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Glucose serves as the main source of ATP in the CNS, 
which fuels 95% of ATP in the brain [3]. In the CNS, 
glucose can be processed in the following ways: oxida-
tive phosphorylation (OXPHOS) and glycolysis for ATP 
generation, pentose phosphate pathway for anabolic and 
antioxidant reactions as well as glycogenesis for energy 
storage [4–6]. For ATP supply, glucose is first converted 
into Glucose-6-Phosphate via hexokinase. After a serious 
of enzymic reactions, pyruvate is generated. This process 
is termed glycolysis, in which two ATP molecules are 
generated (Fig.  1). Pyruvate is then converted to acetyl 
coenzyme A (acetyl-CoA), which undergoes tricarboxylic 
acid (TCA) cycle and OXPHOS in mitochondria, gen-
erating 30–36 ATP molecules eventually. Alternatively, 
under hypoxia/anoxia or in specific cell types, pyruvate 
is transformed into lactate via lactate dehydrogenase 

Introduction
Brain is an organ with high demand of energy in the body 
due to complex activities in the CNS. Representing only 
2% of the body weight, however, brain consumes 20% of 
the resting total body O2 consumption and glucose [1, 2]. 
Moreover, continuous energy supply of ATP is needed 
for brain given the lack of sufficient energy reserve [1, 3]. 

Journal of Neuroinflammation

*Correspondence:
Qi Mei
borismq@163.com
Minjie Xie
xie_minjie@126.com
1Department of Neurology, Tongji Hospital, Tongji Medical College, 
Huazhong University of Science and Technology, No. 1095 Jiefang 
Avenue, Wuhan 430030, China
2Department of Oncology, Tongji Hospital, Tongji Medical College, 
Huazhong University of Science and Technology, Hubei, Wuhan, China

Abstract
Brain takes up approximately 20% of the total body oxygen and glucose consumption due to its relatively high 
energy demand. Glucose is one of the major sources to generate ATP, the process of which can be realized via 
glycolysis, oxidative phosphorylation, pentose phosphate pathways and others. Lactate serves as a hub molecule 
amid these metabolic pathways, as it may function as product of glycolysis, substrate of a variety of enzymes and 
signal molecule. Thus, the roles of lactate in central nervous system (CNS) diseases need to be comprehensively 
elucidated. Histone lactylation is a novel lactate-dependent epigenetic modification that plays an important role 
in immune regulation and maintaining homeostasis. However, there’s still a lack of studies unveiling the functions 
of histone lactylation in the CNS. In this review, we first comprehensively reviewed the roles lactate plays in the 
CNS under both physiological and pathological conditions. Subsequently, we’ve further discussed the functions of 
histone lactylation in various neurological diseases. Furthermore, future perspectives regarding histone lactylation 
and its therapeutic potentials in stroke are also elucidated, which may possess potential clinical applications.
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(LDH), accompanied by generation of only 2 ATP mol-
ecules (Fig. 1) [3]. In normal conditions, OXPHOS is uti-
lized for sustained and sufficient ATP production in the 
brain [3]. However, under certain circumstances, such as 
functional activation or facing acute stimuli in the brain, 
even when the oxygen supply is abundant, glucose could 
also be converted into lactate for rapid ATP generation. 
This process is termed aerobic glycolysis, also known as 
Warburg effect, which was first observed in cancer cells 
[6–8]. Another important function of glycolysis is to gen-
erate intermediates for anabolic reactions in the body 

including biosynthesis of nucleotide, lipid and amino 
acids [9].

Lactate, as the end-product of glycolysis, has been con-
sidered as a waste product in metabolism in the past. 
However, recently lactate has been proven to partici-
pate in energy supplementation and signal transmission, 
thus playing an important role in the regulation of brain 
function. In CNS, lactate has been viewed as an energy 
substrate and maybe the preferred substrate in neurons 
under aerobic conditions [1, 4]. Lactate taken up by neu-
rons is able to be converted into pyruvate via LDH1, 

Fig. 1  The process of lactate metabolism and histone lactylation. For ATP generation, glucose can be processed in both OXPHOS and glycolysis. Firstly, 
glucose is transported into cells by glucose transporters (GLUTs) and metabolized into Glucose-6-Phosphate via hexokinase. After a serious of enzymatic 
reactions, Glucose-6-Phosphate is transformed to pyruvate, which is further transformed into acetyl-CoA via pyruvate dehydrogenase to fuel TCA or into 
lactate as the end-product of glycolysis via lactate dehydrogenase. Besides, lactate can be transported by multiple monocarboxylate transporters (MCTs) 
on cell membrane. In histone lactylation, lactate is firstly transformed into lactyl-CoA, which enters nucleus and adds lactyl group to lysine residues of 
histones. Diverse enzymes,  known as writers, erasers and readers, are involved in this process. Notably, by being enriched in the promoter region of target 
genes, histone lactylation has been proved to participate in regulating gene expressions of cells. GPI: glucose-6-phosphate isomerase; PFK: phosphofruc-
tokinase; TPI: triose phosphate isomerase
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which fuels into TCA cycle and OXPHOS to supply ATP 
for neurons, and this process is especially active during 
neuronal activities [10]. Moreover, lactate may serve as 
the substrate of histone lactylation, a newly defined post-
translational modification (PTM). Histone lactylation 
was first found by Zhang et al. in macrophages exposed 
to hypoxia and bacterial stimulation [11]. PTMs of his-
tones are common epigenetic changes which can regulate 
the transcription of target genes by altering the structure 
of chromosomes [12]. There are various kinds of PTMs, 
including methylation, phosphorylation, acetylation, gly-
cosylation, ubiquitination and so on. Similar to the afore-
mentioned PTMs, recent studies have found that histone 
lactylation participates in regulating the expressions of 
various genes in diversified types of cells and shed new 
light on therapeutics in multiple diseases [13].

In this review, we aimed to elaborate the functions of 
lactate/histone lactylation in pathophysiological condi-
tions in CNS. We firstly detailed lactate metabolism in 
CNS and the roles of lactate in physiological and patho-
logical circumstances in CNS. Thereafter, we discussed 
the process and functions of histone lactylation in vari-
ous neurological diseases. At last, we elucidated the 
future perspectives regarding histone lactylation and its 
therapeutic potentials in stroke.

Lactate metabolism in neurons and glia in CNS
The metabolism patterns of glucose differ between neu-
rons and glia in CNS, which may be ascribed by the dis-
crepancies in mitochondria, expressions of metabolic 
enzymes and monocarboxylate transporters (MCTs) in 
these cells [2, 10].

Structure and action mechanism of MCTs
MCTs contains 14 protein members, which are encoded 
by the SLC16A genes family [14]. Among these MCTs, 
MCTs1-4 have been identified to transport monocarbox-
ylates in humans [15]. MCTs possess highly conserved 
motifs and consist of 12 transmembrane helices with 
intracellular C- and N-termini, among which there’s a 
large cytosolic loop between helices 6 and 7 (Fig. 2) [14]. 
MCTs are lactate-H+ symporters. The molecular mecha-
nism of lactate transport has been depicted in MCT1 
[16]. In short, MCT1 is predicted to contain two differ-
ent states. In the “outside-open” conformation, proton 
can bind to the uncharged lysine, thereafter leading to a 
binding site available for monocarboxylate anion to form 
an ionic pair. Then the lactate and proton are transported 
to intracellular binding sites and an “inside-open” status 
starts, during which period lactate and proton can be 
released into cytoplasm (Fig. 2) [14, 16]. Therefore, both 
the concentration gradients of monocarboxylate ions and 
protons between inside and outside of cells will have an 
influence on transport directions of MCTs [17].

In the CNS, MCTs are responsible for lactate trans-
port, which are differentially expressed between neurons 
and glia (Fig.  2), more details are discussed below [18]. 
Previous studies have indicated the correlations between 
MCTs and glucose metabolism. MCT1 inhibition 
decreased lactate production under hypoxia in glioma 
cells [19]. Similarly, MCT1 silencing effectively reversed 
the increased lactate levels in macrophages under 
hypoxia, accompanied by downregulating histone lacty-
lation levels too [20]. However, there exists some differ-
ent opinions. MCT1 inhibition by AZD3965 was found 
to increase glycolysis and glycolytic enzymes in tumor 
cells, while Lopez et al. observed that MCT1 blockade 
increased mitochondrial metabolism in CAR T cells [21, 
22]. On the other hand, Blaszczak et al. pointed out that 
MCT activity was irrelevant with lactic acid production, 
as MCT inhibitors cannot impede lactic acid production 
in cells [23]. In turn, lactate levels also have an impact 
on MCTs expressions, which may differ among differ-
ent MCTs. Increased extracellular lactate after exercise 
has been reported to induce MCT1 mRNA and protein 
expressions probably via reactive oxygen species (ROS) 
generation [24, 25]. However, in another study, Sangsu-
wan et al. found that lactate upregulated MCT4 while 
downregulated MCT1/2 gene expressions in vitro [26]. 
Overall, the relationship between lactate metabolism and 
MCTs expressions seems to be conflicted and needs fur-
ther investigation.

Lactate metabolism in astrocytes and neurons
In CNS, astrocytes rely mainly on glycolysis while neu-
rons rely predominantly on OXPHOS for energy supply 
[1]. Accumulating evidence has suggested that astrocytes 
serve as the major source of lactate in CNS [27]. The dis-
crepancy of metabolism profiles between neurons and 
glia was first revealed in 1960s. Hyden et al. first found 
that the capacity of electron transporting system was 
increased after stimulation in neurons, whereas it was 
not altered in glia [28]. The differences in metabolism 
regulation between neurons and glia under vestibular 
stimulation were further confirmed by Hamberger et 
al., who observed upregulated activities of respiratory 
enzyme and downregulated anaerobic glycolysis in neu-
rons, which were the opposite in glia [29]. Thereafter, 
transcriptome and mass spectrometric analysis revealed 
cell-specific metabolic profiles in the CNS [30, 31]. Nota-
bly, expressions of glycolytic enzymes including 6-phos-
phofructose-2-kinase/fructose-2,6-bisphosphatase-3 
(Pfkfb3), pyruvate kinase (PK) and LDH vary between 
neurons and astrocytes. Zhang et al. found that more 
abundant expressions of Pfkfb3, Pkm2 and Ldhb in astro-
cytes compared with neurons, collectively contributing to 
the preference for glycolysis in astrocytes [30]. However, 
pyruvate dehydrogenase (PDH), which promotes the flux 
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of pyruvate into TCA cycle, is highly phosphorylated 
and less activated in astrocytes, thus promoting pyru-
vate shunted into glycolysis, while in neurons, PDH is 
more unphosphorylated and activated [3, 32]. The inac-
tivation of PDH in astrocytes may be ascribed to more 
than 30-fold higher pyruvate dehydrogenase kinase 4 
(Pdk4) transcripts than in neurons [30]. On the contrary, 
enzyme Pfkfb3 is degraded constantly in neurons, there-
fore limiting its glycolysis level [33]. Surprisingly, results 
from Lovatt et al. indicated that astrocytes were equipped 
with mitochondria and expressed most enzymes involved 
in TCA cycle [31]. However, mitochondrial respiratory 
chain (MRC) complexes are highly organized in neurons 
while mitochondrial free complex I is more abundant in 
astrocytes. As highly organized mitochondrial complexes 

are essential in regulating electron transfer efficiency, the 
disturbance of organization of respiratory complexes is 
responsible for poorer mitochondrial function in astro-
cytes. These discrepancies collectively result in decreased 
respiration rate and higher glycolysis in astrocytes than 
in neurons [34].

Astrocyte-neuron lactate shuttle (ANLS)
A large number of investigations have suggested meta-
bolic cooperation between astrocytes and neurons, in 
which astrocytes modulate its metabolism to match 
neuronal activities [1]. It is believed that lactate released 
from astrocytes via MCT1/MCT4 can be taken up by 
neurons via MCT2 for generation of pyruvate and ace-
tyl-CoA to fuel OXPHOS, thus ensuring necessary ATP 

Fig. 2  Differential expressions and action mechanism of MCTs in the CNS. (A) MCTs expressions differ between neurons and glia. MCT1 and MCT4 in 
astrocytes are responsible for lactate efflux, which is then transported into neurons via MCT2. Similarly, lactate efflux via MCT1 in oligodendrocytes and 
uptake via MCT2 in neurons has also been observed. In microglia, lactate influx is mediated by MCT1 and MCT2. (B) Structure and action mechanism 
of MCTs. MCTs possess 12 transmembrane helices and intracellular C-, N-termini. Lactate and H+ are co-transported via MCTs, which is determined on 
extracellular and intracellular concentrations of monocarboxylate ions and protons
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production during neuronal activation, which is called 
ANLS [10, 35, 36]. This transformation from lactate to 
pyruvate relies on LDH1, which is expressed by lactate-
consuming cells, such as neurons in CNS [4]. The con-
cept of ANLS was first raised in 1994 by Pellerin L. and 
Magistretti PJ, which proposed that glutamate released 
from synapses was taken up by astrocytes and stimu-
lated astrocytic glucose uptake and aerobic glycolysis, 
subsequently, lactate derived from aerobic glycolysis in 
astrocytes was transferred into neurons for energy sup-
ply [37, 38]. Mechanistically, in astrocytes, glutamate 
is co-transferred with sodium ions, which leads to the 
disruption of sodium gradient and activation of Na+/K+ 
ATPase. On the other hand, a proportion of glutamate 
in astrocytes is transformed to glutamine via glutamine 
synthase, which also consumes ATP. ATP loss stimulates 
glucose uptake, glycolysis and lactate generation in astro-
cytes [10]. Thereafter, lactate is transported into neurons 
via lactate transporters.

The shuttle of lactate relies on MCTs on cells [35]. Pre-
vious studies have confirmed heterogeneous expressions 
of MCTs in the CNS. Among which, MCT2 is primarily 
expressed in neurons and is responsible for the uptake 
of lactate, which has also been found to be expressed in 
microglia, while lactate efflux from astrocytes relies on 
MCT1 and MCT4 [3, 39]. MCT1 can transport lactate 
bi-directionally [2]. In the CNS, MCT1 is also found to be 
expressed in oligodendrocytes, microglia and endothelial 
cells [6, 40, 41], while MCT4 is exclusively expressed in 
astrocytes [6].

Except for the differences in expressions of metabolic 
genes and cellular components between astrocytes and 
neurons, various studies have further supported the 
hypothesis of ANLS [4, 42, 43]. An early research proved 
accelerated uptake of glucose in astrocytes, which was 
unchanged in neurons during whisker stimulation, indi-
cating the primary glucose uptake in astrocytes during 
neuronal activity [44]. In another study, glutamate boosts 
glucose uptake by astrocytes while inhibits glucose trans-
port in neurons, which is consistent to the ANLS [45]. 
Moreover, it has also been verified that glycolysis in glia is 
vital for neuronal survival. Volkenhoff et al. showed that 
Trehalase or PK depletion in glia resulted in neuronal 
death in drosophila [46]. A recent study applied geneti-
cally encoded lactate sensor and in vivo two-photon laser 
scanning microscopy to detect lactate and found less lac-
tate increase in astrocytes than in neurons in response 
to exogenous lactate. Furthermore, under stimulation of 
pyruvate (trans-acceleration of the MCT), reduced lac-
tate was also observed in astrocytes but not in neurons 
[47]. These results collectively suggest a lactate gradient 
between astrocytes and neurons, which is a prerequisite 
of ANLS [47]. Another study from Sada et al. revealed 
that selectively inhibition of LDH in astrocytes resulted 

in hyperpolarized in pyramidal cells due to reduced lac-
tate shuttle from astrocytes into neurons, indicating the 
important role of ANLS in neuronal activity [48].

Still, there are controversies against ANLS. First of all, 
there lacks direct evidence for glutamate-evoked lactate 
shuttle between astrocytes and neurons in vivo or in vitro 
[8]. Besides, the stoichiometry of ANLS has not been 
appropriately proposed. Daniel et al. pointed out that the 
rates of glycolysis and lactate release, the oxygen con-
sumption of lactate oxidation and oxygen-glucose index 
were mismatched respectively [8, 49]. Moreover, lactate 
in CNS may be not exclusively from astrocytes during 
neuronal activation, and studies have confirmed rapid 
release of lactate to blood and perivascular lymphatic 
drainage while not retained in activated brain regions 
[49, 50]. In addition, a previous study by Díaz-García et 
al. revealed that neurons upregulated glucose consump-
tion and glycolysis but did not require lactate supply 
from astrocytes during stimulation. Instead, they propose 
ANLS functions at resting states but not under stimula-
tion [51]. In summary, there still exist vigorous debates 
on ANLS, which warrants further delicate studies to 
draw a conclusion.

Lactate metabolism in microglia
Microglia are the resident immune cells in CNS and 
energy metabolism in microglia largely depends on the 
activation and phenotypes of microglia [52]. Microglia 
may adapt different phenotypes in response to various 
stimulations, which can be roughly classified as pro- or 
anti-inflammatory phenotypes [53]. Although this kind 
of binary classification has been considered oversimpli-
fied, it is clear that microglia modulate their metabolism 
patterns under pro-inflammatory and anti-inflammatory 
stimuli [54]. Microglia are able to metabolize glucose, 
amino acids and fatty acids due to the expressions of 
diverse transporters and enzymes [30, 54, 55]. Moreover, 
they express most genes involved in OXPHOS and gly-
colysis [54]. In resting microglia, OXPHOS is the pri-
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now considered as indicators for glycolysis activity and 
OXPHOS activity, recent studies have applied Seahorse 
system to monitor cellular energy metabolism and shown 
that IFN-γ, LPS both increased glycolysis in microglia 
reflected by increased ECAR, which indicated upregu-
lated levels of glycolysis [59, 60]. Recent studies have 
further explored the link between metabolic reprogram-
ming, the process in which cells flexibly reprogram cel-
lular metabolic pathways in response to stimuli in the 
environment, and cellular functions in immune cells [61]. 
Similarly, glycolysis preference in microglia under pro-
inflammatory environment promotes phenotype switch 
into pro-inflammatory phenotype [52, 54]. Furthermore, 
Monsorno et al. recently raised the possibility that lactate 
might influence microglial functions by regulating tran-
scriptional profiles in microglia via lactylation [62].

Lactate metabolism in oligodendrocytes
Oligodendrocytes are the major cells responsible for 
myelin forming in the CNS. Previous studies have found 
that both mitochondrial metabolism of glucose and lac-
tate production in oligodendrocytes were active [63], 
and oligodendrocytes rely more on aerobic glycolysis for 
ATP supply [3]. It has been confirmed that lactate plays 
an important regulatory role in development of oligo-
dendrocyte and myelination [64]. Lactate in oligodendro-
cytes functions not only as an energy substrate but also to 
support myelination and lipid synthesis [63, 65]. Recently, 
the scope of ANLS has also been expanded to include oli-
godendrocytes. Emerging studies have indicated that oli-
godendrocytes produce lactate to support axons [2, 66]. 
Lactate in oligodendrocytes is transferred into neurons 
for ATP synthesis via MCTs and gap junctions [6]. Aero-
bic glycolysis in oligodendrocytes is regulated by axonal 
activity. Stimulation of N-methyl-d-aspartate (NMDA) 
receptors in oligodendrocytes by glutamate derived from 
adjacent neurons enhances GLUT1 expression, glucose 
uptake and aerobic glycolysis in oligodendrocytes, which 
in turn provide more lactate for neurons [67]. In addition, 
TCA cycle and ATP generation in mitochondrial metab-
olism in oligodendrocytes are also regulated by neurons, 
which is mediated by N-acetylaspartate derived from 
neurons [3]. Meanwhile, disruption of MCT1 on oligo-
dendrocytes resulted in axon damage and neuronal loss, 
addressing the importance of MCT1 in metabolic cou-
pling between oligodendrocytes and neurons [40].

Multiple physiological functions of lactate in CNS
Lactate sustains energy needs of neuronal activation 
and serves as a signal molecule to participate in mul-
tiple physiological activities and pathological processes 
in CNS [27, 68]. Lactate is related to CNS homeostasis. 
Previous studies have suggested the important regulatory 

roles of lactate in memory, neuronal activity and blood 
flow supply in the CNS [27, 69, 70] (Fig. 3).

Lactate participates in learning and memory formation
In 1994, O’Dowd et al. found that glycolysis and glyco-
genolysis were involved in energy supply for memory 
consolidation of long-term memory [69]. In a passive 
avoidance task of chicks, they observed that glycolytic 
inhibitor iodoacetate resulted in retention deficits in 
chicks. Furthermore, glycogenolysis was observed in the 
forebrains after learning [69]. Thereafter, studies con-
firmed glycogenolysis and lactate release in the hippo-
campus in rats after learning and during spatial working 
memory task [71, 72]. Suzuki et al. found that inhibition 
of glycogenolysis suppressed long-term potentiation 
(LTP) in hippocampus, which was rescued by lactate. 
Similarly, MCTs knockdown on astrocytes or neurons 
both abolished long-term memory. Collectively, Suzuki 
et al. verified the essential role of lactate transport from 
astrocytes to neurons for long-term memory forma-
tion [71]. Meanwhile, Newman et al. found that lactate 
supplementation improved spatial working memory, 
while it was impaired by glycogenolysis inhibition and 
MCT block on neurons [72]. Consistently, another study 
showed memory impairment in the inhibitory avoid-
ance task in MCT1 deficient mice [73]. When studying 
the link between diabetes and memory defect, Shima et 
al. observed higher levels of hippocampal glycogen and 
lower levels of hippocampal MCT2 in diabetic rats, sug-
gesting that abnormal lactate metabolism and transport 
may underlie memory dysfunction in diabetic patients 
[74]. In Morris water maze test, dichloroacetate (DCA) 
treatment in acquisition period impairs learning and 
memory while treatment after acquisition period has no 
influence on memory in probe trial in mice, implying that 
lactate is vital for memory acquisition-related synaptic 
plasticity but marginal in memory retrieval [75]. In addi-
tion, lactate is also involved in drug memory of cocaine, 
representing a new therapeutic strategy for drug addic-
tion [76, 77].

The possible mechanisms underlying the vital role 
of lactate in long-term memory may be ascribed to 
the effect on the regulation of synaptic plasticity. It has 
been proved that glucose and lactate serve as energy 
substrate in presynaptic metabolism [78]. Besides, 
studies have implied that lactate is involved in genes 
expressions related to synaptic plasticity including Arc, 
c-Fos, and Zif268 [79, 80]. Moreover, dynamic aerobic 
glycolysis through a lifetime seems to be correlated to 
synaptic plasticity. That is, increased aerobic glycoly-
sis is observed during early development with the high-
est synaptic growth rates, while in adults, relatively 
higher aerobic glycolysis is found in neotenous regions, 
and during aging, aerobic glycolysis is downregulated, 
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accompanied by decreased plasticity in the brain [81, 
82]. A previous study by Hayek et al. revealed that lac-
tate derived from muscles during exercise could cross 
the blood-brain barrier (BBB) and induce expressions of 
genes such as Bdnf, thus benefiting learning and memory 
[83]. Meanwhile, recent studies also showed that lactate 
or exercise contributed to increased neurogenesis in a 

hydroxycarboxylic acid receptor 1 (HCAR1)-dependent 
or MCT2-dependent manner, which may rescue memory 
defect during aging [84, 85].

Lactate is involved in regulating neuronal activity
It has been reported that glucose and lactate delivery 
from astrocytes to neurons via gap junctions sustains 

Fig. 3  Functions of lactate in physiological activities and pathological processes in CNS. Previous studies have revealed that lactate is involved in multiple 
physical functions in CNS including learning and memory, neuronal activity and cerebral blood flow regulation. In addition, lactate also plays roles in CNS 
disorders including ischemic stroke, Alzheimer’s disease, Parkinson’s disease, traumatic brain injury and depression
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glutamatergic synaptic activity under glucose depriva-
tion [70]. Moreover, even with sufficient glucose and 
ATP, lactate transport at excitatory synapses via MCTs 
is essential for synaptic transmission, as evidenced by 
decreased excitatory postsynaptic current (EPSC) ampli-
tude with MCT inhibition [86]. Similar results were also 
observed in orexin neurons, in which spontaneous activ-
ity was inhibited by MCT blocker [87]. Consistently, Sada 
et al. showed that LDH inhibition in astrocytes resulted 
in hyperpolarization in pyramidal cells when exposed to 
medium containing glucose, while in contrast, medium 
containing lactate reserved cellular membrane poten-
tial, indicating that extracellular lactate was transferred 
into neurons and modulated neuronal excitation [4, 48]. 
Besides, exogenous lactate can also induce neuronal 
depolarization in locus coeruleus without entering neu-
rons, but rather relying on an undefined Gs receptor and 
intracellular cyclic adenosine monophosphate (cAMP)/ 
protein kinase A (PKA) signaling [88].

Nevertheless, lactate has also been reported to 
decrease the activity of primary neurons through Gi pro-
tein-coupled receptor HCAR1, a receptor for lactate, and 
the inhibitor or agonist of HCAR1 reserves or diminishes 
neuronal activity respectively [89]. Other studies also 
confirmed that activation of HCAR1 decreased mEPSC 
frequency, neuronal excitability and calcium spiking 
frequency, which may be mediated by Giα subunit and 
intracellular inhibition of adenylate cyclase (AC)/cAMP/
PKA [27, 90, 91]. In summary, the previous studies indi-
cate that the effects of lactate on neuronal activity are 
dependent on specific neuron populations and down-
stream signaling pathway activated by lactate receptors 
[4, 27].

Lactate regulates cerebral blood flow (CBF)
Accumulating studies have revealed that lactate is also 
involved in CBF regulation in the CNS [27, 92, 93]. Ales-
sandri et al. found that lactate treatment decreased lesion 
volume of controlled cortical impact, an animal model 
simulating traumatic brain injury (TBI), by augmenting 
CBF [94]. Moreover, in a model of recurrent antecedent 
hypoglycemia, a more profound increase in CBF by lac-
tate was observed [95]. In human visual cortex, Lin et al. 
also found that task-induced CBF increase was positively 
related with lactate production, which is possibly medi-
ated by nitric oxide signaling pathway [96]. Similarly, in 
another study, Hein et al. validated that lactate in vascular 
cells stimulated NO synthase and activation of guanylyl 
cyclase/cGMP signaling/ATP-sensitive potassium chan-
nels, eventually leading to vasodilation [97]. In addition, 
lactate may augment CBF under hypoxia by inhibiting 
prostaglandin E2 (PGE2) uptake into cells via prosta-
glandin transporters, thus leaving PGE2 extracellularly 
to induce vasodilation [98]. The engagement of NADH/

NAD+ ratio and ROS production in lactate-mediated 
CBF regulation has also been indicated [99]. Notably, the 
influences of lactate on vessels may differ in different cell 
types or under different conditions. While extracellular 
lactate led to the relaxations of smooth muscle-encircled 
vessels, in rat retinal pericyte-containing microvascula-
ture, it was found that extracellular lactate induced peri-
cytes to contract and vasoconstriction, in which Na+/H+ 
exchangers, Na+-K+ pumps, Na+/Ca2+ exchangers and 
pericyte calcium levels were possibly involved. On the 
contrary, under hypoxia, lactate promoted pericytes to 
relax and vasodilation [100]. All these findings collec-
tively indicate the strong potential of lactate in blood flow 
regulation, which warrants further detailed explorations.

Functions of lactate in neurological disorders
As an energy substrate and a signal molecule, emerging 
evidence has indicated that lactate plays pivotal roles 
in the pathology of a variety of cerebrovascular dis-
ease and degenerative diseases in CNS, in which energy 
metabolism is disrupted (Fig.  3). The levels of lactate 
are increased in kinds of CNS diseases, thus holding the 
potential to be a candidate biomarker in diseases [27, 
101].

Lactate in stroke
Stroke is one of the leading causes of death and disabil-
ity in the world, which brings severe challenges to soci-
ety and medical treatment, in which ischemic stroke is 
the main type. During ischemic stroke, neuronal deaths, 
brain edema and neuroinflammation concurrently con-
tribute to severe neurological deficits. Mechanically, exci-
totoxicity induced by glutamate release, oxidative stress 
caused by ROS and neuroinflammation mediated by glial 
cells and peripheral immune cells are the main causes of 
primary and secondary brain injury in ischemic stroke 
[102, 103].

In ischemic stroke, TCA cycle and ATP production in 
mitochondria are disrupted, glycolysis and generation 
of lactate are upregulated. Previous studies have shown 
increased levels of lactate in the acute phase of ischemic 
stroke [104, 105]. More recently, the neuroprotective 
effects of lactate in ischemic stroke have been proved in 
vivo and in vitro. A study by Berthet et al. showed that 
4 mmol/L lactate protected against neuronal death in 
oxygen glucose deprivation (OGD) of organotypic hip-
pocampal slices. Moreover, lactate administration intra-
cerebroventricularly or intravenously both decreased 
lesion size and protected neurological function in a 
model of middle cerebral artery occlusion (MCAO) [106, 
107]. They also pointed out that the protective effects 
depended on quantity of lactate and time of interven-
tion [106]. On the other hand, effective lactate trans-
port between glia cells and neurons is also essential in 
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ischemic stroke. Expressions of MCTs in CNS during 
ischemic stroke differ from that under physiological con-
ditions. Intense MCT1 expression in astrocytes has been 
observed in rats undergoing transient global ischemia 
[108]. Consistently, in MCAO model of spontaneous 
hypertension rats, increased MCT1 mRNA and protein 
expressions were found in astrocytes and endothelial 
cells in peri-infarct area, which were possibly mediated 
by hypoxia-inducible transcription factor (HIF1) [109]. 
Moreover, while microglia are activated rapidly after 
cerebral ischemia, enhanced expressions of MCT1 and 
MCT2 have also been found in activated microglia in a 
rat ischemia model induced by unilateral extradural com-
pression [110]. However, in stroke-prone spontaneously 
hypertensive rats, lactate production and MCTs expres-
sions in astrocytes are both decreased, which may par-
tially contribute to neuronal damage [18]. Another study 
has reported that inhibition of MCTs by alpha-cyano-
4-hydroxycinnamate aggravated hippocampal delayed 
neuronal damage [111]. On the contrary, while neuronal 
expression of MCT2 is significantly decreased, overex-
pression of MCT2 protects against cognitive dysfunction 
after MCAO in rats [112]. Nevertheless, there are still 
some controversies on neuroprotective effects of lactate 
in ischemic stroke. High levels of lactate after brain isch-
emia may result in lactic acidosis and eventually aggra-
vate neurological injury [113, 114]. Besides, GPR81, 
a known receptor for lactate, binds to a G protein (Gi), 
which inhibits adenylate cyclase and the second messen-
ger cAMP [68]. A study by Shen et al. found that antago-
nist of GPR81 decreased neuronal deaths and alleviated 
brain injury after MCAO in vivo and OGD in vitro, partly 
via ERK signaling pathway, while cotreatment with lac-
tate significantly reversed these neuroprotective effects 
[115]. Altogether, although the beneficial effects of lactate 
in ischemic stroke have been verified by more and more 
studies, the dural roles exhibited in previous researches 
cannot be ignored. Explorations to delineate the concrete 
influences of lactate on brain ischemia and to explain the 
discrepancies regarding the functions of lactate in isch-
emic stroke are warranted in the future.

Mechanistically, lactate benefits neurofunction in isch-
emic stroke mainly in two ways. First of all, it serves as 
an energy substrate for ATP supplementation for neuro-
nal cells during oxygen and glucose deficiency. In addi-
tion, lactate is able to downregulate ATP/ADP ratio and 
reduce ROS production in mitochondria, thus promot-
ing neuronal survival [18]. Secondly, lactate may function 
as a signal molecule. Regarding to neuronal excitotoxity, 
which is induced by excess glutamate release and occurs 
during ischemic stroke, lactate has been proved to atten-
uate excitotoxity as a signal molecular by generating ATP 
and activating PI3-kinase pathway/ KATP channels via 
purinergic receptors [103, 116]. Besides, lactate has also 

been reported to protect against neurological damage via 
receptor GPR81-mediated signaling pathway. It has been 
verified that GPR81 agonist decreased neuronal deaths 
in rat organotypic hippocampal slices exposed to OGD 
[117].

Lactate in CNS degenerative diseases
Alzheimer’s disease (AD) is the leading cause of demen-
tia worldwide, which leads to heavy economic burden 
[118, 119]. As a degenerative disease in CNS, impaired 
glucose metabolism has been observed in AD [120]. The 
concentrations of cerebrospinal fluid (CSF) lactate have 
been reported to be elevated at first, and then decreased 
along with higher disease severity, but remaining con-
stantly higher than healthy controls yet [121]. Con-
sistently, in another study, Liguori et al. found higher 
CSF lactate levels and hypometabolism of glucose in 
AD patients [122]. Moreover, the lactate contents are 
decreased along with diagnosis time [123]. Expressions 
of MCTs including MCT1, MCT2 and MCT4 were also 
found to be decreased in the CNS in AD mice [124]. Cor-
respondingly, levels of both total tau protein and phos-
phorylated tau protein in CSF were negatively associated 
with levels of lactate [121]. These results potentially sug-
gest the negative correlation between lactate levels and 
AD, which may also be parallel in experimental animal 
models [125]. However, the changes in lactate contents 
and the link between lactate and AD remain disputable. 
In a more recent study, Zebhauser et al. compared CSF 
lactate contents in AD patients at the stage of mild cog-
nitive impairment and dementia with healthy controls 
in 312 individuals. Surprisingly, they observed compa-
rable CSF lactate levels between patients with dementia 
and healthy individuals, while CSF lactate levels in mild 
cognitive impairment patients were higher than healthy 
controls. In addition, they also indicated that lactate 
in CSF did not correlate with severity of disease in AD 
[126]. Similarly, the elevation of CSF lactate was found 
to be irrelevant to Aβ aggravation in monkeys [127]. The 
differences in conclusions among these studies may be 
attributed to different sample sizes, screening criteria and 
course of AD [126]. Sample sizes are key factors in these 
studies. Different from most studies which conducted 
their researches in smaller sample sizes, Zebhauser et al. 
included more AD patients and healthy controls of 312 
samples [126, 128, 129]. Besides, the inclusion criteria of 
AD rely largely on distinct cut-off values for Aβ42 or tau-
proteins, the diagnostic criteria and classification of cog-
nitive dysfunction in AD continuum have been constantly 
optimized in recent years. Therefore, inevitable differ-
ences in inclusion criteria of AD may help explain the 
conflicting results [126, 129]. Likewise, both volunteers 
with or without neurological symptoms were included 
in healthy controls in previous studies, which may result 
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in inconsistent conclusions too [121, 126, 130]. Notably, 
lactate contents in CSF have been indicated to be influ-
enced by age and BBB integrity, which should be taken 
into consideration in further researches [126, 131]. Nev-
ertheless, preclinical researches have explored the effects 
of lactate in AD and suggested lactate as a potential 
therapy for AD. For example, Lu et al. applied APP/PS1 
mice to simulate AD model and proved that curcumin 
benefited memory in AD mice by upregulating lactate 
and MCT2 [132]. Similarly, vestigial-like family member 
4 (VGLL4) was found to boost the production of lactate 
by upregulating the expression of lactate dehydrogenase 
A (LDHA), thus protecting against amyloid-β precursor 
protein (APP) amyloidogenic processing in AD [133].

The potential roles of lactate in amyotrophic lat-
eral sclerosis (ALS) have also been investigated, as in 
SOD1G93A mice, an animal model of ALS, enhanced 
glycolytic influx was observed, which potentially led to 
increase of lactate [134].

Metabolism dysfunction also occurs in Parkinson’s dis-
ease (PD), and to sustain energy supply, upregulated lev-
els of aerobic glycolysis and lactate have been observed in 
PD patients [135, 136]. Previous studies have shown that 
lactate is neuroprotective in PD via activating autophagy 
and mitophagy [137, 138]. In contrast, a study from Li et 
al. applied MPTP-induced mouse PD model and showed 
that elevated lactate boosted apoptosis of dopaminergic 
neurons while lactate downregulation by inhibiting hexo-
kinase 2 alleviated apoptosis of dopaminergic neurons 
and protected motor function of PD mice [139]. These 
effects probably rely on activation of AMPK and inhibi-
tion of Akt phosphorylation as well as mTOR phosphory-
lation by lactate, given that the activation of AMPK and 
inactivation of Akt by PD toxins have been reported to 
inhibit mTOR-mediated S6K1 and 4E-BP1 pathways, 
eventually inducing dopaminergic neurons deaths in 
vitro [139, 140].

A number of studies also demonstrate that concentra-
tions of lactate in the brain are closely associated with 
metabolic dysfunction diseases, such as diabetes, but the 
results vary among different experimental disease models 
[141, 142].

Lactate in TBI
Lactate has been suggested not only to be a promis-
ing prognostic marker but also to represent a poten-
tial treatment in TBI. Previous studies have indicated 
lactate-pyruvate ratio in cerebral microdialysis as a 
positive predictor for poor outcome of TBI [143, 144]. 
Similarly, Wettervik et al. found that high arterial lac-
tate was inversely related to pressure autoregulation and 
clinical outcomes of TBI [145]. The inverse correlation 
between lactate concentrations and outcomes of TBI may 
be explained by Carprnter’s assumption that low lactate 

concentration suggests more lactate has been taken up 
by neurons, while high lactate concentration indicates 
that damaged neurons cannot uptake lactate efficiently 
[146]. On the other hand, lactate has been evidenced 
to reduce intracranial pressure (ICP), benefit cerebral 
perfusion in TBI patients, and protect against cognitive 
deficits in animal models [94, 147–149]. Uptake of lac-
tate was observed in injured brain after TBI of rats by 
applying 14C-lactate [150]. Moreover, increased uptake of 
lactate correlates with favorable outcomes of TBI [151]. 
More recently, lactate preconditioning was found to ame-
liorate neurological dysfunction by upregulating mul-
tiple plasticity-related proteins in TBI rats, which may 
be mediated by GPR81 signaling pathway [152]. Besides, 
hypertonic sodium lactate infusion after 30 min of injury 
manifested protective effects in mitochondrial meta-
bolic dysfunction in TBI rats [153]. However, further 
researches are still warranted to delicately elucidate the 
roles and underlying mechanism that lactate functions in 
TBI.

Lactate in depression
Dysfunction of glucose metabolism in depressed patients 
has been proved in multiple previous studies [154, 155]. 
Notably, some antidepressant drugs are reported to 
reverse metabolic disorders in depression, such as par-
oxetine and fluoxetine [156, 157]. Allaman et al. revealed 
that paroxetine and fluoxetine can increase glucose 
metabolism and lactate release by astrocytes in cortical 
astrocyte culture [158]. Besides, there is increasing evi-
dence indicating protective roles of lactate in psychiatric 
disorders. In Shaif ’s study, they found that lactate treat-
ment augmented the levels of serotonin and dopamine 
in brain, thus exerting antidepressant effects in ani-
mal model of menopausal depression [159]. Moreover, 
Carrard et al. confirmed that lactate protected against 
depression by promoting hippocampal neurogenesis in 
mice model [160]. Lactate was also found to exert protec-
tive effects in depression by regulating histone deacety-
lases [161].

Taken together, besides ischemic stroke, lactate is also 
involved in a variety of diseases in the CNS, in which the 
mechanisms are related with different signaling path-
ways and remain to be further comprehensively explored 
(Fig. 3).

The process of histone lactylation
Histone lactylation was recently identified as an epigen-
etic modification that is regulated by lactate contents 
in cells [11]. Histone lysine lactylation can be directly 
derived from exogenous or endogenous lactate, which is 
able to generate lactyl-coenzyme A (lactyl-CoA). Zhang 
et al. proposed that lactyl-CoA was responsible for add-
ing lactyl group to lysine residues [11, 162]. Thereafter, 
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the existence of lactyl-CoA was validated in mammalian 
cells and tissues via liquid chromatography mass spec-
trometry by Varner et al. in 2020 [163].

Histone lactylation is regulated by diverse enzymes 
known as writers, erasers and readers, responsible for 
addition, removal, recognition and interpretation of his-
tone lactylation, respectively (Fig.  1). Zhang et al. first 
showed p53-dependent p300-mediated H3 and H4 lacty-
lation in macrophages, suggesting p300, a known acetyl-
transferase, can catalyze both acetylation and lactylation, 
and is now considered as the writer of lactylation [11, 
164, 165]. On the other hand, recent studies have identi-
fied histone deacetylase (HDAC1-3) and silent informa-
tion regulator (SIRT1-3) as delactylases in vitro, serving 
as eraser enzymes of histone lactylation [166, 167]. Dai 
et al. further observed that inhibition of HDAC1-3 sig-
nificantly increased H3K18la in vivo, confirming that 
HDAC1-3 can erase histone lactylation [168]. Besides 
enzymatic lysine lactylation, non-enzymatic lysine lac-
tylation via acyl transfer from glycolytic intermediate, 
lactoylglutathione to protein Lys residues has also been 
found by Gaffney et al. They revealed that glyoxalase 2 
was critical for this kind of lysine modification, which 
hydrolyzes lactoylglutathione in cells. In glyoxalase 2 
knockout cells, the levels of lactoylglutathione and Lac-
toyl Lys modifications are both elevated. In addition, 
these PTMs are largely enriched on enzymes involved in 
glycolysis and regulate glycolysis in turn [169].

It has been proved that various PTMs are derived from 
metabolites in cells. Similarly, histone lactylation is also 
regulated by glucose metabolism and the levels of intra-
cellular lactate. Metabolic reprogramming influences the 
balance between glycolysis and TCA cycle, which plays a 
vital role in histone lactylation and other acylations [170]. 
It has now been acknowledged that lactate metabolism 
is tightly related to histone lactylation. Zhang et al. first 
found that suppression of lactate production by LDH and 
PDH inhibition decreased intracellular lactate and thus 
downregulated histone lactylation. Moreover, geneti-
cally deletion of LDH resulted in decreased lactate pro-
duction and histone lactylation in cells under normoxia. 
On the contrary, mitochondrial inhibitor and exposure 
to hypoxia increased lactate and histone lactylation lev-
els in vitro [11]. These phenomena collectively indicates 
that histone lactylation is specifically dependent on lac-
tate levels, which has been constantly confirmed in more 
and more studies recently [171–173]. Besides histone 
lactylation, the involvement of lactate and LDH in some 
other epigenetic alterations has also been suggested. A 
study from An et al. indicated lactate as major carbon 
source for histone acetylation in a LDH-dependent man-
ner. They found that lactate treatment and LDH inhibi-
tion induced increased and decreased histone acetylation 
respectively [174]. Moreover, LDH in drosophila has also 

been reported to influence DNA methylation by regulat-
ing L-2-hydroxyglutarate generation [175].

Functions of histone lactylation
Histone lactylation is involved in genes regulation by 
being enriched in the promoter region of target genes 
in various cells, thus participating in the regulation 
of diverse systems in the body. The latest studies have 
implied that histone lactylation plays important roles in 
maintenance of homeostasis and regulation of multiple 
pathophysiological processes [168, 172, 176]. Existing 
studies have found that histone lactylation is involved in 
regulating embryogenesis and CNS development [168, 
177, 178]. On the other hand, histone lactylation is also 
involved in regulating the functions of immune cells and 
inflammation, thus participating in tumor development 
and multiple diseases [11, 171, 179]. When it comes to 
the CNS, histone lactylation is reported to be involved in 
degenerative diseases and acute CNS injuries by regulat-
ing functions of glia and neuroinflammation [176]. The 
details are thoroughly discussed below (Fig. 4).

Histone lactylation in embryo development
Dynamic fluctuations of histone lactylation are often rel-
evant to and play an important role in physiological and 
pathological changes. Recent studies have revealed that 
histone lactylation can regulate pregnancy and embryo-
genesis. Yang et al. applied proteomic atlas of ligand-
receptor interactions and revealed that lactate-induced 
histone lactylation facilitated remodeling processes of 
endometrium for successful implantation [180]. A previ-
ous study by Yang et al. has found that reduced histone 
lactylation in embryos impaired embryonic develop-
ment in mice, while another study proposed that lactate 
induced H3K18la accumulation on germline and cleav-
age embryo genes in mouse embryonic stem cells and 
promoted transcriptional elongation [177, 178]. Besides, 
histone lactylation is believed to function during devel-
opment. Dai et al. have recently observed global changes 
in histone lactylation during neural development, while 
Li et al. demonstrated that Glis1 facilitated pluripotency 
of induced pluripotent stem cells by increasing H3K27Ac 
and H3K18la at pluripotency gene loci [168, 181]. In 
summary, present studies have suggested wide distribu-
tions of histone lactylation in healthy individuals, which 
is essential for development and various physiological 
functions.

Histone lactylation in inflammation
Histone lactylation may regulate expressions of target 
genes by enrichment in the promoter region of specific 
genes, therefore playing an important role in diverse 
diseases. A number of studies have confirmed the 
involvement of histone lactylation in inflammation and 
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immunosuppression by regulating specific target genes of 
immune cells. Firstly, Zhang et al. observed that histone 
lactylation was enriched in the promoters of homeosta-
sis-related genes and promoted expressions of homeo-
static genes including arginase1 (Arg1) at late stage of 
M1 macrophages polarization induced by LPS and IFN-γ, 
resulting in the transition into M2-like phenotype [11]. 
Moreover, Irizarry-Caro et al. revealed that B-cell adapter 
for PI3K (BCAP) was involved in aerobic glycolysis and 
histone lactylation in macrophages. Deficiency of BCAP 
impaired aerobic glycolysis as well as histone lactylation, 
thus impeding reparatory transition from inflammatory 
phenotype of macrophages [182]. Similarly, Wang et al. 
found elevated histone lactylation in monocytes post 
myocardial infarction, and they demonstrated that his-
tone lactylation in monocyte-macrophages facilitated 
expressions of reparative genes including Lrg1, Vegf-a, 
and IL-10 post myocardial infarction, validating both 
anti-inflammatory and pro-angiogenic effects of histone 
lactylation [172]. Nevertheless, there are still controver-
sies over the effects of histone lactylation on inflamma-
tion. Recently, Chu et al. have shown that high H3K18la 

correlates with higher expressions of diverse inflamma-
tory factors and Arg1 in patients with septic shock, hence 
proposing H3K18la as a potential biomarker to diagnose 
and predict the severity of septic shock [183]. In dairy 
cows, high-concentrate diet leads to increased concentra-
tion of lactate, which upregulates histone lactylation via 
p300/CBP and activates TLR4/NF-κB signaling pathway, 
finally inducing higher expressions of various inflamma-
tory factors including IL-1β, IL-1α, IL-6 and IL-8 [184]. 
However, in the above two studies, due to the lack of 
further investigation on the influence of histone lacty-
lation regulation on inflammatory cytokines secretion, 
the phenomena that elevated histone lactylation accom-
panied by increased pro-inflammatory cytokines may be 
the results of pathological stimulus. Modulating histone 
lactylation and sequencing of lactylation-targeted genes 
is warranted to investigate the effects of histone lacty-
lation on inflammation. On the other hand, the latest 
research by Yao et al. further extended the effects of his-
tone lactylation on pyroptosis, a form of pro-inflamma-
tory cell death. In this study, Yao et al. demonstrated that 
histone lactylation mediated by LDHA were enriched 

Fig. 4  Functions of histone lactylation in the regulation of homeostasis and pathophysiological processes. Histone lactylation has been shown to partici-
pate in regulation of embryo and neural development, tumor and inflammation. In CNS, histone lactylation is involved in regulation of neuronal excita-
tion and diverse diseases including neurodegenerative diseases such as AD and acute CNS injuries such as SAH and SCI. Moreover, we speculate that 
histone lactylation plays an important role in ischemic stroke due to its regulatory effects on inflammation and reparative-related genes
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on the promoter of HMGB1 in neurons, which induced 
neuronal pyroptosis in cerebral ischemia reperfusion 
injury in vivo and in vitro [185]. Collectively, as we can 
conclude, most existing studies have suggested that his-
tone lactylation may target specific anti-inflammatory 
and pro-reparative genes in immune cells, therefore pro-
moting anti-inflammatory microenvironment in diverse 
pathological conditions. However, the emerging diver-
gent views indicate that the regulation of multi-target 
genes expressions in diverse cell types renders the vital 
and complicated roles of histone lactylation in inflamma-
tion, which awaits further detailed exploration [13, 186]. 
Besides the potential effects on inflammation and immu-
noregulation, emerging evidence has demonstrated the 
important roles of lactylation in carcinogenesis, which is 
tightly related to the immunosuppression induced by lac-
tylation and has been thoroughly discussed in the latest 
reviews [187–189].

Histone lactylation in CNS development and diseases
Histone lactylation is believed to function during devel-
opment in CNS. Li et al. demonstrated that Glis1 facili-
tates pluripotency of induced pluripotent stem cells by 
increasing H3K27Ac and H3K18la at pluripotency gene 
loci [168, 181]. Moreover, a recent delicate study by Dai 
et al. revealed wide distributions and global changes of 
histone lysine lactylation during neural development 
[168]. Compared with early stage of neurogenesis, the 
levels of overall H3-Kla and H3K18la are decreased at 
the late stage of neurogenesis of telencephalon. Besides, 
H3K18la are largely enriched in genes involved in cell 
proliferation-related pathways. By ChIP-seq and RNA-
seq assays, Dai et al. discovered that increased H3K9cr 
or H3K18la upregulated genes engaged in neuronal dif-
ferentiation and maturation, while reduced levels of 
H3K9cr or H3K18la downregulated genes involved in 
cell proliferation, suggesting the supportive role of global 
changes in histone lactylation for neural differentiation 
[168]. Moreover, lactylation in microglia has been found 
to be associated to astrogenesis during early brain devel-
opment, which is mediated by LRRC15-CD248 axis and 
JAK/STAT signaling pathway [190]. In detail, Wang et 
al. found that conditional knockout of Bach1 induced 
decreased enrichment of H4K12la in the Lrrc15 pro-
moter region in microglia, therefore impairing astro-
cyte generation [190]. In addition, lysine lactylation has 
been demonstrated to occur in the brain in adult mice 
and is regulated by neuronal excitation via neural-activ-
ity-induced lactate, while social defeat stress increases 
histone H1 Kla in neurons [191]. Similarly, increased his-
tone lactylation was also observed in mice under condi-
tions of cold stress [192]. However, the function of such 
a modification in CNS remains unclear and deserves fur-
ther exploration.

On the other hand, the significant role of histone lac-
tylation in AD has been highlighted by Pan et al. on 
2022. At first, they found elevated levels of histone lac-
tylation in both AD model of mice and AD patients, with 
increased H4K12la accumulated in microglia adjacent to 
Aβ plaque. As chronic neuroinflammation and abnormal 
activation of microglia are vital for AD development [193, 
194], the authors further found that exacerbated microg-
lial dysfunction and neuroinflammation were induced by 
a positive feedback loop of glycolysis/H4K12la/PKM2 
axis, which eventually drove AD pathogenesis. Mean-
while, interruption of the loop inhibited microglial acti-
vation and ameliorated AD pathology [176]. Lately, 
another study from Wei et al. confirmed the correlation 
between H3K18la in senescent microglia and AD devel-
opment [195]. They found elevated levels of Pan Kla and 
H3K18la in senescent microglia in aged mice, and in AD 
mice, the augmented H3K18la led to augmented neuroin-
flammation via the activation of NF-κB signaling pathway 
as well as the secretion of IL-6 and IL-8, thus aggravating 
AD pathology [195]. On the contrary, Han et al. revealed 
that lactate led to microglial H3 Kla and promoted anti-
inflammatory/reparative phenotype of microglia, as 
shown by decreased pro-inflammatory cytokines while 
increased anti-inflammatory cytokines after lactate treat-
ment, eventually improving cognitive functions in mice 
with cognitive decline induced by AlCl3/D-gal [196].

Furthermore, histone lactylation has also shown thera-
peutic potentials in cerebrovascular diseases and acute 
CNS injury recently. Zhou et al. proposed the possible 
involvement of histone lactylation in neonatal hypoxic-
ischemic encephalopathy via regulating inflammation 
[186]. In hypoxic-ischemic encephalopathy, oxygen and 
nutrient deprivation induces lactic acidosis [197]. On the 
other hand, microglia and invading immune cells secrete 
inflammatory cytokines, chemokines and ROS, contrib-
uting to neuroinflammation in injured brain [198]. In 
consideration of regulatory effects of histone lactylation 
on inflammation and immune cells, it is plausible to 
speculate that histone lactylation may function in dis-
eases such as neonatal hypoxic-ischemic brain injury 
and other acute brain injuries, in which neuroinflamma-
tion play pivotal roles. Indeed, a recent study from Zhang 
et al. implied the involvement of histone lactylation in 
regulation of astrocytes polarization in animal model of 
subarachnoid hemorrhage (SAH) [199]. They found that 
lactate supplementation increased histone lactylation in 
astrocytes, accompanied by restraining A1 polarization 
of astrocytes after SAH, while inhibition of lactate pro-
duction induced the opposite effects [199]. Moreover, 
Hu er al. recently observed upregulated lactate and his-
tone lactylation levels in spinal cord injury (SCI) model 
of mice, with elevated H4K12la level in microglia after 
surgery. Notably, they demonstrated that lactate-induced 



Page 14 of 19Wang et al. Journal of Neuroinflammation          (2024) 21:308 

H4K12la in microglia promoted neurological repair after 
SCI by promoting microglial proliferation, scar formation 
and axon regeneration via H4K12la/PD-1 axis [173].

Histone lactylation in stroke
Studies have been endeavored to further elucidate the 
roles that lactate plays in the pathogenesis of ischemic 
stroke. It has been proved that, the production of lactate 
is closely associated with progression of ischemic stroke 
[200]. Lactate is primarily deemed to be neuroprotec-
tive in ischemic stroke, as it has been reported to protect 
against neuronal death, which is possibly associated with 
enhanced energy supply via glycolysis or functioning as 
a signal molecule [201–203]. Mechanistically, along with 
elevated levels of lactate, the expression levels of MCTs 
are also up-regulated, which also participate in lactate 
transport in cerebral ischemic injury [18]. Besides, in 
experimental ischemic stroke, HIF-1 up-regulated the 
expression levels of a variety of genes that are related with 
glucose transportation and glycolysis, which eventually 
enhanced glucose metabolism and significantly elevated 
the production of lactate [204]. This enhanced glycolytic 
metabolism induced by HIF-1α may possibly be asso-
ciated with its binding to the gene promoter of MCT4, 
and could potentially exert neuroprotective impacts on 
ischemic stroke [204, 205]. A latest study from Yao et al. 
has showed that LDHA knockdown declined the enrich-
ment of histone lactylation on HMGB1 promoter and 
decreased the levels of IL-18, IL-1β, cleaved-caspase-1 
and GSDMD-N protein in cerebral ischemia/reperfusion 
model in vivo and in vitro, thus reducing the infarction 
size and relieving neurological dysfunction in MCAO 
rats [185]. Their results suggest that histone lactylation 
mediated by LDHA induces pyroptosis and augments 
neurological injuries in MCAO model of rats. However, 
histone lactylation may target diverse genes in physi-
cal and pathological conditions, thus the functions and 
molecular mechanisms of histone lactylation in ischemic 
stroke are warranted to be further explored.

Taken together, researches investigating the role of 
histone lactylation in ischemic stroke are still in infancy. 
Considering the beneficial effects of lactate in ischemic 
stroke, it deserves further exploration whether histone 
lactylation is involved in pathology of ischemic stroke or 
mediates lactate-dependent protection against neurolog-
ical damage in ischemic stroke.

Conclusions
In this review, we have comprehensively reviewed the 
roles both lactate itself and histone lactylation play in 
CNS. Previous studies have proved that lactate plays 
an important role in the physiology and pathology in 
CNS, which not only serves as an energy substrate, but 
also as a signal molecule involved in multiple signaling 

pathways [4, 27, 206]. Under normal conditions, lactate 
participates in diverse physical functions in CNS includ-
ing memory formation, neuronal activity and CBF regu-
lation [27, 69, 70]. Besides, lactate has also been verified 
to play a vital role in kinds of CNS injuries and degen-
erative diseases, by supplying energy as a substrate and 
transmitting signals as a signaling molecule [106, 107, 
132, 152, 159]. Noteworthy, the discovery of histone lac-
tylation represents a novel potential way for lactate to 
exert diverse effects. As indicated, histone lactylation is 
widely expressed in various cells on physical status in the 
body, which undergoes changes in different pathological 
processes. The pivotal role of histone lactylation relies 
on the regulatory function on target genes expressions 
via enrichment in the promoter regions. Different from 
previous findings that lactate is involved in certain sig-
naling pathways, the latest findings indicate that lactate 
may stimulate transcription of multiple genes directly 
via histone lactylation [11, 172, 176]. Histone lactylation 
has been indicated to be involved in homeostasis main-
tenance and pathophysiological processes in the body 
[168, 172, 176]. Notably, histone lactylation not only par-
ticipates in CNS development and stress responses, but 
also plays an important role in degenerative diseases by 
regulation of glial functions and neuroinflammation 
[176, 196]. From the limited investigations on histone 
lactylation, we can still find the giant potential of histone 
lactylation in therapies of diseases, especially in inflam-
matory diseases, cancers, regenerative and repair pro-
cess of diseases [11, 171, 172, 179]. Given the regulatory 
effects of histone lactylation on immunity and reparative-
related genes, histone lactylation holds promising thera-
peutic potentials in hypoxic-ischemic encephalopathy 
including ischemic stroke, which warrants more relevant 
researches. Besides, the effects of histone lactylation on 
glia and neurons awaits further investigation.

However, up to now, there is still a lack of methods to 
specifically regulate histone lactylation, and it is hard to 
distinguish the effects of histone lactylation from lactate 
on physiology and pathology of diseases. Therefore, fur-
ther investigations on dynamic processes and involved 
enzymes of histone lactylation are warranted. Under-
standing the processes of histone lactylation more com-
prehensively and searching for the specific regulatory 
methods of histone lactylation will benefit elucidating the 
roles of histone lactylation in diverse diseases, and then 
shedding light on novel therapeutics for the CNS dis-
eases based on histone lactylation.
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MRC	� Mitochondrial respiratory chain
ANLS	� Astrocyte-neuron lactate shuttle
ECAR	� Extracellular acidification rate
OCR	� Oxygen consumption rate
NMDA	� N-methyl-d-aspartate
LTP	� Long-term potentiation
DCA	� Dichloroacetate
BBB	� Blood-brain barrier
HCAR1	� Hydroxycarboxylic acid receptor 1
EPSC	� Excitatory postsynaptic current
cAMP	� Cyclic adenosine monophosphate
PKA	� Protein kinase A
AC	� Adenylate cyclase
CBF	� Cerebral blood flow
TBI	� Traumatic brain injury
PGE2	� Prostaglandin E2
OGD	� Oxygen glucose deprivation
MCAO	� Middle cerebral artery occlusion
HIF1	� Hypoxia-inducible transcription factor
AD	� Alzheimer’s disease
CSF	� Cerebrospinal fluid
VGLL4	� Vestigial-like family member 4
LDHA	� Lactate dehydrogenase A
APP	� Amyloid-β precursor protein
ALS	� Amyotrophic lateral sclerosis
PD	� Parkinson’s disease
ICP	� Intracranial pressure
Lactyl-CoA	� Lactyl-coenzyme A
HDAC	� Histone deacetylase
SIRT	� Silent information regulator
Arg1	� Arginase1
BCAP	� B-cell adapter for PI3K
SAH	� Subarachnoid hemorrhage
SCI	� Spinal cord injury
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