases Tau protein phosphorylation [40, 41], which 
in its hyperphosphorylated state, disrupts mitochon-
drial transport, dynamics, and permeability [42], thereby 
diminishing mitochondrial metabolism [41]. In addi-
tion, exposure to sevoflurane can inhibit hippocampal 
mitophagy, exacerbating mitochondrial dysfunction and 
neuroinflammation [43]. Sevoflurane can also cause an 
imbalance in mitochondrial iron and calcium homeosta-
sis [28, 30, 31]. Mitochondrial lipid peroxidation showed 
an increase in neonatal mice following treatment with 
sevoflurane, which leads to mitochondrial iron accumu-
lation and neuronal ferroptosis, resulting in cognitive 
deficits [30, 31]. Sevoflurane induces mitochondrial cal-
cium overload by activating inositol 1,4,5-trisphosphate 
(IP3) and other receptors on the endoplasmic reticulum 
(ER) membrane, leading to the opening of mitochondrial 

permeability transition pore (mPTP) and loss of mito-
chondrial membrane potential (MMP) [28]. In addition 
to its effects on neuronal mitochondria, sevoflurane 
also reduces mitochondrial function in microglia, lead-
ing to a decrease in ATP production and an inability of 
the microglia to effectively clear damaged neurons [44]. 
When newborns rats are exposed to sevoflurane, long-
term ultrastructural damage such as reduced presynap-
tic mitochondrial localization may occur [45]. Repeated 
exposure to sevoflurane can lead to mitochondrial dys-
function and reduced ATP production in the brain tissue 
of young mice [46]. Sevoflurane exposure significantly 
increases Bag2 protein levels in a time- and dose-depend-
ent manner [47]. The Bag family of proteins inhibit cell 
death through interactions with Bcl-2. Bag2 participates 
in protein folding and proteasome degradation pathways 
and promotes mitochondrial autophagy via interaction 
with PINK1 [47]. Bag2 can alleviate the decrease in MMP 
and ATP production caused by sevoflurane exposure, 
which is considered a stress-protective mechanism of 
mitochondria after sevoflurane exposure [47]. However, 
excessive elevation of Bag2 could lead to its neuroprotec-
tive effect turning into neurotoxicity.

Mitochondrial dysfunction is an early trigger of iso-
flurane-induced neuronal damage [48]. Isoflurane can 
lead to mitochondrial swelling and vacuolization, MMP 
decline, and electron transport chain dysfunction in the 
rat hippocampus, resulting in reduced ATP production, 
oxidative damage to neurons, and neuronal apoptosis, all 
of which can ultimately cause POCD [49, 50]. Extended 
isoflurane exposure triggers excessive calcium release 
from the ER, depleting its calcium stores and causing 
mitochondrial calcium overload, which can be cytotoxic 

Table 1  Negative effects of volatile anesthetics on mitochondria

Volatile anesthetics Effects on mitochondria References

Sevoflurane Mitochondrial dynamics impaired (decreased transportation and metabolism, 
increased division)

[33, 41, 42]

Decreased mitochondrial density [13, 36]

Mitochondrial dysfunction [37, 40, 46]

Mitochondria-mediated apoptosis [38, 39]

Increased mitochondrial oxidative stress [37]

Decreased mitophagy [43]

Mitochondrial calcium overload [28, 29]

Mitochondrial iron homeostasis imbalance [30, 31]

Mitochondrial respiratory chain obstruction [25]

Isoflurane Mitochondrial swelling and vacuolar formation [48]

Mitochondrial respiratory chain obstruction [5, 25, 28]

Mitochondrial dysfunction [9, 28]

Mitochondrial calcium overload [51]

Decreased mitophagy [52]
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to neurons [51]. Isoflurane and surgery can induce the 
activation of ubiquitin ligase TNFAIP1 in the hippocam-
pus, which inhibits mitochondrial autophagy and pro-
motes neuronal pyroptosis through ubiquitination of 
synapse-associated protein 25 (SNAP25) [52].

Mitochondrial dysfunction’s impact on POCD
The importance of mitochondrial dysfunction 
in the occurrence of POCD
Mitochondria are dynamic organelles that continuously 
undergo fission and fusion, processes essential for energy 
metabolism, calcium buffering, and cell survival regula-
tion. Densely distributed in the CNS, mitochondria pro-
vide essential energy for neurons and influence synaptic 
plasticity [53, 54]. Mitochondria are abundant in the 
distal regions of neurons, particularly prone to dysfunc-
tion because of the high energy demands of synapses 
[55], leading to CNS diseases such as cognitive disorders 
[53]. Mitochondrial dysfunction is considered one of the 
early pathogenic factors of cognitive impairment in the 
developing or aging brain after general anesthesia [22, 
56], and it is also a significant feature of aging and neu-
ronal degeneration [22, 23]. The vicious cycle of reduced 
mitochondrial function and increased ROS generation 
has been shown to be associated with the pathogenesis 
of POCD [14]. Mitochondrial damage, characterized by 
morphological changes, reduced membrane potential, 
and disrupted electron transport chain (ETC) complex 
function, is a key factor in the pathogenesis of POCD 
[57]. Metabolomic analysis indicates that POCD is linked 
to disruptions in several signaling pathways such as the 
nitric oxide, PI3K-AKT, mTOR, mitochondrial dysfunc-
tion, and NF-κB pathways [58].

Numerous studies have confirmed the genetic associa-
tion between mitochondria and POCD. Sharpley et  al. 
reported the impact of mitochondrial gene variations on 
cognitive function in mice [59]. In older subjects, the het-
eroplasmy rate of specific mutation sites in respiratory 
chain complex I is linked to cognitive decline as meas-
ured by the modified Mini-Mental State Examination 
scores [60]. Mutations in mitochondrial DNA (mtDNA) 
exceeding a certain threshold may affect cognitive per-
formance. Mitochondria depend on nuclear genes for 
normal function, and polymorphisms in these genes 
may cause mild cognitive impairment [53]. Reduced 
levels of the TOMM40 gene, which encodes the trans-
locase of outer membrane (TOM) subunit, can cause 
mitochondrial dysfunction and is independently associ-
ated with cognitive decline [61]. Abnormalities in genes 
encoding mitochondrial monofunctional 10-formyltet-
rahydrofolate synthetase (C1-THF synthase/MTHFD1L) 
[62], vacuolar ATPase-related ATP6V1B2 [63], and 
monoamine oxidase (MAO) [64] lead to mitochondrial 

dysfunction and are associated with depression and 
cognitive impairment. Functional annotation and DE-
lncRNA-mRNA co-expression networks indicate that 
DE-lncRNAs are linked to mitochondrial dysfunction, 
oxidative stress during sevoflurane anesthesia, age-
related metabolic changes, DNA damage, apoptosis, and 
neurodegenerative traits [65, 66]. Nfe2l2, Mthfd1l, Akt1, 
and Prkcd are targets of DE-lncRNAs in metabolic path-
ways, influencing mitochondrial autophagy, membrane 
potential, and apoptosis [65, 66].

Mitochondrial quality control (QC) comprises the 
mitochondrial unfolded protein response (mtUPR), ubiq-
uitin–proteasome system (UPS), mitochondrial-derived 
vesicle (MDV) degradation pathway, and mitophagy and 
is essential for normal neuronal function [67–70]. Dys-
functional mitochondrial QC pathways can adversely 
affect cells such as neurons that depend heavily on mito-
chondria [42]. Anesthesia and surgery have been proven 
to have extensive effects on mitochondrial QC mecha-
nisms such as mtUPR, particularly mitophagy [21, 25, 
31], which will be discussed in detail below.

Mitochondrial respiratory chain obstruction
Volatile general anesthetics as well as pentobarbital and 
propofol have been found to inhibit mitochondrial res-
piration in a dose-dependent manner [9, 10]. Mitochon-
dria are particularly sensitive to volatile anesthetics; the 
effects of intravenous anesthetics are relatively small [9]. 
Anesthetics have a dual effect on the mitochondrial res-
piratory chain complex. The inhibitory effect of anesthet-
ics on mitochondrial respiration helps the drugs exert 
their anesthetic effects [71, 72]; however, it may induce 
postoperative delirium and POCD in older patients, as 
well as neuronal apoptosis in developing brains [73]. The 
negative impacts of anesthesia on mitochondrial respira-
tory chain are often time- and dose-dependent [5, 9, 10, 
13, 14]. The conventional dosage of anesthetics used in 
clinical practice only affects individuals with high sensi-
tivity and poor tolerance, such as older patients and chil-
dren in the developmental stage of the nervous system 
[5, 13, 14]. This also explains why these populations are 
prone to POCD.

Isoflurane exposure in rats significantly increased the 
activity of mitochondrial respiratory chain complexes I 
and II, while inhibiting complex IV (cytochrome C oxi-
dase) activity [49]. Similarly, sevoflurane and nitrous 
oxide can also inhibit complex IV in rats [10, 25, 74]. The 
decreased activity of complex IV impedes ATP produc-
tion and also leads to an increase in Ca2+ -independ-
ent glutamate release, triggering neuronal excitotoxic 
cell death [49]. Volatile anesthetics have been shown to 
inhibit complex I in a dose-dependent manner [9, 10]. 
Sevoflurane inhibits complex I activity by upregulating 
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calmodulin-dependent protein kinase II (CaMKII) 
expression and decreasing NAD+ production [44]. Halo-
thane enhances cytochrome C release [9]. High-concen-
tration and prolonged use of pentobarbital and propofol 
can inhibit complex I [10, 24]; propofol is currently the 
only known general anesthetic drug that reduces mito-
chondrial respiratory chain complex II [9]. Oxygen con-
sumption rate (OCR) is a key measure of mitochondrial 
respiratory capacity. Sevoflurane was found to attenuate 
the reduction in OCR and maximum respiration asso-
ciated with ATP production in mouse cerebral vascular 
endothelial cells [35]. Coenzyme Q (CoQ) is essential 
for the mitochondrial respiratory chain, as it facilitates 
electron transfer from complexes I and II to complex III. 
Research has shown that CoQ10 can reduce cognitive 
deficits induced by sevoflurane in mice [46], suggesting 
that sevoflurane may trigger POCD by affecting mito-
chondrial respiration.

The inhibitory effect of volatile anesthetics on complex 
I may negatively affect mitochondrial energy produc-
tion in the nervous system. However, in certain patho-
logical processes of ischemia–reperfusion injury, such 
as myocardial ischemia and stroke, this inhibition may 
exert a protective effect [75, 76]. Studies have found that 
the mitochondrial respiratory chain complex I inhibitor 
rotenone can alleviate the damage caused by cerebral 
ischemia by inhibiting the opening of mPTP and the gen-
eration of ROS [76]. Volatile anesthetics at clinical con-
centrations inhibit complex I, leading to a decrease in 
presynaptic MMP and reducing Ca2+ overload in presyn-
aptic terminals in ischemic regions, thereby mitigating 
apoptosis, necrosis, and oxidative stress [10]. Similarly, 
the inhibitory effect of clinical concentrations of volatile 
anesthetics on the respiratory chain has also been dem-
onstrated not to impair cardiac function, and may instead 
serving as a potential mechanism for the protective effect 
of volatile anesthetics preconditioning on myocardial 
ischemia [25]. The inhibition of complex I activity by vol-
atile anesthetics reduces the reverse electron transport 
and the subsequent generation of large amounts of ROS 
driven by mitochondria during myocardial and cerebral 
ischemia–reperfusion [75, 77].

Mitochondrial dynamic abnormalities
Maintaining a balance between mitochondrial fis-
sion and fusion is essential for intracellular homeosta-
sis [78]. Mitochondrial fission allows for mitochondrial 
renewal and redistribution to synapses, while mitochon-
drial fusion supports mitochondrial protein regenera-
tion, DNA repair, and functional recovery [78, 79]. The 
GTPases Mfn1 and Mfn2 control mitochondrial outer 
membrane fusion [80], while Opa1 controls inner mem-
brane fusion [81]. Mitochondrial fission is primarily 

regulated by fission 1 (Fis1) and dynamin-related protein 
1 (Drp1) [82]. Drp1 is a crucial regulator of mitochon-
drial fission and significantly influences neurite devel-
opment and synapse formation [83]. Drp1 activation is 
controlled by other upstream processes such as MAPK/
ERK activation [84]. Drp1 is activated by various cel-
lular stimuli, translocates from the cytoplasm to the 
outer mitochondrial membrane, interacts with Fis1, and 
induces mitochondrial fission [82].

Research indicates that continuous mitochondrial fis-
sion can lead to mitochondrial dysfunction and exces-
sive production of ROS, ultimately resulting in neuronal 
death [85]. General anesthesia increases ROS production 
by reducing SOD activity and promotes excessive mito-
chondrial fission, leading to mitochondrial morphologi-
cal disorders [13]. Mitochondria with excessive fission 
function poorly and are more likely to produce more 
ROS, thereby forming a vicious cycle [13] (Fig.  1). In 
addition, mitochondrial fission induced by general anes-
thesia may also promote acute leakage of cytochrome C, 
leading to activation of apoptosis through the mitochon-
drial pathway [13]. Research indicates that sevoflurane 
alters mitochondrial morphology and induces neuronal 
damage by promoting mitochondrial fission and inhib-
iting fusion. This is achieved through the upregulation 
of Drp1 and Fis1 and the downregulation of Opa1 and 
Mfn1/2 expression [34, 86, 87] (Fig.  1). Pretreatment 
with the Drp1-selective inhibitor—Mdivi-1—can protect 
mitochondrial function and reduce synaptic damage and 
neuronal toxicity [88]. Sevoflurane can lead to increased 
phosphorylation of Tau protein [40], which, through the 
interaction of Tau protein with related proteins such as 
Drp1, can lead to increased mitochondrial fission and 
decreased fusion, ultimately resulting in synaptic damage 
and cognitive impairment [42, 89, 90] (Fig.  1). Sevoflu-
rane induces excessive mitochondrial fission by activating 
the GSK-3β pathway, which mediates Drp-1 phosphoryl-
ation at ser616 [33] (Fig. 1).

SUMOylation is a post-translational modification 
involving the covalent attachment of small ubiquitin-like 
modifier (SUMO) proteins to target proteins, influenc-
ing their function and localization [91]. SUMOylation 
of Drp1 is crucial for mitochondrial function mainte-
nance [92, 93]. Research indicates that sevoflurane ele-
vates SUMO-specific protease 3 (SENP3) expression in 
the hippocampus of older individuals, resulting in Drp1 
deSUMOylation and excessive mitochondrial fission [87] 
(Fig. 1).

Mitochondrial dysfunction primarily arises from the 
dysregulation of mitochondrial biogenesis [94, 95]. 
PGC-1α plays a crucial role in regulating mitochondrial 
biogenesis and cellular metabolism [96, 97]. Studies have 
found that surgery has a negative effect on mitochondrial 
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biogenesis, while activation of the PGC-1α/BDNF path-
way can improve mitochondrial health and reduce perio-
perative neurocognitive impairment [98] (Fig. 1).

Decreased MMP
During respiratory oxidation, mitochondria convert 
generated energy into electrochemical potential energy 
within their inner membrane, resulting in an asym-
metric distribution of protons and ions that forms the 
MMP [99]. This MMP is considered a core indicator of 
mitochondrial function and is crucial for the synthesis 
of ATP and the maintenance of calcium homeostasis [6, 
10, 100]. The decrease in MMP (i.e., depolarization of 
mitochondrial membrane) is of great significance in the 
early stages of mitochondrial damage [11]. Mitochondrial 
membrane depolarization is controlled by mechanisms 
including the opening of the mPTP, calcium ion influx, 
activation of the mitochondrial ATP-regulated potassium 
channel (mitoKATP), and alterations in mitochondrial 
respiratory chain complex functions. Studies have found 
that mitochondrial membrane depolarization induced by 
volatile anesthetics may be partially caused by the acti-
vation of mitoKATP [10, 74, 101]. Although intravenous 
anesthetics such as propofol and pentobarbital do not 
directly affect the opening of mitoKATP, they do inhibit 
the isoflurane-induced mitochondrial K+ influx [102]. 
Although studies have found that general anesthesia-
induced mitochondrial depolarization is not directly 
related to Ca2+ influx [24, 74], mitochondrial calcium 
overload caused by Ca2+ influx can lead to a decrease in 
MMP through a series of mechanisms, which are dis-
cussed in subsequent sections of this review. The effect 
of sevoflurane on MMP may be related to the rever-
sal of ATP synthase [10, 24]. Sevoflurane was shown to 
cause mitochondrial dysfunction by impairing MMP and 
enhancing the production of ROS in human neuronal 
SH-SY5Y cells [21, 47]. Isoflurane exposure can open the 
mPTP and decrease MMP, reducing ATP production and 
releasing cytochrome C into the cytosol, which triggers 
neuronal apoptosis [49, 50].

Mitochondrial calcium overload
Mitochondrial calcium is crucial for the production of 
ATP [103]. However, calcium overload caused by anes-
thesia and surgery can lead to ATP imbalance, mito-
chondrial dysfunction, release of inflammatory factors, 
neuronal cell apoptosis, abnormal neurotransmitter 
release, and synaptic transmission disorders, ultimately 
promoting the occurrence of POCD [6, 11, 14, 28, 51] 
(Fig.  2). Studies have found that sevoflurane inhala-
tion may induce mitochondrial mPTP opening, ROS 
increase, and reduction in ATP production by increas-
ing intracellular calcium ion concentration, leading 

to mitochondrial dysfunction and structural damage 
[6]. Sevoflurane elevates intracellular Ca2+, leading to 
mitochondrial damage and subsequent mitochondrial-
mediated apoptosis in the hippocampal neurons [6]. 
Isoflurane may induce neuronal apoptosis via calcium 
overload-mediated N-methyl D-aspartate receptor 
(NMDA-R) antagonism [104, 105]. Research by Liu 
et  al. shows that sirtuin 3 can prevent anesthesia/sur-
gery-induced cognitive decline in aged mice through 
inhibiting mitochondrial damage and hippocampal 
neuroinflammation caused by calcium overload [23].

The calcium transport channels and proteins of 
mitochondrial membrane are crucial for maintaining 
mitochondrial calcium homeostasis [106]. The mito-
chondrial calcium uniporter (MCU), situated in the 
inner mitochondrial membrane, is the key complex 
for mitochondrial calcium uptake [107]. Studies have 
found that surgery and anesthesia lead to intercellular 
environmental disorders and increased MCU expres-
sion in aged rats, resulting in increased mitochondrial 
calcium uptake [29]. Mitochondrial calcium overload 
leads to increased ROS release and decreased MMP, 
thereby causing mitochondrial dysfunction [29]. How-
ever, administering the mitochondrial calcium absorp-
tion inhibitor Ru360 can reverse the above processes, 
maintain mitochondrial calcium homeostasis, and alle-
viate the occurrence of POCD [29].

Voltage-dependent calcium channels (VDCC) are 
key channels facilitating the influx of extracellular 
Ca2+. Studies have shown that isoflurane can activate 
L-type VDCC through GABAA receptors [108], while 
sevoflurane can affect VDCC by activating CDK5 
[109, 110]. Activation of VDCC promotes the influx of 
Ca2+ into neurons and exacerbates mitochondrial cal-
cium overload. Furthermore, VDCC activation induces 
Ca2+ release from the ER by stimulating IP3 or ryano-
dine receptors on the ER membrane [28, 111]. On one 
hand, increased cytochrome C release caused by mito-
chondrial calcium overload inhibits the negative feed-
back effect of cytoplasmic Ca2+ on IP3 receptors, while 
on the other, it activates caspase3 to cleave IP3 recep-
tors, hence forming a vicious cycle of massive calcium 
release from the ER[28]. Research indicates that iso-
flurane can trigger increased Ca2+ release from the ER, 
potentially causing ER calcium depletion, protein syn-
thesis inhibition, and severe cytotoxic reactions [6, 51, 
112].

Isoflurane-induced Ca2+ escape from the ER leads to 
an increase in cytosolic Ca2+, which may activate mito-
chondrial retrograde signaling through the calcineurin 
(CaN) pathway [113]. This signaling pathway is an adap-
tive mechanism that activates the expression of nuclear 
genes such as NF-KB by transmitting dysfunctional 
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mitochondrial signals [114], thereby triggering neuroin-
flammation and cognitive impairment.

Cyclophilin D (CypD), located in the mitochondrial 
matrix, is essential for mitochondrial function by regu-
lating mPTP opening and maintaining MMP [115–117]. 
Sevoflurane can elevate CypD levels by diminishing the 
interaction between CypD and adenine nucleotide trans-
locase (ANT), a constituent of mPTP [118]. Increased 
CypD levels compromise the integrity of mitochon-
drial membranes and disturb calcium ion homeostasis, 
thereby causing mitochondrial dysfunction and neu-
rodevelopmental impairments, culminating in cognitive 
impairments in young mice [118–120]. The absence of 
CypD can mitigate sevoflurane-induced negative neu-
rological effects [118, 121]. However, some studies have 
also found that the effect of CypD on neurons is bidi-
rectional [122]. CypD-mediated transient mPTP open-
ing regulates dendritic calcium dynamics by enhancing 

mitochondrial calcium release and downstream signal-
ing, thereby promoting activity-induced dendritic out-
growth [122]. However, prolonged opening of the mPTP 
increases the release of cytochrome C, leading to neu-
ronal apoptosis [122].

Mitochondrial iron homeostasis imbalance
Iron is crucial for normal neurological function, and neu-
rons are particularly susceptible to changes in iron con-
tent [123]. Disruption of iron homeostasis can lead to 
significant neurotoxicity and neurogenetic abnormalities, 
interfere with neurotransmitter synthesis and release, and 
mitochondrial dysfunction [12]. Excess iron in the brain 
is linked to neurodegenerative diseases [12, 124] and 
can affect behavior and mood, resulting in learning and 
memory deficits [125, 126]. Iron is essential for energy 
production in glycolysis and the TCA cycle and serves 
as a cofactor for certain electron transport complexes in 

Fig. 2  The role and mechanism of mitochondrial calcium overload in POCD. Anesthesia and surgery increase the calcium influx into neurons 
by opening voltage-dependent calcium channels (VDCC), and lead to mitochondrial calcium overload by opening mitochondrial calcium channels 
and activating mitochondrial calcium uniporter (MCU). In addition, the activation of VDCC by inhalational anesthetics also triggers the release 
of Ca2+ from the endoplasmic reticulum (ER) by activating IP3 or ryanodine receptors on the ER membrane. The increase in cytosolic calcium, 
on one hand, exacerbates neuroinflammation through CaN-mediated mitochondrial retrograde signaling, and on the other hand, exacerbates 
mitochondrial calcium overload. Mitochondrial calcium overload mediates the opening of the mitochondrial permeability transition pore 
(mPTP), leading to a decrease in mitochondrial membrane potential (MMP) and the release of cytochrome C, inducing mitochondrial dysfunction 
and neuronal apoptosis. Furthermore, calcium overload leads to increased ROS production, activation of the NLRP3 inflammasome, and decreased 
ATP production, further exacerbating neuroinflammation and mitochondrial dysfunction
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the mitochondrial respiratory chain [12, 35, 127, 128]. 
Intracellular iron homeostasis is important for maintain-
ing normal mitochondrial function and glucose metabo-
lism [35, 129, 130]. Prolonged or repeated exposure to 
general anesthesia can cause iron deposition in the hip-
pocampus, cortex, and basal ganglia, potentially impair-
ing learning, memory, and long-term potentiation in 
the hippocampus [128, 131]. Multiple studies found that 
sevoflurane treatment led to an abnormal increase in iron 
content (iron overload) in brain tissue [30, 35, 128]. Keta-
mine or sevoflurane can upregulate NMDA-R expression 
[132–134] and activate the GTPase RASD1, which inter-
acts with the iron transporter divalent metal transporter 
1 (DMT1) to enhance iron uptake and lysosomal release 
[128, 135]. This may be one of the mechanisms by which 
general anesthesia causes iron overload (Fig. 3). Surgery 
can elevate DMT1 and hepcidin levels while reducing 
transferrin receptor and ferroprotein 1, resulting in iron 
overload in the rat hippocampus [131] (Fig.  3). Exces-
sive iron induces oxidative stress and impairs mitochon-
drial function while also disrupting glucose metabolism 

by inhibiting the expression of G6Pase, Pck1, and Cs 
[35, 131]. Sevoflurane-induced disruptions in iron and 
glucose metabolism contribute to POCD by decreasing 
ATP production and increasing neuronal apoptosis [35] 
(Fig. 3).

In addition, abnormalities in iron metabolism may lead 
to the occurrence of POCD through the mechanism of 
ferroptosis [30, 31, 128] (Fig.  3). Bioinformatics analy-
sis and related studies have shown that mitochondrial-
related ferroptosis may lead to cognitive deficits after 
sevoflurane administration [30]. Sevoflurane-induced 
ferroptosis involves not only the mechanism of iron over-
load but also the regulatory effect on key ferroptosis pro-
teins such as ACSL4 and GPX4 [31]. During ferroptosis, 
mitochondria show reduced volume, increased mem-
brane density, diminished cristae, and outer membrane 
rupture [31]. An in  vitro study found that pretreatment 
with the selective ferroptosis inhibitor ferrostatin-1 pre-
served mitochondrial function and decreased neuronal 
cell death caused by isoflurane exposure, indicating that 
ferroptosis may contribute to isoflurane neurotoxicity 

Fig. 3  The role and mechanism of mitochondrial iron homeostasis imbalance in POCD. General anesthesia upregulates the expression of NMDAR, 
leading to mitochondrial iron overload by enhancing DMT1-mediated iron uptake and lysosomal iron release. Surgery can increase divalent metal 
transporter 1 and hepcidin, and decrease transferrin receptor and ferroportin 1, thereby causing iron overload. Mitochondrial iron homeostasis 
imbalance leads to reduced ATP production, increased ROS production through TCA and glucose metabolism pathways, and ultimately leads 
to mitochondrial dysfunction and POCD. Iron overload can also lead to pro-inflammatory activation of microglia, exacerbating neuroinflammation. 
In addition, iron metabolism abnormalities caused by general anesthesia can lead to the occurrence of POCD by promoting neuronal ferroptosis
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[136]. A previous study found that ketamine or sevoflu-
rane induces neuronal death, characterized by ferrop-
totic biomarkers including iron dependence, elevated 
lipid peroxidation, and reduced glutathione levels [137]. 
Administration of iron chelators can mitigate mitochon-
drial dysfunction, ferroptosis, and cognitive impairment 
caused by surgery and general anesthesia [128, 131]. We 
propose that general anesthesia-induced neurotoxicity 
and POCD are linked to disrupted iron homeostasis and 
iron-dependent ferroptosis.

The effect of Tau protein on mitochondrial function
Abnormally phosphorylated Tau protein, serving as a 
characteristic marker of Alzheimer’s Disease (AD), exerts 
a detrimental effect on cognitive function [138]. Research 
indicates that sevoflurane enhances tau protein phospho-
rylation [40], and hyperphosphorylated tau can damage 
mitochondrial function in the following ways (Fig. 1): (1) 
Interacting with MFN1, MFN2, OPA1 and DLP1, thus 
affecting mitochondrial dynamics. It primarily shifts the 
mitochondrial fission–fusion balance towards increased 
fission [139, 140]. (2) Inhibiting JIP1 and activating PP1 
and GSK3 to prevent mitochondrial transport along 
microtubules [141, 142]. (3) Inhibiting mitochondrial 
respiratory chain complexes, causing oxidative phos-
phorylation dysfunction and increased ROS produc-
tion [143–146]. (4) Interacting with VDAC1 to influence 
mPTP opening and closing, thus impairing membrane 
permeability [147].

Age susceptibility to mitochondrial dysfunction
Anesthesia exposure may affect mitochondrial morphol-
ogy and function in an age-dependent manner [5, 13, 32]. 
Studies have found that mitochondrial function in aged 
mice and neonatal mice is more susceptible to anesthesia, 
thereby becoming an important mechanism for neuron 
death and cognitive dysfunction [5, 14, 45]. Some stud-
ies argue that age susceptibility to general anesthesia may 
refer to neuronal age rather than biological age [26].

Exposure to sevoflurane during development impairs 
mitochondria and leads to cognitive deficits in neona-
tal rodents [148]. Early general anesthesia induces sig-
nificant disturbances in mitochondrial morphology and 
function and inhibitory synaptic transmission during the 
peak period of synaptic development in developing rat 
brains [5, 13]. Exposure to sevoflurane during the neo-
natal period produces long-term and dose-dependent 
ultrastructural damage, including synaptic loss, reduced 
presynaptic mitochondrial localization, and altered post-
synaptic density (PSD) length distribution [45]. Sevo-
flurane exposure mediates mitochondrial functional 
changes in the developing brain by activating the mtUPR, 
leading to changes in excitatory synaptic transmission 

[32]. Therefore, mitochondria may be an important early 
target of neuronal development and synaptic damage 
induced by general anesthesia [5, 13]. Kaley et al. found 
that limited early anesthesia exposure may induce persis-
tent cellular dysfunction by inducing a state of sustained 
energy deficiency in mitochondria, leading to persistent 
neuroinflammation and protein toxicity, similar to the 
manifestations of chronic neurodegenerative diseases 
[36]. Sevoflurane exposure during infancy may affect 
mitochondrial QC and regeneration pathways, lead-
ing to the persistence of fragmented and energy-poor 
mitochondria, adversely affecting mitochondrial protein 
homeostasis and oxidative phosphorylation in adulthood, 
hence inducing permanent neuron dysfunction [36]. In 
addition, early changes in mitochondrial transport or 
fission may make surviving synapses more sensitive to 
subsequent anesthesia and surgical exposure [45]. How-
ever, one study also found that changes in mitochondrial 
function and excitatory/inhibitory synaptic transmission 
imbalance caused by sevoflurane exposure are transient 
and do not cause long-term behavioral changes [149].

Older individuals show heightened mitochondrial 
senescence, significantly contributing to various aging-
related disease mechanisms [150]. The reduction of 
cytochrome C may be an important factor in the aging-
induced decline of mitochondrial oxidative phospho-
rylation capacity, which affects ATP production in older 
brains [150]. In addition, the brains of older subjects 
exhibits increased mitochondrial basal oxidative stress, 
and neurons are highly exposed to ROS products [66]. 
However, studies on aged rodents have shown that anes-
thesia induces extensive formation of dendritic spines 
during critical synaptogenesis, rather than extensive neu-
ronal apoptosis [151–153].

The effect of mitochondrial oxidative stress 
on POCD
Neurons are particularly susceptible to ROS and reac-
tive nitrogen species (RNS) damage owing to their high 
metabolic rate, fatty acids prone to peroxidation, abun-
dant transition metals that catalyze ROS formation, and 
low antioxidant levels [154, 155]. Increased oxidative 
stress leads to worsening mitochondrial dysfunction, 
hippocampal neuronal damage, and synaptic loss, result-
ing in learning and cognitive dysfunction [14, 23]. Under 
anesthesia and surgical exposure, mitochondria serve as 
both the primary source and target of ROS, leading to 
reduced efficiency in the mitochondrial respiratory chain 
and ATP production [156, 157], increased mtDNA muta-
tions [158], and further ROS production, creating a self-
perpetuating cycle of oxidative damage [14, 159] (Fig. 4). 
In addition, the interaction between mitochondrial oxi-
dative stress and neuroinflammation further aggravates 
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POCD [160, 161] (Fig. 4). mtROS contributes to NLRP3 
inflammasome activation, while the resulting inflamma-
tory response causes mitochondrial damage and mtDNA 
release, further elevating mtROS production [162]. The 
mitochondrial-targeted antioxidant SS-31 can inhibit 
NLRP3 inflammasome activation and alleviate isoflu-
rane-induced cognitive impairment by blocking mtROS 
[163].

Anesthesia and surgery significantly elevate MDA 
activity and reduce SOD activity, indicating increased 
mitochondrial oxidative stress [23], which is associated 
with POCD induction [14]. Sevoflurane exposure leads 
to an upregulation of CypD, which results in the opening 
of mPTP and a decrease in MMP, while also leading to a 
decrease in the ratio of GSH/GSSG in the mitochondria, 
increasing oxidative stress, and ultimately leading to cog-
nitive impairment in mice [40, 122, 164].

Telomerase is an enzyme responsible for extending 
the ends of chromosomes, and it is also closely related 
to delaying the aging process [165]. The catalytic subunit 
telomerase reverse transcriptase (TERT) of telomerase 
plays an important antioxidant function by translocating 
from the cell nucleus to mitochondria [166, 167]. Studies 
have found that a decrease in TERT levels in the aging 
brain leads to an increase in mtROS release [167]. In 
addition, surgical intervention also reduces telomerase 
activity and mitochondrial localization of TERT in the 
hippocampus [168]. Therefore, the aging brain is more 

susceptible to mitochondrial oxidative stress during the 
perioperative period and induces POCD.

The integrated stress response (ISR) is a signaling 
hub regulatory network induced by protein homeosta-
sis imbalance, primarily achieved by controlling the rate 
of protein synthesis [169]. This regulation involves the 
function of the eukaryotic initiation factor 2 (eIF2) ter-
nary complex [169]. The core reactions of the ISR involve 
eIF2α phosphorylation and elevated ATF4 expression, 
both of which are closely linked to oxidative stress and 
various neurodegenerative diseases [170–174]. Research 
indicates that mice with POCD exhibit notable oxida-
tive stress damage and ISR activation in the hippocam-
pus [169]. ISR has been shown to regulate oxidative stress 
levels through mitochondria [175]. Current research has 
found that ISR has a dual regulatory effect on mitochon-
dria (Fig.  4). As one of the stress response mechanisms 
maintaining cellular homeostasis, moderate ISR selec-
tively targets the mitochondrial complex I assembly fac-
tor NDUFAF2 for translational inhibition and reduces 
the production of ROS related to complex I [176]. Exces-
sive ISR activation can cause mitochondrial energy 
imbalance and respiratory chain dysfunction [177]. C/
EBP Homologous Protein (CHOP), a multifunctional 
transcription factor, rises early in mitochondrial dysfunc-
tion [178, 179] and interacts with C/EBPβ to inhibit ATF4 
overexpression, thus mitigating excessive ISR activation 
[177]. Therefore, CHOP can serve as a means to balance 

Fig. 4  The role and mechanism of mitochondrial oxidative stress in POCD. After surgical and anesthetic exposure, mitochondria are not only the 
main source of ROS generation but also the main target of oxidative damage. Oxidative damage leads to mitochondrial dysfunction, such 
as decreased mitochondrial membrane potential (MMP), mtDNA release, impaired respiratory chain, and reduced ATP production. In addition, 
the activation of the integrated stress response (ISR) regulates oxidative stress through mitochondria, and excessive ISR can lead to mitochondrial 
energy imbalance and respiratory chain dysfunction, further increasing the release of mtROS. The increased production of mtROS exacerbates 
neuronal damage and the occurrence of POCD through a crosstalk with neuroinflammation
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ISR and mitochondrial oxidative stress, thus reducing the 
adverse effects of ISR [177].

The effect of mitophagy on POCD
Mitophagy is a type of selective autophagy that serves as 
a key mitochondrial QC mechanism [42, 180, 181] and 
maintains mitochondrial homeostasis by isolating dam-
aged or redundant mitochondria through autophago-
somes and lysosomal degradation [181]. Mitochondrial 
damage can cause cellular energy production disor-
ders, oxidative stress, and impaired signal transmission 
[182–184]. To cope with changes in cellular energy sta-
tus, mitophagy supports the high energy demand of neu-
rons by maintaining and renewing a healthy and active 
mitochondrial pool through mitochondria QC [185]. 
Mitophagy alleviates cellular stress from oxidative dam-
age and is crucial in neurodegenerative diseases and 
aging [21, 186]. Impaired mitophagy leads to synaptic 
dysfunction and cognitive deficits by increasing oxida-
tive damage and cellular energy defects [187]. Mitophagy 
mechanisms are categorized into ubiquitin-dependent 
and ubiquitin-independent pathways [188]. The most 
important mechanism of the ubiquitin-dependent path-
way is the PINK1/Parkin pathway [43, 188]. The ubiqui-
tin-independent pathway mainly initiates mitophagy by 
directly binding LC3 with related proteins such as Nip3, 
bnip3, and FUNDC1 on the outer membrane of mito-
chondria [38, 43, 188]. Research also indicates crosstalk 
between the ISR pathway and activation of mTORC1 and 
AKT, with mitophagy partially mediated by ATF4 expres-
sion induced by eIF2a phosphorylation [189].

Research has found that sevoflurane-induced cogni-
tive dysfunction in aged rats is associated with mitophagy 
dysfunction [21, 190]. Sevoflurane-induced SIRT1 
expression reduction can induce cognitive dysfunction 
by inhibiting mitophagy and promoting activation of 
the inflammasome and cell apoptosis [191]. Sevoflurane 
causes the accumulation of damaged mitochondria, pre-
vents the formation of autolysosomes, disrupts lysosomal 
acidification, and inhibits mitophagy flux [21], which may 
be related to inhibition of the Parkin pathway [190]. How-
ever, rapamycin treatment can reverse the loss of mature 
dendritic spines and improve sevoflurane-induced cogni-
tive impairment by promoting mitophagy in hippocampal 
neurons [21]. Isoflurane anesthesia and abdominal sur-
gery in rats significantly reduced hippocampal synapse-
associated protein 25 (SNAP25) expression, impairing 
mitochondrial clearance and causing postoperative cog-
nitive decline by inhibiting PINK1-mediated mitophagy 
[192]. Anesthesia and surgery-induced PINK1-mediated 
mitophagy defects activate caspase-3/GSDME-depend-
ent neuronal pyroptosis, contributing to POCD [193]. 
Anesthesia and surgery-induced oxidative stress and 

impaired mitophagy flux jointly promote the release of 
mtDNA, thus becoming powerful promoters of NLRP3 
inflammasome activation [194] and cGAS-STING path-
way [195]. The cGAS-STING pathway is a crucial fac-
tor in chronic inflammation during aging, promoting 
pro-inflammatory microglial polarization and result-
ing in neurotoxicity and cognitive decline [196]. In AD 
patients, mitophagy flux in neurons and microglia were 
significantly impaired, resulting in abnormal autophagic 
vacuole accumulation, tau protein buildup, increased 
oxidative stress, synaptic dysfunction, neuronal loss, 
and cognitive decline [42, 197]. The accumulation of tau 
protein, in turn, disrupts mitophagy via the PINK1/Par-
kin pathway, creating a vicious cycle [198]. In addition to 
aged mice, studies have also shown that mitophagy dys-
function can lead to POCD after abdominal surgery in 
young mice[43].

The cross talk of mitochondria 
and neuroinflammation in POCD
Alterations in mitochondrial metabolism and dys-
function are often observed in the early stages of 
neurodegenerative diseases [180]. The activation of 
mitochondria-dependent apoptotic pathways serves 
as the earliest warning signal for neuronal damage [5]. 
Mitochondrial dysfunction is an early trigger in isoflu-
rane-induced neuronal damage [49]. Within the mito-
chondrial-neuroinflammation-POCD axis, mitochondria 
often occupy an upstream position and serve as one of 
the initiating factors, exacerbating neuroinflammation. 
Neuroinflammation serves as the central driving force 
behind POCD [3]. During stress induced by surgery and 
anesthesia, mitochondrial dysfunction often precedes the 
onset of neuroinflammation, and neuroinflammation, 
in turn, exacerbates mitochondrial dysfunction, thereby 
creating a vicious cycle [19, 98].

Mitochondria are considered the center of innate 
immune signaling pathways, including NLRP3 and 
cGAS/STING [194, 195, 199]. Under oxidative stress 
from surgery and anesthesia, increased mtROS produc-
tion and mtDNA release from the open mPTP into the 
cytoplasm activate the NLRP3 inflammasome, exac-
erbating neuroinflammation and neuronal apoptosis, 
which ultimately results in POCD [19, 194]. In addition, 
mitochondrial SIRT3 promotes the occurrence of neu-
roinflammation by mediating oxidative stress responses 
[23]. Mitophagy defects lead to NLRP3 inflammasome 
activation via ROS accumulation, thereby contributing 
to POCD [43, 187, 194, 195]. Mitochondrial dysfunction, 
especially the decrease in MMP, may induce the activa-
tion of NF-κB by activating CaN [50]. Studies indicate 
that LPS stimulation induces mitochondrial dysfunction 
(reduced MMP) in astrocytes, triggers pyroptosis-related 
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inflammatory factors via the STING/TBK-1 pathway, 
and promotes POCD occurrence [200]. Sevoflurane 
exposure leads to a decrease in mitochondrial oxidative 
phosphorylation function in the microglia, promoting 
the differentiation of microglia into pro-inflammatory A1 
phenotype, thereby aggravating neuroinflammation [44]. 
Conversely, restoring mitophagy in microglia can exert 
neuroprotective effects by inhibiting neuroinflammation 
[201].

Primary neurons and SH-SY5Y cells were treated with 
tumor necrosis factor (TNF) [55]. After TNF exposure, 
the activity of CaN in primary neurons increased, pro-
moting the activation of Drp1, leading to increased mito-
chondrial fragmentation and mitochondrial dysfunction 
[55]. CaN inhibitor FK506 has a function independent of 
drp1 and can alleviate mitochondrial dysfunction [55]. 
Inflammatory factors can also mediate Drp1 phosphoryl-
ation by activating CDK1 [36] and GSK3β [33], thereby 
promoting mitochondrial fission. The resulting mito-
chondrial dysfunction further promotes the release of 
inflammatory factors, forming a vicious cycle [36].

POCD therapy mediated by mitochondria
Given the crucial role of mitochondria in POCD, numer-
ous studies have focused on mitochondrial-targeted 
treatments, yielding promising outcomes (Table 2).

Dexmedetomidine
PGC-1α plays an important regulatory role in cellu-
lar metabolism and mitochondrial biosynthesis [96, 97, 

209]. The absence of PGC-1α can lead to mitochondrial 
dysfunction and oxidative stress [210]. Dexmedetomi-
dine ameliorates brain damage and neurological deficits 
in the intracerebral hemorrhage (ICH) model by sup-
pressing oxidative stress resulting from the deactivation 
of the PGC-1α pathway and mitochondrial dysfunc-
tion [159]. Dexmedetomidine treatment enhances out-
comes in sevoflurane-induced neurotoxicity and POCD 
by enhancing mitochondrial autophagy and mitigating 
oxidative stress in the mitochondria [202–204]. Dexme-
detomidine exerts a neuroprotective effect in models of 
ischemia or tissue hypoxia by activating mitochondrial 
ATP-sensitive potassium channels [205].

Improvement of mitochondrial occurrence and dynamics
Luteoloside enhances ATP production and MMP recov-
ery, reversing the mitochondrial dynamics disorder 
induced by sevoflurane, thus mitigating the incidence of 
POCD in aged rats exposed to sevoflurane [34]. Methyl-
ene blue mitigates cognitive dysfunction induced by sevo-
flurane in aging mice by suppressing Drp1 SUMOylation, 
thus reducing mitochondrial fission [87]. Heme amelio-
rates mitochondrial damage and apoptosis triggered by 
sevoflurane exposure, as well as mitochondrial dynam-
ics dysfunction. This protective effect may be associ-
ated with elevated neuroglobin levels [86]. Mdivi-1, a 
mitochondrial fission inhibitor, preserves mitochondrial 
integrity and diminishes anesthesia-induced synaptic 
damage and neurotoxic effects [88]. Pramipexole pre-
vents cognitive decline in rats post-early anesthesia by 

Table 2  Beneficial treatment of POCD by targeting mitochondria

Treatment Mechanisms References

Dexmedetomidine Inhibit mitochondrial oxidative stress, promote mitophagy, activate mitoKATP [159, 202–205]

Luteoloside Increase ATP production, restore MMP and mitochondrial dynamics [34]

Methylene blue Inhibit mitochondrial fission [87]

Heme Inhibit mitochondrial damage and apoptosis, improve mitochondrial dynamics [86]

Mdivi-1 Inhibit mitochondrial fission [88]

Pramipexole Protecting mitochondrial integrity [206]

Rehabilitative resistance exercise Improve mitochondrial biogenesis and dynamics [98]

SIRT3 Inhibit mitochondrial oxidative stress [23]

SESN1 Promote mitophagy, inhibit mitochondrial oxidative stress [207, 208]

SS-31 Promote mitophagy, inhibit mitochondrial oxidative stress [195]

Electroacupuncture Inhibit mitochondrial oxidative stress (protect TERT) [168]

Ru360 Reduce mitochondrial calcium overload [29]

Melatonin Alleviate mitochondrial dysfunction (upregulate CypD) [122]

Deferoxamine Reduce mitochondrial iron accumulation [131]

Honokiol Promote mitophagy [43]

Varenicline Promote mitophagy [85]

Lidocaine Restore MMP [49]

Esketamine Inhibit mitochondrial depolarization [200]
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safeguarding mitochondrial integrity [206]. The PGC-1α/
BDNF pathway is intimately linked to mitochondrial bio-
genesis and dynamics and is pivotal in the formation and 
maintenance of dendritic spines and synapses within the 
hippocampus [211]. Rehabilitative resistance exercise 
activates hippocampal PGC-1α/BDNF/Akt/GSK-3β sign-
aling, enhancing mitochondrial biogenesis and improv-
ing mitochondrial dynamics in post-operative aged mice 
[98].

Anti‑mitochondrial oxidative stress
SIRT3 is a crucial antioxidant enzyme that mitigates cog-
nitive decline associated with anesthesia and surgery by 
suppressing mitochondrial oxidative stress and neuro-
inflammation [23]. Sestrin1 (SESN1), a stress response 
protein, is crucial in mitigating oxidative stress and DNA 
damage. Overexpression of SESN1 significantly reduces 
cognitive dysfunction induced by sevoflurane anesthesia, 
enhances mitophagy, and suppresses inflammasome acti-
vation and mitochondrial dysfunction through the activa-
tion of SIRT1 [207, 208]. SS-31, a mitochondrial-targeted 
antioxidant, enhances phb2-mediated mitophagy to 
inhibit mtDNA release, blocking the cGAS-STING path-
way and M1 microglial polarization, thereby exerting a 
neuroprotective effect against POCD [195]. Electroacu-
puncture preconditioning protects against POCD result-
ing from mitochondrial oxidative stress by preserving the 
function of TERT in aged mice [168].

Reducing mitochondrial calcium and iron imbalance
Ru360 alleviates POCD in aged mice by inhibiting 
MCU-mediated mitochondrial calcium overload [29]. 
Melatonin inhibits the upregulation of CypD induced by 
sevoflurane in PV neurons, thereby mitigating mitochon-
drial dysfunction, hippocampal injury, and cognitive defi-
cits in neonatal mice [122]. Deferoxamine pretreatment 
can reduce mitochondrial iron accumulation in the hip-
pocampus, decrease microglial activation, and mitigate 
POCD in rats [131].

Regulating mitophagy
Honokiol-mediated mitophagy ameliorates cognitive 
dysfunction following surgery/sevoflurane anesthesia by 
suppressing the activation of the hippocampal NLRP3 
inflammasome [43]. Varenicline alleviates cognitive 
impairment in aged mice following laparotomy by bol-
stering mitophagy [197].

Restoring MMP
Lidocaine effectively mitigates mitochondrial injury 
and the decline in MMP induced by isoflurane in rats, 
thereby reducing POCD [49]. Esketamine can inhibit 

mitochondrial depolarization in astrocytes and alleviate 
postoperative cognitive decline in aged rats [200].

Conclusion and perspectives
Mitochondria serve as the key organelles for energy pro-
duction and metabolic regulation within cells and are 
essential for sustaining normal physiological functions. 
Mitochondrial function is susceptible to stress from sur-
gery and anesthesia, particularly in older and developing 
nervous system cells that are more likely to experience 
dysfunction. Mitochondrial metabolic alterations and 
functional abnormalities frequently occur in the early 
stages of disease pathogenesis and could serve as one of 
the initiating factors for POCD. In addition, mitochon-
drial abnormalities are extensively involved in patho-
logical processes like neuroinflammation and oxidative 
stress, synergistically contributing to the onset of POCD. 
Hence, mitochondrial abnormalities could potentially 
serve as both the "initiator" and "accelerator" of POCD. 
General anesthesia causes a decline in neuronal ATP pro-
duction by inhibiting mitochondrial respiration, reduc-
ing MMP, and inducing mitochondrial calcium overload. 
Anesthesia and surgery trigger neuronal dysfunction 
and death via various mechanisms, such as promoting 
mitochondrial fission, decreasing MMP, enhancing mito-
chondrial calcium overload and mitochondrial-mediated 
ferroptosis, augmenting mitochondrial oxidative stress, 
and impairing mitophagy flux. The reduction in mito-
chondrial ATP production and the disruption of calcium 
and iron homeostasis due to anesthesia and surgery also 
hinder synaptic transmission and neurotransmitter syn-
thesis and release in neurons. Additionally, mitochon-
drial dysfunction extensively cascades with mechanisms 
like neuroinflammation and oxidative stress, forming a 
vicious cycle. Mitochondrial abnormalities emerge early 
in the pathological process of POCD and even become 
upstream factors that influence other mechanisms. This 
intricate regulatory network collectively contributes to 
the onset of POCD.

It is noteworthy that many of the studies cited in the 
review are based on animal and cellular experiments, or 
even studies that utilize extracted mitochondria inde-
pendent of organisms and cells. The applicability of these 
findings to human patients remains uncertain, so we 
need to approach the research conclusions with caution. 
To gain a clearer understanding of whether mitochon-
drial damage and dysfunction induced by anesthesia and 
surgery truly serve as "initiators" and "accelerators" in 
POCD, more high-quality clinical research is required to 
corroborate these findings.

Considering the pivotal role of mitochondria in POCD, 
targeting mitochondrial dysfunction may emerge as a 
novel therapeutic approach for POCD. Developing drugs 
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that safeguard mitochondrial DNA, enhance MMP, and 
curtail ROS production can effectively enhance mito-
chondrial function, thus mitigating POCD symptoms. 
Future research should focus on developing drugs or 
treatments that stimulate mitophagy, aiming to enhance 
the homeostasis and functionality of nerve cells. POCD 
represents a complex pathological process; therefore, 
future studies should encourage interdisciplinary col-
laboration and employ a variety of technical approaches 
to seek comprehensive treatment strategies for POCD. 
Advancements in genomics and precision medicine will 
enable the creation of personalized treatment plans tai-
lored to a patient’s genetic makeup, mitochondrial func-
tion, and other relevant factors.
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