
Zohdy et al. Journal of Neuroinflammation            (2025) 22:1  
https://doi.org/10.1186/s12974-024-03316-z

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 
International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if 
you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or 
parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To 
view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by- nc- nd/4. 0/.

Journal of Neuroin�ammation

Complement inhibition targets a rich-club 
within the neuroinflammatory network 
after stroke to improve radiographic 
and functional outcomes
Youssef M. Zohdy1, Tomas Garzon-Muvdi1, Jonathan A. Grossberg1, Daniel L. Barrow1, Brian M. Howard1, 
Gustavo Pradilla1, Firas H. Kobeissy2, Stephen Tomlinson3,4 and Ali M. Alawieh1* 

Abstract 

Following recent advances in post-thrombectomy stroke care, the role of neuroinflammation and neuroprotective strate-
gies in mitigating secondary injury has gained prominence. Yet, while neuroprotection and anti-inflammatory agents have 
re-emerged in clinical trials, their success has been limited. The neuroinflammatory response in cerebral ischemia is robust 
and multifactorial, complicating therapeutic approaches targeting single pathways. In this study, we aimed to characterize 
early inflammatory gene dysregulation following ischemic stroke using translational in-silico and in-vivo approaches. Using 
an in vivo ischemic stroke model, transcriptomic analysis revealed significant dysregulation of inflammatory genes. Graph 
theory analysis then showed a rich-club organization among stroke-related genes, with highly connected core nodes. The 
expression levels of the core genes identified within this network significantly explained radiological outcomes, includ-
ing T2-signal hyperintensity  (R2 = 0.57, P < 0.001), mean diffusivity  (R2 = 0.52, P < 0.001), and mean kurtosis  (R2 = 0.65, P < 0.001), 
correlating more strongly than non-core genes. Similar findings were observed with functional and cognitive outcomes, 
showing  R2 values of 0.58, 0.7, 0.54, and 0.7 for neurological severity scores, corner tasks, passive avoidance, and novel 
object recognition tasks, respectively (P < 0.001). Using in-silico analysis, we identified a set of upstream regulators directly 
interacting with core network nodes, leading to simulations that highlighted C3-targeted therapy as a potential treatment. 
This hypothesis was then confirmed in vivo using a targeted C3 inhibitor (CR2-fH), which reversed gene dysregulation 
in the neuroinflammatory network and improved radiological and functional outcomes. Our findings underscore the sig-
nificance of neuroinflammation in stroke pathology, supporting network-based therapeutic targeting and demonstrating 
the benefits of targeted complement inhibition in enhancing outcomes through modulation of the neuroinflammatory 
network core. This study’s approach, combining graph theory analysis along with in-silico modeling, offers a promising 
translational pipeline applicable to stroke and other complex diseases.
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Introduction
Following the revolution in stroke care in the post-
thrombectomy area[1–5], the role of neuroinflamma-
tion and the significance of neuroprotective strategies 
in mitigating secondary injury have become increas-
ingly apparent[6, 7]. Despite the substantial success of 
mechanical recanalization trials, only approximately 
50% of patients who underwent successful procedures 
achieved functional independence at 90  days, empha-
sizing the need for adjuvant interventions [8–10]. After 
a period of diminished interest, clinical trials focus-
ing on neuroprotection and anti-inflammatory agents 
have regained prominence in the context of reperfusion 
therapies, albeit with limited success to date [11–13].

The role of the neuroinflammatory response in cer-
ebral ischemia is well-established, and work from our 
group and others has studied the triggers and seque-
lae of immune system activation in the ischemic brain 
[8, 14–18]. The post-ischemic neuroinflammatory 
response is robust and multifactorial, posing a major 
challenge for therapeutic strategies relying on single 
drug targets. Despite this complexity, numerous key 
regulators have been identified at various phases of the 
response and have been targeted in preclinical thera-
peutic strategies. Our previous work characterized the 
role of the complement system in the early recognition 
of injury after stroke, and demonstrated its involve-
ment in the activation and amplification of downstream 
neuroinflammatory pathways. We have shown that site-
targeted complement inhibitors can enhance stroke 
recovery in both reperfused and non-reperfused stroke 
models. However, the mechanistic effects of comple-
ment-dependent pathology remain under-investigated 
[6, 8, 9, 15, 18–23].

In this study, we aimed to characterize the early 
inflammatory gene dysregulation that occurs after 
ischemic stroke and apply graph theory concepts to 
identify core regulators within the network, focusing 
on their relationships to radiographic and functional 
outcomes as well as responses to therapeutic inter-
ventions. Using differentially expressed genes (DEGs) 
from an in vivo ischemic stroke model, we constructed 
a post-ischemic neuroinflammatory network. Network 
analysis revealed a rich-club organization among key 
regulators, and we assessed the selective impact of this 
rich-club on functional and radiographic outcomes. 
Furthermore, we investigated the effects of targeted 
complement inhibition on the identified core network 
genes and its subsequent impact on cognitive and 
functional outcomes using both in-silico and in-vivo 
models. This study also provides a novel pipeline of 
complementary in-silico and in-vivo analyses for thera-
peutic disease targeting.

Methods
Murine Stroke Model
We used the transient middle cerebral artery occlu-
sion (MCAO) model in adult C57BL/6j mice (Jackson 
Laboratories) to mimic clinical stroke and mechani-
cal reperfusion. The model has been described in 
detail previously by our group [8, 9, 19]. Mice were 
12  weeks old at the time of surgery which followed a 
2-week acclimation period. Only male mice were used 
in this study. Anesthesia was induced using intraperi-
toneal injection of ketamine (80  mg/kg) and xylazine 
(10  mg/kg). Anesthesia level was monitored using toe 
pinch, and vital signs were monitored during the pro-
cedure and recovery. Transient MCAO (tMCAO) was 
induced by advancing a rounded blunt-tip 5–0 nylon 
suture through the internal carotid artery to the origin 
of the MCA as previously described[8, 9, 19, 24]. Laser 
Doppler flow monitoring (moorVMS-LDF1 device; 
Moor Instruments) was employed to ensure consist-
ent induction of ischemia, and animals with less than 
80% reduction in ipsilateral cerebral blood flow com-
pared to the presurgical baseline were excluded from 
the study. Following 60 min, the suture was removed to 
allow for reperfusion. There were no significant differ-
ences in weight, heart rate, respiratory rate, or degree 
of blood flow reduction among the various treatment 
groups (p > 0.05). Postoperatively, animals were housed 
in a chamber with controlled temperature and humid-
ity until fully recovered from anesthesia and returned 
to their assigned housing. No significant differences 
in intra- and peri-procedural temperatures were 
observed between the different groups. Sham opera-
tions included the same surgical approach including 
skin incision and ligation of the external carotid artery 
but no intraluminal filament placement. Laser Doppler 
flow monitoring was used to confirm that there was no 
reduction in ipsilateral cerebral blood flow compared 
to the presurgical baseline. Perioperatively, no anal-
gesics were administered to avoid anti-inflammatory 
effects; instead, supportive care and a soft gel diet were 
provided.

A total of twenty-eight animals were used in this 
study. Four mice underwent sham surgery, while 
twenty-four mice underwent tMCAO. Four mice were 
excluded from the tMCAO group: three did not meet 
the required cerebral blood flow criteria, and one had 
immediate postoperative mortality. The remaining mice 
were equally randomized into treatment groups. All 
animal procedures were approved by the Institutional 
Animal Care and Use Committee (IACUC) at the Med-
ical University of South Carolina (MUSC). The overall 
experimental approach is summarized in Fig. 1.
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Magnetic resonance imaging
MRI scans were conducted on day 4 post-stroke using 
a 7  T/30 Bruker Biospec animal scanner at the Center 
for Biomedical Imaging at MUSC. Anatomic T1 images 
and T2-weighted imaging were obtained. Lesion size, as 
a composite measure of infarct and associated edema, 
was estimated from T2-weighted imaging following 
3D-reconstruction of volume from 15 2-mm-thick slices 
on ThermoFisher Amira 2023. We also obtained both 
diffusion tensor imaging (DTI) and diffusion kurtosis 
imaging (DKI) as previously described [8]. DTI images 
were captured using a 2-shot spin-echo echo planar dif-
fusion sequence with 30 diffusion-encoding directions 
and 3 b values: 0, 1000, and 2000s/mm2. Detailed imaging 
parameters included a repetition time of 3750 ms, echo 
time of 3750/32.5  ms, field of view of 30  mm × 30  mm, 
matrix size of 128 × 128, and number of excitations set 
to 2. A total of 15 axial slices with no interslice gap were 
acquired at a thickness of 2 mm. Diffusion and diffusional 
kurtosis tensors were computed using the diffusional 
kurtosis estimator[25]. Regions of interest (ROIs) were 
delineated over the basal ganglia in the ipsilateral (stroke) 
hemisphere. Corresponding ROIs were symmetrically 
drawn in the contralesional hemisphere, and the ratio 
of ipsilateral-to-contralateral mean diffusivity (MD) and 
mean kurtosis (MK) were determined. MD and MK rep-
resent the averaged apparent diffusion and kurtosis coef-
ficients across all directions, respectively.

Sensorimotor recovery
Functional recovery was evaluated daily by two unbi-
ased observers using the previously defined neurologi-
cal severity score [8, 9, 26]. This scoring system assigned 
a score of 0 for normal motor function, 1 for torso and 
contralateral forelimb flexion upon tail elevation, 2 
for contralateral circling when held by the tail on a flat 
surface, 3 for contralateral leaning at rest, and 4 for the 
absence of spontaneous motor activity. Daily assessment 

was performed, and to avoid bias due to mortality, a 
last observation carried forward approach was used. 
Forelimb asymmetry was assessed using the corner test 
as previously reported [27]. Briefly, a mouse is placed 
between two boards set at a 30° angle, with a small open-
ing along the joint to encourage entry into the corner. 
The mouse is placed midway between the boards, facing 
the corner. As the mouse enters the corner, both sides of 
its vibrissae are stimulated simultaneously. The mouse 
then rears upward and forward before turning to face the 
open end. A non-ischemic mouse typically turns either 
left or right, while the ischemic mouse preferentially 
turns toward the non-impaired side. Turning directions 
were recorded across ten trials for each test, with turns 
not associated with rearing excluded from the count. 
Animals were acclimated to the test environment prior to 
induction of tMCAO over 2  days, and baseline forearm 
preference was documented. Animals were then tested 
post-operatively (day 4) and performance was compared 
to pre-operative baseline using the normalized laterality 
index [27].

Cognitive recovery
Two independent behavioral assessments were used for 
the measurement of cognitive recovery as relevant to 
the anatomic location of the MCA. We used the passive 
avoidance (PA) task and novel object recognition (NOR) 
tasks to assess cognitive recovery after MCAO. For PA, 
animals were trained to associate a shock with the dark 
chamber of a double chamber box and were subsequently 
tested at baseline and post-stroke to assess retention of 
avoidance memory, measured by the time taken to enter 
the dark chamber using an automated passive avoid-
ance apparatus equipped with automated sensing and 
shock systems (Coulbourn Instruments; GraphicState 4)
[8, 19]. NOR task was performed as previously described 
[28], and outcomes were assessed based on the percent-
age time spent next to familiar versus novel objects in 

(See figure on next page.)
Fig. 1 Study design and analytical pipeline. a Adult C57BL/6 J mice were randomized into either a sham group or subjected to 60 min 
of transient middle cerebral artery occlusion (MCAO). b–c behavioral testing included neurological severity score (NSS) performed daily, corner 
task performed on day 4, novel object recognition task (NOR) performed on day 3, and passive avoidance (PA) performed on day 4. (c) MRI scans 
were conducted on day 4 post-stroke using a 7 T/30 Bruker Biospec animal scanner including T2-weighted imaging, diffusion tensor imaging 
(DTI) and diffusion kurtosis imaging (DKI). d Mice were sacrificed 5 days post-MCAO, and ipsilateral hemisphere representing the MCA territory 
was harvested, and homogenized for RNA extraction. e RNA was extracted using the RNeasy Lipid Tissue kit (Qiagen). f High-throughput analysis 
of immunology-related gene expression was carried out using the Nanostring Mouse Immunology Codeset comprising 561 genes. g Expression 
data were analyzed, and differentially expressed genes (DEGs) were identified. h Gene Ontology analysis was used to functionally annotate 
the DEGs. i Using gene interaction data from the STRING database and the weighted gene co-expression network analysis (WGCNA) algorithm, 
a gene interaction network was constructed using the identified DEGs. j Graph theory methodology was then used to identify the network hub 
genes, known as “rich-club” genes. k Ingenuity Pathway Analysis (IPA) software was used to identify upstream regulators of the rich-club genes, 
and the results were visualized using Cytoscape. l In vivo inhibition of C3 activation, an IPA-identified target, was conducted in a similar paradigm 
to (a), and the correlation between treatment and outcomes was analyzed
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an open field platform after a period of acclimation [6, 
8, 9, 19, 26, 28]. Open-field locomotor activity was used 
to establish the absence of baseline differences in anxiety 

levels between the different groups on the days of testing 
by comparing time spent at the center and periphery of 
the field prior to object placement.

Fig. 1 (See legend on previous page.)
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Recombinant protein preparation and testing
To achieve site-targeted complement inhibition, we used 
a recombinant fusion protein of complement receptor 2 
(CR2) and the inhibitor of the alternative complement 
pathway factor H which we have previously described[8, 
16, 19]. Plasmids encoding the fusion protein, CR2-fH, 
were transfected into Chinese hamster ovary (CHO) 
cells and the recombinant protein was then purified 
from supernatant as previously described[29]. Purified 
proteins were tested for endotoxin and for complement 
inhibitory activity using both chicken red blood cell lysis 
assay and zymosan assay as described previously[19, 29]. 
CR2-fH has been shown to localize specifically to the 
ischemic penumbra and inhibit the amplification of C3 
activation via the alternative complement pathway locally 
after murine stroke[8, 19].

Animal treatment
Following tMCAO, mice were randomized, using an 
automated in-house script, to receive either vehicle 
(phosphate-buffered saline, N = 10) or CR2-fH (16 mg/kg, 
N = 10) at 2  h after reperfusion via a tail vein injection. 
Animals were then returned to their cages and tested for 
recovery as described before. To ensure the integrity of 
the results, the operators performing the surgical proce-
dures, administering injections, and evaluating outcomes 
were blinded to the group allocations.

Nanostring gene expression analysis
High-throughput analysis of immunology-related gene 
expression was carried out using the Nanostring Mouse 
Immunology Codeset (Nanostring Technologies, Seat-
tle, WA), comprising 561 genes. The full list of genes is 
shown in Supplementary Table  S1. Ipsilateral hemi-
spheres were isolated from animals perfused 5 days post-
MCAO or sham operations, following the completion 
of the full battery of radiological and functional tests, 
to enable a close correlation between gene expression 
profiles and observed outcomes. RNA extraction was 
performed using the RNeasy Lipid Tissue kit (Qiagen). 
Analysis was conducted using the Nanostring nCounter 
Analysis System (Nanostring Technologies). Each reac-
tion consisted of 250  ng of total RNA in a 5  μl aliquot, 
along with reporter and capture probes, six pairs of posi-
tive controls, and eight pairs of negative controls. Raw 
Nanostring data underwent analysis and normalization 
using nSolver Analysis software version 1.1 (Nanostring 
Technologies). Raw counts were normalized to reference 
gene levels as previously described [8]. One mouse was 
excluded from the vehicle group due to low-quality data. 
Gene expression data was then imported into R [30] and 
differentially expressed genes (DEGs) were identified 
using a Student’s t-test with a P-value < 0.05, following 

established procedures [31]. The DEGs clusterograms 
were constructed in R using the "pheatmap" package [32].

Functional annotation
Functional annotation and interactome analysis were 
conducted on the DEGs using the "clusterProfiler" pack-
age for Gene Ontology (GO) biological processes and 
cellular components [33]. An interaction network was 
constructed based on gene–gene interactions sourced 
from the STRING database [34], which provides data on 
interactions among proteins or genes within species. A 
list of node–node interactions was acquired. Edges were 
then weighted based on gene co-expression data using 
normalized gene expression results from our study, cal-
culated using the Weighted Gene Co-expression Net-
work Analysis (WGCNA) algorithm[35]. The resultant 
network was curated and organized using Cytoscape 3.2 
[36], based on node degrees (i.e. number of interactions) 
and edge weights (i.e. co-expression data) (Fig. 1).

Network analysis
Graph analysis was then performed to examine the net-
work’s topology using established graph theory principles 
first described in social networks, and recently in bio-
logical systems by our group [37–39]. This analysis was 
done using the "brainGraph" and "igraph" packages in R, 
as well as Cytoscape 3.2. Various characteristic measures 
of network organization were computed, including node-
specific degree (k), which represents the total number of 
edges per node, and node strength, which is the sum of 
node edges’ weights. Other measurements included clus-
tering coefficient, path length, betweenness centrality, 
and modularity. These metrics are defined in Supplemen-
tary Table  S2. We then assessed whether the resultant 
interaction network follows a scale-free non-random 
paradigm where a set of hub nodes connect peripheral 
nodes in the network by studying the power-law degree 
distributions and adjacency matrices of the networks as 
compared to random.

Rich‑club analysis
A rich-club organization refers to a network topology 
in which a group of high-degree nodes, i.e. rich-club 
(RC), exhibit denser interconnections than what would 
be expected based on their individual node degrees. To 
quantify this phenomenon, a rich-club coefficient φ(k) 
is computed across the range of degrees present in the 
network, following the method outlined by Colizza et. 
al. [40], and optimized to protein interaction networks 
by our group [37, 38]. For a given degree distribution 
{k1, k2, …, kn}, the rich-club coefficient for each degree 
k is determined by calculating the ratio of the number 
of edges among nodes with degrees higher than k to the 
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maximum the possible number of edges among those 
nodes.

where N>k is the number of nodes with a degree higher 
than k, and E>k is the number of edges among those 
nodes.

To compute the normalized rich-club coefficient, we 
first generated 1,000 random networks from our data. 
These random networks were generated to have the same 
degree distribution as the network under study [41]. 
The average rich-club coefficients for the random net-
works was computed and the normalized rich-club ( ρ(k)) 
computed.

When the normalized rich-club coefficient ρ(k) is 
greater than 1, it indicates the rich-club organization in 
the network is significant and cannot be explained by 
the degree distribution of the network alone. The set of 
nodes with ρ(k) > 1 were defined as the rich-club (RC).

In‑silico modeling
Following the identification of the RC genes, we con-
ducted in-silico modeling to assess upstream regulators 
that could serve as therapeutic targets that may influence 
the majority of the RC genes. This was performed using 
Ingenuity Pathway Analysis (IPA) [42]. Gene expres-
sion data, along with expression fold-change were used 
to reconstruct the network in IPA for visualization and 
analysis purposes. Using intrinsic IPA algorithms for 
the prediction of upstream regulators and downstream 
effects, we assessed the probable outcomes of simulated 
modulation (inhibition or activation) of upstream regula-
tors on the RC genes in our network. Results of this in-
silico testing were then used to guide in-vivo testing.

Principal component analysis (PCA)
To evaluate the radiographic and functional impact of 
DEGs within the full network and the rich-club genes, we 
performed PCA for dimensionality reduction. Normal-
ized expression values were used as inputs for PCA. This 
elucidates the primary components that explain the vari-
ance in the data. The two or three principal components 
(PCs) that collectively accounted for up to 90% of the 
variance across all measures were selected. Subsequently, 
individual data points representing each animal, includ-
ing stroke and sham animals, were plotted based on 
these selected PCs. The Eigengene, a measurement rep-
resenting the eigenvector for gene expression, was then 

φ(k) =
2E>k

N>k(N>k − 1)

ρ(k) =
φ(k)

φrand(k)

computed for each animal using PC1 and PC2. PCA and 
eigengene computation were performed using the "PCA-
tools" and "tmod" packages in R, respectively.

Statistical analysis
Statistical analyses were conducted using R and Graph-
Pad Prism (version 10.1.1) software. The normality of 
distribution was assessed using the Shapiro–Wilk test. 
Numerical data and histograms were presented as the 
mean ± SD. Student’s t-test (one- or two-tailed) or Mann–
Whitney U test were used to compare two groups for 
parametric and non-parametric data, respectively, while 
ANOVA and Kruskal–Wallis test (KW) were employed 
for the analysis of more than two groups. A significance 
level of P < 0.05 was considered statistically significant. 
Pearson correlation coefficients were calculated to assess 
correlations. Proportional statistics were analyzed using 
the chi-square test. Fisher’s exact test was employed to 
determine the p-value for the enrichment of annotation 
terms between the network and the rich-club. General-
ized Linear Models (GLMs) were constructed to identify 
correlations between radiological, motor and cognitive 
outcomes, and gene expression. The eigengenes, com-
puted from PC1 and PC2, were used as the input for 
gene expression of both the overall network of DEGs and 
rich-club genes. To compare the correlation coefficients 
between rich-club genes and random gene clusters, the 
rich-club genes correlation was compared with the aver-
aged model-fitness of 100 random iterations of groups 
of DEGs, each consisting of the same number of genes 
as the input rich-club genes. To investigate the interac-
tion between treatment and eigengenes for the predic-
tion of outcomes, we used the “jtools” and “interactions” 
packages in R. A linear regression model was fitted with 
treatment and eigengenes as independent predictors 
and radiological, motor, or cognitive measurements as 
dependent outcomes. To examine the interaction effects, 
an interaction plot was constructed to visually represent 
the interaction between treatment and eigengenes on 
the predicted outcome. Parallel lines in the plot indicate 
no interaction effect, while intersecting lines indicate an 
interaction effect, where the effect of eigengenes on the 
outcome varies depending on the treatment group.

Results
Characterization of the Neuroinflammatory 
Gene‑interaction Network after Stroke
To construct the network of neuroinflammatory gene 
interactions after transient MCAO, we performed 
targeted high-throughput gene expression analy-
sis on the ipsilateral hemisphere of mice 5  days after 
undergoing sham or MCAO surgery via a Nanostring 
immunology gene panel (Fig.  1 and 2). A signature of 
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immunology-related differential expressed genes (DEGs) 
was identified in MCAO compared with sham animals 
using hierarchical clustering analysis (Fig.  2a). A full 
list of genes expression is provided in Supplementary 
Table  S3. GO enrichment analysis was used to identify 
the prominent signaling pathways among the identified 
DEGs which included cytokine/chemokine signaling, 
leukocyte activation and migration, and complement 
activation (Fig. 2b).

As the focus of this work was to use disease network 
topology to allow for hypothesis-driven therapeutic tar-
geting, we first constructed the interaction network 
among the identified DEGs using the STRING data-
base as described in the methods (Fig.  1). The network 
included 181 gene nodes with a total of 4299 interac-
tions. By studying the power-law distribution curve, the 
network demonstrates a clear scale-free topology exhib-
iting a structured arrangement characterized by the pres-
ence of central hub nodes with high connectivity and a 
decreasing degree of connectivity toward the network 
periphery (Fig.  2c,d). The network also exhibited a sig-
nificantly higher clustering coefficient compared to ran-
domly constructed networks of nodes with similar degree 
distribution (Fig. 2e), a finding further demonstrating the 
presence of small-world organization with the presence 
of a highway system of interactions that most nodes use 
to interact.

Given the presence of a small-world organization 
within the network, we then interrogated whether the 
network exhibits a rich-club organization indicating 
nodes that are highly interconnected with each-other 
and with other non-core nodes within the network. The 
constructed network of stroke-related DEGs exhibited a 
rich-club organization characterized by increased rich-
club coefficient (φ(k)) with increasing degree (Fig. 2f ). To 
investigate the significance of the discovered rich-club, 
we assessed whether this rich-club could be explained 
by the degree distribution of the network using a nor-
malized rich-club coefficient (ρ(k)) comparing φ(k) to 

that of randomly generated networks with similar degree 
distribution. The normalized rich-club coefficient (ρ(k)) 
reveals the presence of a significant rich-club between 
degrees 40 and 150 with a peak at 80 degrees (Fig.  2f ). 
The strongest component of the rich-club was identi-
fied where the φ(k) plateaus around 1, which coincides 
with the highest normalized rich-club coefficient as 
detailed in methods. The subnetwork of nodes constitut-
ing the rich-club core is highlighted in Fig.  2g (also see 
Supplementary Table S3 for a list of rich-club and non-
rich-club genes). Comparison of rich-club components 
to non-rich-club components for connectivity showed 
3-fold higher degree for rich-club core genes compared 
to remaining nodes (p < 0.001) (Fig.  2h). GO analysis of 
the identified core genes revealed that the overall dysreg-
ulated biological processes included complement sign-
aling pathways, cytokine-mediated signaling pathways, 
leukocyte proliferation, and positive regulation of leuko-
cytic cell–cell activation and adhesion, which were also 
enriched in the original network (Fig. 2i).

Rich‑club genes predicts radiographic outcomes
To characterize the phenotype of mice following MCAO, 
animals underwent MRI at day 4 after stroke to assess the 
extent of infarct, edema and micro-architectural changes 
using T2-Weighted (T2-W) imaging, DTI and DKI. 
T2-W imaging was used to estimate the total volume of 
the T2-hyperintense brain. For DTI and DKI analyses, 
ROIs were selected in the ischemic hippocampus and 
basal ganglia, and mean diffusivity (MD) and mean kur-
tosis (MK) were computed (see methods). Compared 
to sham, MCAO mice had a large area of T2-W signal 
hyperintensity in the ischemic territory with associ-
ated lower MD and higher MK in the designated ROIs 
(Fig.  3). Using linear regression analysis, the rich-club 
(RC) eigengenes for PC1 and 2 demonstrated a strong 
positive Pearson’s correlation with the T2-W signal area 
 (R2 = 0.57, P < 0.001) that was significantly stronger than 
that of randomly sampled non-RC genes (Fig.  3a-b). 

Fig. 2 Analysis of gene expression, network construction and identification of network rich-club nodes. a Heatmap showing the differential 
expression of immunology-related genes between sham (N = 4) and transient middle cerebral artery occlusion (MCAO, N = 9) groups. b Functional 
annotation for top biological processes among differentially expressed genes (DEGs) between sham and MCAO using Gene Ontology analysis. 
c Illustrative demonstration of random and scale-free network topology. d Curve plot showing the power law distribution of node degrees 
within the constructed DEGs network. e Bar plot showing significant difference between the clustering coefficient of the DEGs network 
as compared to 1000 random constructed networks with similar degree distribution. Permutation test *P < 0.01. f Curve plot showing the rich-club 
coefficient (φ) of the DEGs network (blue) and random networks (red) plotted against the left vertical axis, while normalized rich-club coefficient 
(ρ) (green) is plotted against right vertical axis. The gray shaded area indicated the rich-club region where ρ > 1, while the red shaded area indicated 
the strongest rich-club component where the DEGs network rich-club coefficient plateaus at φ = 1. Horizontal dashed lines correspond to φ 
and ρ = 1. g Interactive network showing the identified rich-club genes. h Bar plot showing the in degree centrality between rich-club (RC) nodes 
and other nodes within the DEGs network. Student’s t-test. ****P < 0.001. Shown is mean ± SD i Functional annotation for top biological processes 
enriched within the rich-club genes using Gene Ontology analysis

(See figure on next page.)
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Similarly, the RC genes showed a stronger correlation 
with both MD and MK as compared to the non-RC genes 
with  R2 = 0.52 and 0.65 respectively (Fig.  3c-f ). These 
findings indicate that the changes within the rich-club 

subnetwork exhibit a strong correlation with the radi-
ographic outcomes after stroke as compared to the 
remaining DEG’s in the network.

Fig. 2 (See legend on previous page.)
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Rich‑club Genes Predicts Behavioral Outcomes
We next performed a similar analysis evaluating the abil-
ity of RC genes to predict performance on motor tasks 
(NSS and corner task, Fig.  3g-l) and cognitive tasks 
(NOR and PA, Fig. 4a-f ). The RC genes demonstrated a 
strong correlation with performance on motor and cog-
nitive tasks as shown in Figs. 3 and 4 with  R2 = 0.58, 0.7, 
0.54, and 0.7 for NSS, corner tasks, PA, and NOR tasks, 
respectively (P < 0.001, Fig. 3,4). These correlations signif-
icantly outperformed those of randomly chosen non-RC 
genes within the network (Fig. 3,4).

Identifying upstream regulators of the rich‑club 
subnetwork
To identify potential therapeutic targets, we used Inge-
nuity Pathway Analysis (IPA) to study the upstream 
regulators of the rich-club subnetwork (Fig. 1). Among 
a total of 138 gene targets that were shown to influ-
ence the activation of at least 1 rich-club gene, the top 
10 hits that targeted the highest number of rich-club 
genes were identified, and all of which belong to our 
studied panel (Supplementary Table  S4). Among the 
top 10 hits, only Amyloid Precursor protein (APP) and 
C3 showed significant dysregulation in our network 
when comparing MCAO to sham (Supplementary 
table  S4); APP was downregulated in MCAO and C3 
was upregulated. Given that the complement pathway 
plays a pivotal role in the neuroinflammatory response 
following a stroke, and that site-targeted inhibitory 
approaches for C3 activation are in clinical develop-
ment (namely CR2-fH and its human equivalents [8, 
19, 43, 44]), we simulated the effect of C3 inhibition 
on the RC subnetwork. C3 directly interacted with 27 
genes within the full network of DEG in MCAO versus 
sham and with 10 genes within the rich-club subnet-
work (30%), and indirectly interacted with all rich-
club genes (Fig.  5a) leading to downregulation of all 
but one gene (TP53) with simulated inhibition of C3. 
Functional annotation of direct C3 targets within the 
rich-club subnetwork revealed regulation of biological 

processes, including chemokine activity, immune cells 
chemotaxis, and TNF production. In the broader neu-
roinflammatory network, C3 targets were associated 
with processes such as humoral immune responses, 
and leukocyte migration and activation (Supplemen-
tary Fig. 1).

Inhibition of C3 favorably reverses rich‑club gene 
alterations after MCAO and improves outcomes
Based on this in-silico model, we performed in-vivo test-
ing using the same MCAO murine model while admin-
istering either vehicle (phosphate buffered saline) or 
CR2-fH at 2  h after reperfusion via tail vein injection 
while performing the same battery of radiographic, 
behavioral, and transcriptional studies. CR2-fH signifi-
cantly reversed the eigengene changes seen in the vehi-
cle group in direction toward the sham (Fig.  5b), and 
significantly reversed the expression of 36% of the rich-
club genes (based on P < 0.05, Student’s t-test) (Fig. 5c,d), 
thus supporting the expected findings from our in-silico 
model (Fig.  5a). Using PCA, the 3 PC for the rich-club 
genes demonstrated clear clustering of the different treat-
ment groups including sham, vehicle and CR2-fH, where 
CR2-fH demonstrates migration of the cohort away 
from the vehicle and closer to the sham group (Fig. 6a). 
We then evaluated the impact of CR2-fH on the differ-
ent outcome measures using linear regression models 
testing the effect of CR2-fH as compared to vehicle as 
reference on each outcome measure while reporting the 
model estimates for CR2-fH (Fig. 6b). Except for MD on 
DTI, CR2-fH significantly predicted all radiographic and 
behavioral outcomes including T2-W signal area, MK, 
NSS, and performance on corner, passive avoidance and 
NOR tasks (Fig. 6b). To determine if the alterations in the 
rich-club genes explained the impact of CR2-fH on these 
outcome measures, we performed interaction analyses 
within these models to test whether the eigengenes for 
rich-club genes showed significant interaction with the 
impact of CR2-fH on outcomes (Fig. 6c). Results of inter-
action analyses showed robust interactions with respect 

(See figure on next page.)
Fig. 3 Rich-club genes predicts radiographic and motor outcomes. Illustration of T2-Weighted (T2-W) and diffusion tensor imaging (DTI) 
from animals undergoing sham or MCAO operations. Red fields denote areas of ROI for mean diffusivity (MD) and MK calculations. a–f Radiographic 
outcomes: Linear regression models predicting a MRI T2-signal area c MD, and e diffuse kurtosis imaging (DKI). Reported values are Pearson’s 
 R2 and P-value. b, d, f Bar plots showing significant difference between the regression model  R2 for the prediction of b T2-signal d DTI, f DKI 
between the RC genes versus 100 random iterations of non-RC genes. One-sample t-test. *P < 0.05. g-l Motor outcomes: g comparison of NSS 
between sham and MCAO mice at day 3. Mann–Whitney U test. ***P < 0.001. h Linear regression model predicting performance on NSS based 
on RC PC1 and 2 eigengenes. i Bar plot showing significant difference between the regression model  R2 for the prediction of NSS between the RC 
genes versus 100 random iterations of non-RC genes. One-sample t-test. *P < 0.05. j comparison of forearm asymmetry on corner task 
between sham and MCAO mice at day 4. Mann–Whitney U test. ***P < 0.001. h Linear regression model predicting performance on corner task 
based on RC PC1 and 2 eigengenes. i Bar plot showing significant difference between the regression model  R2 for the prediction of corner task 
between the RC genes versus 100 random iterations of non-RC genes. One-sample t-test. *P < 0.05. All bar plots show mean ± SD
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Fig. 3 (See legend on previous page.)
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to all outcome measures. These findings suggest that tar-
geting C3 activation using CR2-fH improved functional 
and behavioral outcomes after stroke by influencing a 
core subnetwork of neuroinflammatory rich-club genes.

Discussion
In this work, we develop an analytical framework of com-
bining transcriptomics, graph theory applications, in-sil-
ico testing, and in-vivo validation to study the molecular 
underpinning of the post-ischemic neuroinflammatory 
response and its potential therapeutic modulation. 
We constructed a network of neuroinflammatory gene 
interactions following transient MCAO that revealed a 
scale-free topology with a rich-club organization. This 
rich-club consisted of key regulatory genes that were 
highly interconnected, forming a core network critical 
to the neuroinflammatory response. The presence of a 
rich-club organization in our network indicates a hierar-
chical structure where a few hub genes exert substantial 
control over the network’s functionality, supporting the 
hypothesis that these hubs could be strategic targets for 
therapeutic intervention. In the realm of cellular biology, 
the application of graph theory concepts, particularly 

scale-free network topology, has significantly advanced 
our understanding of protein–protein interactions by 
revealing network organization. Scale-free networks, 
recognized as the fundamental topology of biological 
networks, exhibit an uneven distribution of nodes, with 
some nodes displaying higher connectivity and influence. 
Identifying these nodes is crucial for comprehending dis-
ease pathophysiology and pinpointing effective drug tar-
gets [40, 45, 46].

Rich-club analysis, a concept in graph theory, is 
employed to identify core nodes within a network. This 
analysis capitalizes on the tendency of a subset of nodes 
within a scale-free network to form a ’club’ characterized 
by high interconnectivity [40, 45, 46]. This organizational 
structure serves two fundamental functions. Firstly, it 
facilitates rapid signal transmission among club mem-
bers due to their high connectivity. Secondly, it creates a 
robust resilient network wherein the loss of a rich-club 
node can be compensated for by signal propagation from 
other club members, minimizing disruption to the over-
all network. Another key aspect of rich-club organization 
is that these highly connected nodes not only interact 
strongly with each other but also with fewer central nodes 

Fig. 4 Rich-club genes predict cognitive outcomes. a Comparison of latency to enter the dark box on passive avoidance task between sham 
and MCAO mice at day 4. Student’s t-test. ***P < 0.001. b Linear regression model predicting performance on passive avoidance based on RC PC1 
and 2 eigengenes. c Bar plot showing significant difference between the regression model  R2 for the prediction of passive avoidance performance 
between the RC genes versus 100 random iterations of non-RC genes. One-sample t-test. *P < 0.05. d Comparison of novel object recognition (NOR) 
performance between sham and MCAO mice at day 3. Student’s t-test. ***P < 0.001. e Linear regression model predicting performance on NOR task 
based on RC PC1 and 2 eigengenes. f Bar plot showing significant difference between the regression model  R2 for the prediction of NOR task 
between the RC genes versus 100 random iterations of non-RC genes. One-sample t-test. *P < 0.05. All bar plots show mean ± SD
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within the network, ensuring efficient signal propagation 
across the network. Initially, such organization poses a 
challenge, particularly in disease pathology, as inhibit-
ing a pathological network may seem intractable. How-
ever, leveraging the organizational power of the rich-club 
is key. Drugs targeting a majority of rich-club nodes can 
harness the high connectivity within the club, allowing it 
to propagate the therapeutic effect to other core nodes of 
the network. Additionally, the rich-club’s extensive con-
nectivity with the rest of the network ensures the spread 

of the therapeutic effect throughout the entire network, 
exerting a widespread impact [38, 40, 45].

Previous work using different molecular datasets and 
data mining strategies has studied the network of dys-
regulated genes after ischemic stroke[38, 47–49]. These 
studies focused on identifying gene interaction network 
modules and performed enrichment analysis for promi-
nent pathways and genes in the network. A scale-free 
network of gene interactions was described and empha-
sized the role of inflammatory cytokines and chemotac-
tic signaling pathways which overlap with the findings of 

Fig. 5 Identifying and targeting C3 as an upstream regulator of the rich-club subnetwork. a In-silico analysis showing the simulated effect 
of C3 inhibition on the expression of rich-club genes. Analysis was done using Ingenuity Pathway Analysis (IPA) software. b Dot plot showing 
the difference in rich-club genes eigengene between sham (N = 4), vehicle (N = 8), and CR2-fH treatment (N = 10) groups. ANOVA with Holm-Sidak’s 
test for multiple comparisons. *P < 0.05. **P < 0.01. One data point in the vehicle group with a value of 17.8 was identified as an outlier using Grubbs’ 
test (G = 2.4, α = 0.05) and excluded from this analysis. c Dot plot showing the expression of individual rich-club genes between treatment groups. 
Shown is mean ± SD. *P < 0.05. d Bar plot showing the percentage of genes with significantly reversed expression between both treatment groups 
based on P < 0.05 on Student’s t-test
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this study [47–49]. In prior work from our group using 
curated protein expression data from published reports, 
a rich-club organization was identified with a similar 
pattern of enriched inflammatory activation pathways, 
including immune cell activation, chemotaxis, and adhe-
sion [38]. However, the correlates of these findings with 
functional outcomes had not been investigated. In this 
work, we demonstrated that rich-club genes, identified 
through graph theory-based network analysis, showed 
strong correlations with both radiographic and functional 

outcomes that significantly outperformed those of differ-
entially expressed non-rich-club genes. This suggests that 
the rich-club genes play pivotal roles in pathological pro-
cesses following ischemic stroke, influencing both struc-
tural and behavioral manifestations of injury. Specifically, 
the eigengene for rich-club genes exhibited a robust 
positive correlation with T2-weighted imaging (T2-W) 
signal area, mean diffusivity (MD), and mean kurtosis 
(MK) metrics from diffusion tensor imaging (DTI) and 
diffusion kurtosis imaging (DKI). These correlations 

Fig. 6 The interactive effect between rich-club genes expression and treatment on outcomes. a Principal component analysis (PCA) 3-dimentional 
plot using differentially clustering of treatment groups based on rich-club genes eigengene. b Results of linear regression models using treatment 
group (CR2-fH) versus vehicle as reference to predict radiographic and behavioral outcomes. Shown are standardized estimates with 95% 
confidence intervals. Red highlights the variables where CR2-fH significantly predicted performance. c Fitted linear regression model interactive plot 
with treatment and eigengenes as independent predictors and radiological, motor, or cognitive measurements as dependent outcomes. Parallel 
lines in the plot indicate no interaction effect, while intersecting lines indicate an interaction effect, where the effect of eigengenes on the outcome 
varies depending on the treatment group. All outcome measures showed significant interaction between the eigengene value and the effect 
of CR2-fH on outcome measures. DTI-MD, diffusion tensor imaging—mean diffusivity; DKI-MK, diffusion kurtosis imaging—mean kurtosis; NSS, 
neurological severity score; PA, passive avoidance; NOR, novel object recognition task
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underscore the importance of rich-club genes in mediat-
ing the extent of ischemic damage and subsequent tissue 
remodeling.

The functional significance of the rich-club was fur-
ther highlighted by the strong correlation of these genes 
with motor and cognitive outcomes in MCAO mice. The 
rich-club eigengene demonstrated a significant associa-
tion with neurological severity scores (NSS), corner task 
performance, passive avoidance (PA), and novel object 
recognition (NOR) tasks. These behavioral assessments 
reflect both sensorimotor and cognitive deficits, which 
are critical determinants of long-term recovery post-
stroke. The superior predictive power of rich-club genes 
over randomly selected DEGs underscores their central 
role in orchestrating post-stroke pathology. The rich-club 
genes identified involve extracellular secretory cytokines 
and chemotactic factors, membrane-bound phagocytic 
and antigen recognition markers, and transcriptional 
regulators of the Jak/STAT signaling pathway. Given that 
these components cannot be targeted by single agents, 
we interrogated upstream regulators that can preferen-
tially influence the rich-club genes.

In exploring upstream regulators of the rich-club sub-
network, among the top 10 regulators, only C3 and APP 
were significantly differentially expressed in vivo, with C3 
upregulated and APP downregulated. Although in-silico 
analysis indicated an activator role for APP within the RC 
subnetwork (Supplementary Fig. 2), its overall downregu-
lation in the stroke group compared to the sham group 
suggested it is unlikely to be a primary driver of pathology 
in this context. APP does play a significant role in driv-
ing pathology neurodegenerative neuroinflammation in 
stroke as well as neurodegenerative disease mainly due to 
the pathological accumulation of A-beta peptides [50–52]. 
However, investigating the protein breakdown pattern of 
APP falls beyond the scope of our work. In contrast, C3 
was upregulated in the stroke group and appeared to serve 
as a key driver of the RC subnetwork. C3 dysregulation 
in the MCAO model, is consistent with its known role in 
stroke-induced neuroinflammation. Several prior reports 
on analysis of clinical samples and preclinical investiga-
tions have emphasized an important role for complement 
activation in the pathology of ischemic stroke, and com-
plement inhibitors have been investigated in preclinical 
models and early clinical phases for treatment of exacer-
bated neuroinflammation after injury [6–8, 15, 19, 21–23]. 
The complement system serves as both a recognition 
and effector system of innate immunity that recognizes 
early danger-related signals and is capable of activating a 
wide range of innate and adaptive immune mechanisms 
[15, 17, 18, 20]. Using in-silico modeling, we predicted 
that inhibition of C3 would downregulate the majority 
of rich-club genes, suggesting a broad modulatory effect 

on the neuroinflammatory network. This hypothesis was 
tested in vivo using a recombinant fusion protein, CR2-fH, 
designed to specifically inhibit the alternative pathway of 
complement activation at the C3 activation step. CR2-fH 
is a fusion protein consisting of a fragment of complement 
receptor 2 (CR2) that binds to tissue-bound C3 activation 
products (C3b/iC3b/C3d), linked to an active portion of 
the complement inhibitor factor H (fH) [16, 19]. Previous 
studies have demonstrated that CR2-fH, through targeted 
complement inhibition of the alternative pathway, pro-
vides neuroprotection following ischemic stroke in rodent 
models [8, 19, 53]. This neuroprotective effect includes 
modulation of gliosis and microglial activation, and reduc-
tion of cellular apoptosis [6, 8, 19, 29, 43, 53]. However, the 
detailed pathophysiology remains unclear. Therefore, we 
investigated how CR2-fH treatment in the same rodent 
model impacts rich-club gene expression and functional 
outcomes. Treatment with CR2-fH significantly reversed 
the expression of rich-club genes, aligning with our in-
silico predictions. Functional annotation of C3 targets 
indicates that CR2-fH reduced leukocyte chemotaxis to 
the injury site and limited leukocyte activation. This sup-
pressed the initiation of both innate and adaptive immune 
responses, mitigating the neuroinflammatory cascade after 
stroke. Furthermore, CR2-fH treatment improved both 
radiographic and functional outcomes. The interaction 
analyses confirmed that the impact of CR2-fH on these 
outcomes was mediated through its effect on rich-club 
genes. These findings highlight the therapeutic potential 
of targeting central nodes within the neuroinflammatory 
network, offering a strategy to mitigate secondary injury 
following stroke. The integration of graph theory with 
experimental neurobiology in this study provides a novel 
framework for identifying and validating therapeutic tar-
gets in complex disease networks. Another added advan-
tage of this study is its alignment with the latest STAIR 
recommendations for testing neuroprotective agents 
within the context of reperfusion therapy, the current 
standard of care [54]. Additionally, cross-sectional in-vivo 
imaging was utilized for lesion analysis using sequences 
similar to those employed in clinical settings.

Our study underscores the significance of neuroinflam-
mation in stroke pathology and recovery, emphasizing 
the need for multifaceted therapeutic approaches that 
address the complexity of the post-stroke inflammatory 
response. By focusing on key regulatory hubs within the 
neuroinflammatory network, we demonstrate the fea-
sibility of network-based therapeutic targeting, paving 
the way for more effective interventions in stroke care. 
Future research should continue to explore the dynamic 
interactions within neuroinflammatory networks and 
their modulation by therapeutic agents, with the goal of 
improving clinical outcomes for stroke patients. Finally, 
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our investigation strategy provides a platform to leverage 
in-silico modeling and network analysis to guide trans-
lational research, an approach that could be applied to a 
wide range of disease processes.

Limitations
The study involved gene expression analysis using the 
Nanostring Immunology panel rather than a full tran-
scriptomic analysis which limits the ability to assess the 
contribution of non-inflammatory genes to the over-
all dysregulation networks. However, when compared 
to previously published interaction networks for brain 
ischemia, the majority of key hub genes were part of 
our panel[38]. The detailed effect of CR2-fH on clini-
cal pathology and outcomes after murine stroke includ-
ing acute and chronic outcomes have been previously 
investigated, including its impact on gene expression 
profiles [8, 19], but this work uses data curated from 
these studies and additional experiments to study how 
that effect modulates network-level biology and how 
network-level organization impact different radio-
graphic, motor and cognitive outcomes.
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