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Tension at the gate: sensing mechanical 
forces at the blood–brain barrier in health 
and disease
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Abstract 

Microvascular brain endothelial cells tightly limit the entry of blood components and peripheral cells into the brain 
by forming the blood–brain barrier (BBB). The BBB is regulated by a cascade of mechanical and chemical signals 
including shear stress and elasticity of the adjacent endothelial basement membrane (BM). During physiological 
aging, but especially in neurological diseases including multiple sclerosis (MS), stroke, small vessel disease, and Alzhei-
mer’s disease (AD), the BBB is exposed to inflammation, rigidity changes of the BM, and disturbed cerebral blood flow 
(CBF). These altered forces lead to increased vascular permeability, reduced endothelial reactivity to vasoactive media-
tors, and promote leukocyte transmigration. Whereas the molecular players involved in leukocyte infiltration have 
been described in detail, the importance of mechanical signalling throughout this process has only recently been 
recognized. Here, we review relevant features of mechanical forces acting on the BBB under healthy and pathologi-
cal conditions, as well as the endothelial mechanosensory elements detecting and responding to altered forces. We 
demonstrate the underlying complexity by focussing on the family of transient receptor potential (TRP) ion channels. 
A better understanding of these processes will provide insights into the pathogenesis of several neurological disor-
ders and new potential leads for treatment.
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Background
Exchanges of circulating molecules and cells between the 
bloodstream and central nervous system (CNS) are regu-
lated by the neurovascular unit, a multi-layered structure 

consisting of perivascular astrocytes, microglia, peri-
cytes, and specialized brain microvascular endothelial 
cells (BMECs) comprising the blood–brain barrier (BBB) 
[1–3] (Fig.  1, central part). The BBB is the innermost, 
monocellular layer of the brain microvasculature forming 
a tight physical barrier that is characterized by a unique 
network of adherens junctions (AJs) and tight junc-
tions (TJs) [3, 4], which respond to internal and external 
mechanical forces of the local microenvironment [5, 6] 
(Fig.  1B). AJs consist of transmembrane protein com-
plexes, such as vascular endothelial (VE-) cadherin [1, 4], 
which connect to the intracellular actin cytoskeleton via 
catenins [4, 7]. TJs are located at the basolateral side of 
BMECs and include claudin-5, occludin, junctional adhe-
sion molecules (JAMs), and tri-cellular junction proteins 
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such as tricellulin [8–10]. Together, they form a robust 
paracellular connection and generate intercellular ten-
sion, giving rise to the exceptionally low permeability 
of the BBB [1, 3]. Finally, integrin-based focal adhesions 
anchor BMECs to the underlying basement membrane 
(BM), a network of extracellular matrix (ECM) proteins, 
and an important source of mechanical force (Fig.  1B) 
[11]. To maintain their integrity, BMECs sense and adapt 
to changes in forces including cerebral blood flow (CBF), 
BM elasticity, and cell–cell interactions such as during 
transendothelial migration (TEM) of peripheral immune 
cells across the BBB (Fig. 1A–C) [1, 4, 8].

Pathological changes of the BBB are found in many 
cerebral disorders. In multiple sclerosis (MS), a chronic 
neuroinflammatory disease, BBB impairment, and 
immune cell infiltration are disease hallmarks and 
tightly connected to the formation of demyelinated 
plaques [12, 13]. Alzheimer’s disease (AD) is char-
acterized by aggregation of amyloid beta (Aβ) and 

accumulation of hyperphosphorylated tau forming 
neurofibrillary tangles [14]. These are further accentu-
ated by vascular changes including BBB injury, reduced 
CBF, and enlarged perivascular spaces [15]. Impaired 
Aβ clearance is a common feature of AD and cerebral 
amyloid angiopathy (CAA), whereas in the latter Aβ 
accumulates particularly around the vasculature, fur-
ther impairing vascular reactivity and possibly permit-
ting haemorrhages [16]. Reduced vascular function 
through vessel stiffening and chronic hypertension is 
commonly found in aging cerebral vasculature and is 
known to increase the risk for stroke (haemorrhagic 
and ischemic) and sporadic small vessel disease [17, 
18]. Overall, vascular stiffening and disturbed CBF 
likely result in reduced vascular reactivity, enhanced 
perivascular aggregate formation, and eventually focal 
hypoxia, contributing to the (vascular) pathology 
observed in numerous age-related neurodegenerative 
disorders [19–28].

Fig. 1  A trio of mechanical forces acting on the brain endothelium. Forces and their directionality are presented by black arrows. A Wall shear stress 
(WSS) acts on the luminal side of the BMECs in the direction of the cerebral blood flow (CBF). B Abluminally, BMECs are anchored to the basement 
membrane (BM) and use integrin-mediated mechanotransduction to respond to the underlying stiffness. Basolateral junction complexes include 
tight junctions (TJs) and adherens junctions (AJ) creating inter- and intracellular tension. (C) Mostly under pathological conditions: Immune cell 
migration across the BBB is a multi-step cascade with mechanical forces acting on both cellular players, the immune cell, and BMECs. Figure is based 
on Vanlandewijk et al. [37]. HSPGs Heparan sulfate proteoglycans, Coll IV Collagen IV, PVS perivascular space, BM basement membrane
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Many detrimental vascular changes in cerebral dis-
orders follow and include distinct mechanical compo-
nents such as alterations of BM composition and wall 
shear stress (WSS) acting on the microvasculature 
(Fig. 1A, B). WSS or often referred to as simply shear 
stress defines the arising force within a moving fluid 
and between the fluid and vessel wall [29]. Addition-
ally, neuroinflammation facilitates the migration of 
peripheral immune cells across the BBB, which adds 
cell–cell interaction forces to the mechanical trio [30, 
31] (Fig.  1C). TEM of immune cells into the brain is 
a hallmark of MS, but also gains increasing attention 
in AD patients, stroke, and healthy elderly [32, 33]. 
This migration cascade governs many biomechani-
cal and biochemical interactions from start to finish. 
Whereas biochemical signalling has been described 
and reviewed in detail [1, 3, 8, 34], the importance of 
mechanical stress has only recently been realised.

It becomes apparent that changes in mechanical 
forces largely influence vascular function and dysfunc-
tion and might be early drivers of neuroinflammatory 
and neurodegenerative diseases. In this review, we 
briefly summarize our current knowledge of the two 
main mechanical stressors, WSS and BM stiffness, act-
ing on the BBB and their pathological changes. Then, 
we highlight the forces measured during TEM of 
immune cells across the BBB and BBB-specific migra-
tion behaviour. Finally, we focus on mechanosensory/
sensitive elements of BMECs and spotlight members 
of the transient receptor potential (TRP) ion channel 
family to showcase the intricacies of mechanical sig-
nalling [35, 36].

Mechanical forces at the BBB
Cerebral vessels are subjected to a range of mechanical 
stressors (Table  1), which play a key role in BBB main-
tenance, activation, and function [38, 39]. Changes in 
mechanical stimuli are sensed by specialized mecha-
nosensors and translated into biochemical signalling cas-
cades [40], culminating in cytoskeletal reorganization, 
gene regulation, and epigenetic chromatin modification 
[41]. Disturbances in mechanical forces including CBF 
and BM stiffness are often concomitant and recognized 
as early signs of numerous cerebral disorders [5, 39]. 
Below, the force ranges and impact on the cerebral vascu-
lature are discussed.

External, non‑cellular forces
Wall shear stress
Wall shear stress (WSS) or endothelial WSS is calculated 
from the blood viscosity (highly dependent on concentra-
tion and mechanical properties of red blood cells) and 
axial flow velocity gradient at the vessel wall [66]. WSS, 
arising from laminar or disturbed CBF at the luminal side 
of BMECs, plays a critical role in maintaining the struc-
ture and function of the BBB [38]. Under healthy condi-
tions, the average capillary WSS in the brain ranges from 
1 to 2 N/m2 [46, 47] (Table 1, Fig. 1A). ECs experience the 
highest WSS within capillaries and declining hyperboli-
cally to 0.28 N/m2 at larger diameter post-capillary ven-
ules [48, 67]. This WSS was shown to be required for the 
differentiation of vascular ECs into a BMEC phenotype 
[68] using a dynamic in vitro BBB model. In vitro applica-
tion of capillary-like WSS also inhibited cell proliferation, 
probably due to induction of the cyclin-dependent kinase 
inhibitor p21, causing cell cycle arrest [5, 69]. Recent 
advances in BBB models, which incorporate external 

Table 1  Mechanical stressors and forces acting at the vasculature. Summary of non-cellular and cellular mechanical forces at the 
endothelium measured in N/m2 (equals 10 dyne/cm2 or 1 Pa)

Stressor Area/cell type Force range References

External non-cellular forces

 Wall shear stress Arteries 0.4–3 N/m2 [39, 42–45]

Arterioles & capillaries Avg. 1–2 N/m2 [46–50]

Post-capillary venules & veins  < 0.1–4 N/m2 [39, 48, 49, 51]

 BM stiffness Arteries & microvessels  ~ 50 K to 150 K N/m2 or higher [39, 52–55]

Venules/venous tissue (outside brain)  ~ 3 K-50 K N/m2 [54, 56]

Cell–cell interaction forces

 Selectin catch bonds Leukocytes & ECs 10–30 pN/bond, maybe up to 60 pN [57–60]

 Integrin catch bonds Leukocytes & ECs 10–30 pN/bond [61, 62]

 Crawling T cells up to 0.6 nN/cell [63]

 Diapedesis Leukocytes up to 60 nN/cell [58]

 Cell–cell junctions e.g. VE-cadherin 
and PECAM-1 binding

ECs 10–100 pN/bond (depending on number 
and type of interacting proteins)

[64, 65]
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mechanical forces such as shear stress and ECM stiffness, 
have been reviewed elsewhere [70–74].

CBF dynamics strongly alter with age, occlusion and 
inflammation, whereas both high and low WSS are asso-
ciated with brain pathology [75]. Aberrant high WSS 
(> 4  N/m2) occurs in hypertension and causes vascular 
dysfunction through loss of TJ proteins and activation of 
inflammatory signalling at the BBB [38, 76–78]. Hyper-
tension and cerebrovascular injury can manifest in small 
vessel disease, which often presents an intermediate state 
leading to ~ 30% of ischemic stroke and ~ 80% of haem-
orrhagic intracerebral bleedings [79–82]. In small ves-
sel disease, the stiffened/damaged arteries are unfit to 
absorb the heightened pulsatility, causing damage to the 
proximate microvasculature of the brain [83, 84]. In vitro 
studies confirm that pulsatile WSS on BMECs causes the 
loss of TJ proteins, reduced P-glycoprotein expression 
and delocalization of zona occludens-1 (ZO-1) from the 
cell borders to the cytoplasm and nucleus [77]. Disease 
severity of small vessel disease is also associated with 
global and local CBF alterations and recent work has pin-
pointed distinct region-specific CBF patterns in patients, 
which were linked to the occurrence of periventricular 
white matter hyperintensities and total disease burden 
[85].

During ischemic stroke, blood flow is blocked to a part 
of the cerebral vascular network, instantly severely low-
ering CBF in this region, which can be restored upon 
timely treatment (reperfusion). As a result, BMECs first 
experience hypoxia and oxidative stress which partially 
increases their permeability for blood components, flu-
ids, and peripheral cells, causing post-ischemic inflam-
mation [86]. Edema formation follows ischemia-induced 
sodium and water uptake through shear stress-regu-
lated ion transporter [87]. A number of signalling path-
ways (including Wnt and Notch pathways) underlying 
ischemic/reperfusion injury across organs have been 
recently reviewed [88]. Very low levels of CBF and WSS 
also prompt increased BMEC proliferation and enhanced 
BBB permeability through cell layer remodelling [38, 69, 
89]. Following reperfusion, BMECs secondly experience 
enhanced WSS which promotes endothelial-to mesen-
chymal transition [90]. This (partial) shift to mesenchy-
mal cell properties further enhances BBB permeability 
[91], which may however reverse at a later timepoint of 
reperfusion [91]. A recent study, using two-photon imag-
ing to follow vascular leakage post ischemic stroke in 
mice, showed BBB leakage as early as 30  min after the 
occlusion, steadily increasing in the hours after (120 min) 
[92]. Disruption of BBB function from ischemia/reper-
fusion has been reported as a predictor of poor disease 
outcome and haemorrhagic transformation in ischemic 
stroke patients [93].

Hypertension-induced vascular injury correlates with 
age and increases the risk for AD, yet the CBF is fre-
quently reduced globally and locally in AD patients, 
which has been suggested as an early marker for AD 
[20, 94–96]. Similarly, MS patients show reduced CBF in 
white matter regions, specifically periventricular areas, 
concomitant with increased BBB permeability [97, 98]. 
Reduced CBF in MS may be the result of impaired flow-
mediated endothelial dilation, both of which are corre-
lated with disease severity and progression [99]. Whereas 
numerous studies hint towards changes in CBF in age-
related and neuroinflammatory diseases [100, 101], the 
underlying causes and consequences for BMECs and 
BBB function remain elusive. Especially data on human 
brain vasculature is missing to fully comprehend different 
forms of WSS and its effects on the BBB during aging and 
neuroinflammatory disorders [51].

Basement membrane changes
Vascular stiffness is a complex property governed chiefly 
by vascular reactivity, BM properties, and blood pres-
sure [102]. Here we focus on the BM and its changes 
in mechanical properties during pathology. The brain 
endothelial BM separates BMECs from neighbouring per-
icytes and supports BBB maintenance [103]. The BM is 
composed of extracellular matrix (ECM) proteins includ-
ing laminins, nidogens, heparan sulphate proteoglycans, 
and collagen IV (Fig. 1B). They form a 50–100 nm thick 
three-dimensional network that interacts with BMECs to 
hold them in place [104, 105]. BM stiffness is influenced 
by the composition of ECM proteins, their concentra-
tion and elasticity, crosslinking between the proteins and 
the created intrinsic tension [106]. Degradation through 
proteases (e.g. matrix metalloproteases), remodelling 
and (limited) synthesis of ECM proteins can change the 
degree of membrane stiffness [106].

In vitro studies show that ECs respond to the rigid-
ity of the neighbouring BM by enhanced expression of 
ECM receptors, including integrins. These cell–matrix 
contacts are crucial for BMEC identity and BBB func-
tion [107, 108]. Consequently, global knockout models 
for components of the ECM or pharmacological block-
age of integrins often demonstrate cerebral bleeds and 
pre- or postnatal lethality [109, 110]. Growing cells on 
polyacrylamide hydrogels of varying stiffness showed 
that cells on soft hydrogels developed a lower density of 
actin fibres and more rounded nuclei than those grown 
on stiffer substrates [39, 111]. BM stiffness further cues 
endothelial progenitor cell differentiation along the arte-
rial-venous axis, as higher stiffness induces arterial EC 
marker expression via the Ras-Mek pathway [112]. Inter-
estingly, when exposed to physiological WSS, ECs on soft 
hydrogels displayed tighter cell junctions, more profound 
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elongation, and fewer (RhoA-mediated) cytoskeletal 
changes, revealing a direct relation between ECM stiff-
ness and WSS [111]. These results show that ECs can 
directly modulate internal tension in response to exter-
nal forces by altering the assembly and dynamics of actin 
fibres and junctional proteins [40, 113].

BM thickening has been linked to a narrowing of the 
vessel lumen during inflammation, aging and AD [114–
118]. Over time, the BM composition shifts towards 
thicker collagen fibres with enhanced crosslinking, 
while hyaluronan levels decrease by degradation and 
elastin elasticity function is reduced [119, 120]. Conse-
quent narrowing of the vessel lumen diameter restricts 
local CBF, causing lack of sufficient oxygen and nutri-
ent supply for the brain [121, 122]. Prolonged reduced 
CBF can be further amplified by decreased endothelial-
dependent dilation and overactive contraction, e.g. by 
pericytes evoked through reactive oxygen species or Aβ 
signalling in ischemic stroke and AD [123, 124]. Moreo-
ver, the increase in BM rigidity affects mechanosensitive 
processes such as angiogenesis [125, 126]. Functional 
angiogenesis requires a delicate balance between matrix 
remodelling/degradation and mechanical support of 
the BM for BMEC adhesion and migration. Age-related 
changes in BM composition and elasticity result in a 
lack of vessel support and might be linked to microves-
sel rarefaction and regression following impaired angio-
genesis [127]. Lastly, the endothelial BM is a reservoir for 
growth factors and signalling crucial for vessel formation. 
Changing ECM protein composition thus also leads to a 
dysregulation in growth factor and other ligand availabil-
ity [127].

In AD pathogenesis, changes in levels of collagen IV 
and the proteoglycan perlecan occur early on (Braak 
stage > 2 & ≤ 4) and correlate with parenchymal Aβ plaque 
deposition in the frontal and temporal cortex, suggesting 
BM changes in parallel with disease progression [128]. 
In AD patients with CAA, CAA severity correlates with 
Aβ1–42 and collagen IV abundance in vessels of the fron-
tal cortex [129]. It remains to be investigated if changes 
in the endothelial BM facilitate vascular Aβ deposition 
or merely occur concomitant with disease development. 
In MS, non-invasive pulse wave velocity measurements, 
a readout for arterial stiffness, are associated with dis-
ease duration and severity. Another study showed that 
increased arterial stiffness correlated with a reduced cog-
nitive processing speed, as assessed via the Symbol Digit 
Modalities Test [130, 131]. Similar measurements in 
stroke patients connected arterial stiffness with enlarged 
perivascular spaces and cerebral microbleeds and 
revealed vessel stiffness as a potentially more important 
risk factor than blood pressure for cerebral small vessel 
disease [132, 133]. Lastly, a meta-analysis demonstrated 

a negative association between arterial stiffness and cog-
nitive function, together highlighting the importance of 
vascular fitness in disease pathogenesis and global mem-
ory function [134, 135].

Due to their dense network, BMs also create a rate-lim-
iting step for immune cells to enter the perivascular space 
and the parenchyma, prolonging the migration dura-
tion by 3–fourfold [136–138]. Pathological changes in 
BM composition can facilitate the infiltration of immune 
cells and cue cell differentiation as previously reviewed 
elsewhere [139]. Matrikines, peptides released during 
ECM remodelling, might also affect BMEC phenotype 
and inflammatory state as suggested for the peripheral 
endothelium [140, 141]. Ex  vivo measurements of BMs 
have shown a large range of stiffness (Young’s elastic 
module) from 500 to 4,000,000  N/m2 depending on the 
tissue, but similar to WSS, measuring the stiffness of BMs 
in vivo remains an ongoing challenge (Table 1) [142].

Cell–cell interaction forces during transendothelial 
migration
Immune cell migration across the BBB under homeosta-
sis is limited to a small subset of activated immune cells 
[143]. Dysfunction of the BBB due to inflammatory and 
age-related pathology greatly enhances TEM. Immune 
cell entry further potentiates inflammatory processes 
within the CNS, fuelling disease progression and cog-
nitive decline [144–146]. In addition to chemical cues, 
leukocytes prepare for migration by following a stiffness 
gradient of the underlying substrate, a process termed 
durotaxis [147, 148]. In the following sections, we high-
light the forces acting between BMECs and immune 
cells during the multi-step process of TEM. Studies on 
the mechanical forces between BMECs and immune 
cells have predominantly focused on T cells, which are 
key players in neuropathological events. However, many 
of these mechanisms are likely universal to immune cell 
populations entering the CNS.

First steps of engagement of leukocytes with BMECs
In order to exit the bloodstream and enter the brain 
parenchyma, immune cells must come into contact with 
the vessel wall [149]. Thus, migration primarily takes 
place at inflamed postcapillary venules where WSS is 
greatly reduced, increasing the chance of immune cells 
interacting with the brain endothelium [150]. This is 
further facilitated by erythrocytes, which are thought to 
push immune cells to the edges of the blood vessel [149] 
(Fig. 2).

The first contacts of the leukocyte with the endothe-
lial cells (ECs) are generally made between the family of 
molecules known as selectins (L-selectin on leukocytes, 
P- and E-selectin on ECs) and/or α4-integrins (such as 
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very-late antigen 4 (VLA-4) and lymphocyte function-
associated antigen 1 (LFA-1) on leukocytes), and their 
respective ligands [151–153]. During inflammatory 
insults such as in MS, selectin and integrin expression 
increases in both BMECs and leukocytes [154]. In fact, 
inhibiting T cell adhesion by blocking the interaction of 
α4-integrins with brain endothelial vascular cell adhesion 
molecule-1 (VCAM-1) through natalizumab is currently 
one of the most effective treatments for relapsing–remit-
ting MS [8, 155, 156]. The initial tethering is followed by 
rolling of the immune cell along the vascular wall with 
reduced speed. Interestingly, rolling does not seem to be 
required for successful T cell migration [58, 152, 157]. 
A direct capture mechanism of T cells, mediated by 

α4-integrins/VCAM-1, has been shown predominantly 
under non-inflammatory conditions and might be spe-
cific for migration into the CNS [158–161].

During rolling, immune cells experience a tangential 
force caused by WSS, as well as a rotational torque due 
to their rolling motion, resulting in shear forces dragging 
on newly formed adhesion complexes [162]. Surprisingly, 
these forces were found to stabilize adhesive interactions 
rather than opposing them. This discovery led to the defi-
nition of ‘catch bonds’—a bond whose lifetime increases 
with rising tension, as opposed to ‘slip bonds’ whose 
interaction is destabilized by force [58, 163–165] (Fig. 2, 
insert). Catch bond formation is essential for the interac-
tion of selectins and integrins whose lifetime is maximal 

Fig. 2  TEM cascade of migratory T cells across the brain endothelium. Upon engagement of catch bonds between selectins/α4-integrins and their 
ligands, T cells start rolling and eventually firmly adhere to the ECs. Cells then crawl against the direction of CBF and probe BMECs for sites 
permissive for diapedesis. Diapedesis eventually takes place either paracellularly through bi-/tricellular endothelial junctions or transcellularly 
by inducing the formation of pores within ECs. WSS Wall shear stress, PGSL-1 P-selectin glycoprotein ligand-1, VLA-4 very-late antigen 4, VCAM-1 
vascular cell adhesion molecule-1, LFA1 lymphocyte function-associated antigen 1, ICAM-1 Intercellular adhesion molecule 1, PVS perivascular 
space, WSS Wall shear stress, BM basement membrane
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in a force range of 10–30 pN [57, 61, 62]. Application of 
lateral force in form of WSS is thought to accelerate the 
conformational transition of integrins into an extended 
high-affinity state and thus facilitate immune cell arrest 
in an outside-in manner [166–168].

Rolling at reduced velocity enables immune cells to 
probe the endothelial surface for chemokines [58]. These 
chemokines bind to chemokine receptors on the immune 
cell surface, delivering a G-protein coupled receptor 
(GPCR)-mediated inside-out signal to α- and β-integrins. 
GPCR signalling increases the affinity of integrins for 
their endothelial ligands via activation of the cytoskel-
etal adaptors talin and kindlin in the immune cell [169]. 
Interaction pairs include LFA-1 (T cell) and intercellu-
lar adhesion molecule-1/2 (ICAM-1/2) (ECs), as well as 
VLA-4 (T cell) and VCAM-1 (EC) [152, 153, 167, 170]. 
This is further facilitated by integrin clustering into focal 
adhesions and ultimately results in integrin-mediated 
immune cell arrest, polarization, and firm adhesion on 
the endothelium [58]. Catch bonds again play a crucial 
role in this process as integrin activation by chemokines 
alone is insufficient to stimulate adhesiveness [62, 171]. 
In summary, the adhesion of immune cells to the post-
capillary bed is facilitated by both WSS and intercellular 
forces, together stabilizing the interaction and allowing 
for cell migration to occur.

T cell crawling on BMECs is directed against the flow
While adhering to the vascular wall, lymphocytes polar-
ize with respect to the blood flow by adopting an elon-
gated morphology with a wide and flat F-actin-rich 
lamellipodium at the leading edge and a tail-like pro-
jected uropod at the trailing edge [160, 172]. Crawling 
is an active movement facilitated by Rho GTPases [8, 
58], involves the formation of additional adhesive con-
tacts, and occurs at a highly reduced velocity of a few 
µm per minute [173, 174]. Forward propulsion along 
the endothelium is driven by actin polymerization and 
myosin II contractility (retrograde flow), which together 
push the lamellipodium forward, parallel to the surface 
[58, 63]. Thereby, the actin cytoskeleton generates inter-
nal forces of up to 0.6 nN [63], which are transferred to 
integrins via cytoskeletal adaptors such as talin, increas-
ing the ability to form catch bonds [172]. This actin-
talin-integrin linkage, however, is not absolute, leading to 
varying degrees of slippage [175]. This has been termed a 
‘molecular clutch’ and is exploited by the cell to dynami-
cally adjust migration speed and direction in response to 
changes in substrate adhesiveness and matrix stiffness 
[175, 176]. Enhanced stiffness, as found in inflammation 
and aging [148], has been linked to more persistent direc-
tional crawling [177] and increased efficiency of transmi-
gration [178].

T cell crawling along the cerebral post-capillary venules 
is unique in two aspects. Firstly, crawling was observed 
in vivo to be directed preferentially against the direction 
of blood flow [8, 138, 152, 179]. This has been linked to 
the presence of shear forces and the adhesion molecules 
ICAM-1 and ICAM-2 [161, 172]. T cells can also crawl 
downstream by engagement of VLA-4 and VCAM-1, 
but prefer upstream migration under shear rates above 
400  s−1 [172]. Interestingly, in the absence of VLA-4 or 
VCAM-1, T cells still adhere and crawl against the flow, 
but do not maintain directionality after the flow is ter-
minated [161]. VLA-4 thus appears to be required for 
migratory memory, the capacity to remember direction-
ality, under WSS [180].

Secondly, T cell crawling at the brain post-capillary 
venules takes place over significantly longer distances, 
frequently exceeding 150  µm, which is likely due to the 
unique high barrier integrity rarely allowing for dia-
pedesis even under inflammatory conditions [160]. In 
contrast to rapid rolling and tethering, crawling takes 
on average several minutes and rarely up to hours [138, 
160, 161]. On primary mouse BMECs, 95% of T cells 
crawled or transmigrated within half an hour, whereas 5% 
arrested and remained immobile [160]. Similarly, intra-
vital imaging of autoreactive T cells showed 80–85% of 
cells crawled and extravasated from the leptomeningeal 
vessels within 30 min [138]. The purpose and mechanism 
of preferential crawling against the flow at the BBB still 
remain elusive, and it has yet to be determined whether 
this phenomenon is immune cells specific and how fre-
quently this event occurs in other tissues [179].

Diapedesis by the path of least resistance
Immune cell migration across BMECs occurs either 
paracellularly through endothelial junctions or tran-
scellularly by inducing the formation of pore-like 
structures in the ECs themselves [152]. In search for 
permissive sites, leukocytes sense endothelial substrate 
stiffness, mainly defined by their F-actin density [148, 
181]. Several factors determine which route will be 
preferred. High ICAM-1 levels, increased caveolin-1 
expression, and chemokine presentation have all been 
linked to transcellular migration [182–186]. On the 
other hand, with high stress fibre density and lower lev-
els of inflammation with intermediate ICAM-1 expres-
sion might favour paracellular diapedesis [182, 187]. 
Although increased stiffness appears to facilitate crawl-
ing, diapedesis of T cells locally takes place at the path 
of least mechanical resistance [182, 188]. Transcellu-
lar migration thus primarily occurs at the cell periph-
ery, where F-actin density is highly heterogeneous [58, 
182, 189]. As multiple forces and chemical signals act in 
concert, plus in vivo studies are sparse, it is challenging 
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to predict which migration route is preferred in neuro-
inflammatory conditions like MS, AD, or during aging.

Finally, diapedesis takes place within seconds to 
minutes [190], during which both leukocytes and ECs 
undergo drastic cytoskeletal remodelling. Leuko-
cytes adopt an elongated shape and drastically reduce 
stiffness by inducing actin disassembly and breaking 
down vimentin intermediate filaments and microtu-
bules [189]. Once the leading edge of the leukocyte has 
breached the endothelial monolayer, the elongated leu-
kocyte nucleus squeezes through the endothelium with 
lateral forces in the order of 60 nN to extrude through 
the narrow space [58]. This is sensed by the endothe-
lial cytoskeleton, which responds with the disassembly 
of filaments to withstand these forces and allows for 
transmigration to succeed [189]. Leukocyte squeezing 
also triggers the formation of an F-actin ring surround-
ing the migrating immune cell. This ring limits pore size 
and prevents plasma leakage, allowing the endothelium 
to preserve its low permeability to macromolecules 
[189, 191]. Upon successful diapedesis, BMECs respond 
to the sudden loss of tension and utilize ventral lamel-
lipodia to close the gap [189]. During transmigration, 
ECs and leukocytes exchange surface proteins [192, 
193], which might draw additional immune cells to 
these sites, creating a hotspot for transmigration [194]. 
However, it is unclear whether the endothelium returns 
to its previous state eventually or retains long-lasting 
imprints at these sites.

The unique structural properties of the BBB would 
suggest that mechanical force transmission and 
response are distinct from those observed in other tis-
sues, and might help explain molecular mechanisms 
directing transcellular or paracellular diapedesis. How-
ever, no studies have yet reported mechanical proper-
ties of diapedesis across BMECs.

Mechanosensory elements of endothelial cells
Considering the wide variety of mechanical stresses at 
the BBB, BMECs express a variety of mechanosensory 
complexes, which convert physical stress into biochem-
ical signals (Fig. 3). Here we focus on cell–cell junction 
complexes and mechanosignalling through receptors 
and ion channels of BMECs, highlight their relevance 
in immune cell migration across the BBB, and changes 
during inflammation and aging. Importantly, we try 
to distinguish mechanosensing elements, which were 
shown to respond to mechanical forces directly, from 
mechanosensitive players, which may be activated indi-
rectly by force transmission and biochemical signals 
downstream of primary mechanosensing components 
or actin fibres.

Cell–cell junctions
Cell–cell junctions play a crucial role in endothelial bar-
rier function and have thus adapted multiple ways to 
respond to mechanical forces (Fig.  3) [4, 195]. Forma-
tion of stable AJs requires intracellular coupling of VE-
cadherin to actomyosin through α-catenin [196, 197]. 
Both external forces on VE-cadherin and internal forces 
generated by actomyosin pull α-catenin into an extended 
conformation, leading to the recruitment of vinculin and 
other binding partners [4, 196, 197]. Vinculin further 
stabilizes the unfolded conformation of α-catenin, lead-
ing to enhanced cell–cell adhesion and F-actin polym-
erization [40, 195, 196]. Increasing force strengthens 
the binding (catch-bond) between the cytoskeleton and 
junctional partners vinculin, talin, and α-catenin upon 
formation of dimers/multimers (order of 10 pN), while 
e.g. a bond between monomeric α-catenin and F-actin 
disrupts under increasing tension (slip-bond) [198–201]. 
The actin cytoskeleton of ECs also directly responds to 
tension via polymerization and interaction with actin 
filament-associated proteins, leading to stress fibre for-
mation, increased stiffness, junctional changes and acti-
vation of focal adhesions [40, 202].

Extracellular detachment forces between VE-cad-
herin proteins (Ca2+-dependent) range from 15 to 150 
pN depending on their cumulative interactions and on 
the applied stretch, which extends their lifetime (catch-
bonds) [65, 203]. Cadherins are also thought to be 
mechanosensitive themselves, acting in concert with 
PECAM-1 and VEGF receptors to initiate further down-
stream signalling including PI3K/Akt and integrin/RhoA 
[6, 40, 64, 76, 204, 205]. Mechanosensing by PECAM-1 
regulates force-dependent cellular stiffening [204] and 
PECAM-1 is critically involved in the regulation of BBB 
junctional integrity [206], WSS sensation [207], integrin 
activation, cytoskeletal rearrangement [195, 208] and 
TEM [209]. Loss of PECAM-1 increases vascular per-
meability of the BBB, but prevents paracellular transmi-
gration, suggesting that intact (to a certain degree) cell 
junctions and PECAM-1 mechanosignalling are required 
for paracellular diapedesis [8, 185, 206]. On the other 
hand, in pathologies with disturbed WSS, such as athero-
sclerosis and ischemic stroke, PECAM-1 is increased and 
defined as a main contributor to atherosclerotic lesions, 
neutrophil invasion, and post-ischemic neuroinflamma-
tion [210, 211].

BM stiffness and WSS regulate the force on focal 
adhesions and TJs by traction force, hence mecha-
nosensory properties have also been shown for TJ 
proteins. [6, 212]. Under physiological laminal WSS, 
mechanosensing via occludin promotes vascular integ-
rity by recruiting further occludin and ZO-1, whereas 
disturbed flow causes loss of occludin and barrier 
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dysfunction [213]. In addition, the TJ adaptor protein 
ZO-1 also regulates tension acting on VE-cadherin in 
response to WSS, similar to the function of α-catenin 
at AJs [205, 212, 214]. Together these components 
enable the dynamic response of junctional proteins to 
mechanical forces, which are required for endothe-
lial barrier formation and maintenance [196, 215], and 
cell orientation in the direction of flow [195]. In neu-
rological pathologies, both mechanical forces as well 
as organization and expression of cell–cell junctions 
change drastically. However, it remains challenging 
to create a causative relationship between these two 

components, as other factors, such as cytokine signal-
ling, majorly affect junctional integrity [216].

Mechanosensitive receptors and ion channels
Both ECs and migrating immune cells display a wide 
range of receptors and ion channels responding to 
mechanical stress, although mechanisms of their locali-
zation and activation are often not fully understood 
[217]. Mechanosensitive proteins can be activated by 
direct stress applied to the lipid bilayer, opening e.g. the 
ion channel through membrane tension, or via additional 
linked components outside the membrane [218, 219]. 

Fig. 3  Biomechanical signalling via mechanosensing/sensitive elements at the brain endothelium. Intercellular tension is sensed by junctional 
molecules such as PECAM-1, VE-cadherin, and catenins. Interactions between PECAM-1, VE-cadherin, Piezo1, S1PR1, and VEGFR2 regulate barrier 
stability. Integrin signalling transmits ECM stiffness and stretch to the actin cytoskeleton and ion channels. Transient receptor potential (TRP) ion 
channels may be activated by direct mechanical force transfer from primary mechanosensing components (integrins) or via intermediate proteins 
(CD98) or cytoskeletal adaptors. Alternatively, they may be activated via biochemical signalling downstream of primary mechanosensing elements, 
involving synthesis and modification of intracellular messengers (DAG and Ca2+). WSS wall shear stress, S1P/S1PR1 sphingosine-1-phosphate 
receptor 1, VEGFR2 vascular endothelial growth factor receptor 2, Rac1 Rac family small GTPase 1, Cdc42 cell division cycle 42, JAMs junctional 
adhesion molecules, PECAM-1 platelet and endothelial cell adhesion molecule 1, α/β cat catenins, ZO zonula occludens, PLC phospholipase C, DAG 
diacylglycerol, PIP2 Phosphatidylinositol 4,5-bisphosphate, Ca2+ calcium, ER endoplasmic reticulum
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Activated proteins often undergo large conformational 
changes, such as unfolding of domains in talin, which 
are reversed upon force dissipation [220, 221]. Of note, 
translation of mechanical signals into cellular altera-
tions occurs on different time scales e.g. with integrin 
activation (seconds to minutes) and longer duration for 
cytoskeletal rearrangements (minutes to hours) [220].

Tyrosine kinase receptors on ECs, including vascular 
endothelial growth factor receptor 2 (VEGFR2) and Tie-
2, become phosphorylated under mechanical stretch, 
which triggers ligand-independent signalling [222, 223]. 
Importantly, VEGFR2 has multiple phosphorylation 
sites, which can regulate vascular permeability through 
VE-cadherin phosphorylation, but also proliferation and 
migration [224]. As a result, mechanical cues can regu-
late angiogenesis via VEGFR2-signalling [225]. ECM 
stiffness regulates the angiogenic potential via yes-
associated protein (YAP)-Dll4-Notch1-VEGFR signal-
ling, and promotes pro-angiogenic factors on softer vs. 
stiffer substrates [226]. YAP/transcriptional coactivator 
with PDZ-binding motif (TAZ) activation also induces 
an inflammatory endothelial phenotype under disturbed 
blood flow, hence inhibition of this pathway has been 
effective against atherosclerotic lesion development [227, 
228]. Exploration of these tightly connected mechano-
sensitive pathways for therapeutic approaches could 
reinstate functional angiogenesis in cerebral vessels with 
stiffer BM and support areas of disturbed or reduced 
WSS such as in elderly, AD and ischemia [229].

Mechanosensing GPCRs change conformation under 
mechanical stress [230]. For example, endothelial GPR68 
is activated by high WSS in small diameter arteries, trig-
gering flow-mediated dilation [231, 232]. Interestingly, 
GPR68 is also activated by acidosis, a lowered blood pH, 
which can occur through prolonged lack of oxygen and 
CO2 accumulation [233]. However, CO2-induced CBF 
increase was not changed in mice lacking GPR68, thus 
the role of GPR68 for H + sensing at cerebral arteries 
could be less prominent [234, 235]. Sphingosine-1-phos-
phate receptor 1 (S1PR1) is another mechanosensitive 
GPCR expressed in BMECs but also widely throughout 
other tissues [236]. Vascular S1PR1 can be activated by 
WSS and circulating S1P resulting in vasodilation and 
maintenance of endothelial barrier stability [237]. Of 
note, S1PR modulators, such as fingolimod (S1PR1,3,4,5 
modulator) and siponimod (S1PR1,5), are approved as 
disease-modifying treatment in MS, and tested in clini-
cal trials for ischemic and hemorrhagic stroke [238, 
239]. Fingolimod also reduces VCAM-1 expression and 
stabilizes claudin-5 levels on BMECs [240]. In line with 
SP1R1s mechanosensitive functions in vasodilation and 
vascular network maintenance, prolonged treatment with 
fingolimod resulted in hypertension in mice [241] and 

patients with chronic inflammatory demyelinating poly-
radiculoneuropathy [242]. In conclusion, mechanosensi-
tive GPCRs present a promising target group for multiple 
CNS diseases, however, their widespread expression and 
functional spectrum may limit therapeutic potential.

Mechanosensitive ion channels are primarily cation 
permeable and regulate ion flux to initiate Ca2+ signal-
ling, alter the membrane potential, and regulate Mg2+ 
homeostasis [36, 40, 243]. Due to their rapid action and 
the fast propagation of Ca2+ waves, ion channel activity 
is usually among the first steps in mechanical signalling 
[40, 244]. This Ca2+ signalling is critical for maintaining 
the low permeability of the BBB [245], whereas dysregu-
lation of intracellular Ca2+ due to high mechanical stress 
or pathological conditions can compromise BBB integrity 
[245–248]. For example, Ca2+ influx through the nonse-
lective cation channel Piezo1 is involved in flow-induced 
cell alignment, vasodilation of cerebral capillaries and 
angiogenesis [40, 249–251]. Overstimulation of Piezo1 
due to disturbed flow conditions in atherosclerosis and 
hypertension, however, causes the breakdown of AJs, 
actin remodelling and inflammation [78, 252–255]. The 
underlying mechanism is a direct connection between 
Piezo1 and VE-cadherin as well as PECAM-1 regulating 
junction integrity [256].

Mechanosensitive ion channels also include the diverse 
family of transient receptor potential (TRP) ion chan-
nels, which mediate large parts of the mechanical stress 
response experienced by BMECs. They fulfil a multitude 
of functions in immune cell migration and barrier func-
tion and are involved in both progression and recovery of 
several neurological and vascular-related pathologies [35, 
36, 257]. The following section will highlight the func-
tional diversity of this family of ion channels.

Mechanosensitive TRP channels
TRP channels are widely expressed throughout the CNS 
and are involved in cellular response to a variety of exter-
nal cues, including mechanical signals [258] (Table  2). 
Based on sequence homology, they are grouped into 
six subfamilies termed canonical (TRPC1-7), vanilloid 
(TRPV1-6), ankyrin (TRPA1), polycystic (TRPP1-3), mel-
astatin (TRPM1-8) and mucolipin (TRPML1-3) [36]. TRP 
channels can directly or indirectly trigger Ca2+ signalling 
[40, 245] and can also be Ca2+-regulated themselves via 
Ca2+-calmodulin or direct Ca2+ binding [40]. Although 
TRP channels are commonly involved in mechanosig-
nalling cascades, likely none of them are mechanosens-
ing themselves [259]. Mechanisms for direct mechanical 
activation, such as deformation due to membrane stretch, 
have been proposed, but lack sufficient evidence [260]. 
TRP channels are thus most likely activated by mechani-
cal transduction via interaction with mechanosensing 
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proteins, such as β1-integrins and the glycocalyx [40, 
261]. Alternatively, force transmission may activate TRP 
channels via intermediary membrane proteins and the 
cytoskeleton [40]. Table 2 provides an overview of known 
mechanosensitive TRP channels and associated upstream 
components. For several TRP subunits mechanosensitive 
properties have not been shown specifically for vascular 
ECs, but are likely based on findings in other cell types 
(indicated by superscript a in Table 2).

TRPV4 is a key mediator of mechanical signalling
TRPV4 is a non-selective cation channel triggering 
downstream signalling via influx of extracellular Ca2+ 
[298] and is involved in mechanosignalling of various cell 
types, including BMECs [286], T cells [285], neutrophils 
[294] and macrophages [295]. TRPV4 has been proposed 
to react to diverse mechanical forces such as WSS [78, 
299–302], circumferential stretch [303, 304], stiffness 
[305, 306], osmotic swelling [298, 307], shrinkage and 
surface expansion [298].

Endothelial TRPV4 is an important regulator for flow-
induced vasodilation [299, 302], cell volume [243, 293], 
cytoskeletal remodelling and barrier function [248, 
308, 309]. TRPV4 activation can occur within millisec-
onds in focal adhesions of ECs by force transfer from 
mechanosensing β1-integrins via CD98 to TRPV4 [292, 
310]. TRPV4 activation by β1-integrins might explain 
why high ECM stiffness, such as during inflammation 

or aging, causes endothelial dysfunction in a pathway 
that involves TRPV4-mediated Ca2+ signalling [305]. 
TRPV4 is also involved in flow-induced vasodilation and 
cytoskeletal remodelling via Piezo1. Upon mechanical 
stimulation, Piezo1 causes a local increase in intracellu-
lar Ca2+ and activates TRPV4 via Ca2+-calmodulin bind-
ing to its C-terminal calmodulin binding site [78, 298, 
311]. TRPV4 then triggers a more prolonged Ca2+ signal, 
which leads to Piezo1-mediated disassembly of AJs under 
disturbed blood flow [78]. TRPV4 inhibition in a mouse 
model of haemorrhagic stroke reduced BBB dysfunction, 
likely due to reduced Piezo1 signalling [309, 312]. These 
findings suggest a regulatory role of TRPV4 in vascular 
permeability, which contributes to BBB disruption under 
altered mechanical conditions [308, 309]. This role in 
BBB function and fast activation via β1-integrins render 
TRPV4 a potential contributor to immune cell crawling 
and diapedesis [248]. It remains to be determined at what 
stage of the migration cascade TRPV4-mediated signal-
ling occurs.

TRPC channels form mechanosensitive homomeric 
and heteromeric channels
Channels of the TRPC subfamily are involved in stretch 
and shear stress sensing of ECs and migrating immune 
cells [313, 314]. Although the expression of TRPCs in 
primary human BMECs has not explicitly been shown, 
their frequent expression in other human endothelial 

Table 2  Mechanosensitive TRP channels of vascular ECs and leukocytes

Expression of mechanosensitive TRP channels in human primary vascular ECs (BMECs where data available) and leukocytes, and associated suggested upstream 
signalling components; BMECs–(human) brain microvascular endothelial cells; [Ca2+]i–intracellular Ca2+; cBAECs–cultured brain artery endothelial cells; DAG–
diacylglycerol; HUVECs–human umbilical cord endothelial cells; mBMECs–mouse brain microvessel endothelial cells; PIP2–phosphatidylinositol-4,5-biphosphate; PLC- 
phospholipase C
a Mechanosensitive properties derived from cell types other than ECs or leukocytes

Channel Cell type Upstream components Reference(s)

TRPA1 BMECs, T cells, B cells, macrophages [Ca2+]i [262–264]

TRPC1 cBAECs, mBMECs, T cells, B cells, macrophages, neutrophils PLC, DAG, [Ca2+]i [246, 265–268]

TRPC3a cBAECs, mBMECs, T cells, B cells, macrophages, neutrophils PLC, IP3 [246, 265, 266, 269–272]

TRPC5a cBAECs, mBMECs, macrophages PLC, PIP2 [246, 266, 273, 274]

TRPC6 cBAECs, macrophages, neutrophils DAG, Gαq, PECAM-1 [266, 275–278]

TRPM4a BMECs, T cells, macrophages IP3, Ca2+-calmodulin [279–282]

TRPM7a HUVECs, T cells, macrophages [265, 283]

TRPP1 HUVECs [284]

TRPP2 BMECs glycocalyx, IP3 [247, 261]

TRPV1a BMECs, T cells, macrophages, neutrophils [285–288]

TRPV2 BMECs, T cells, B cells, macrophages, neutrophils phosphatidylinositol-3 kinase, Akt [285, 286, 288–290]

TRPV4 BMECs, T cells, macrophages, neutrophils β1-integrins, CD98, Piezo1, PLC, PIP2, 
Ca2+-calmodulin, arachidonic acid metabo-
lites

[78, 285, 286, 291–295]

TRPV5a T cells, granulocytes [296]

TRPV6a Jurkat T cells, granulocytes [297]
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tissue [315] would suggest that they are also common at 
the BBB. This is further supported by findings of TRPC 
expression in cultured brain artery ECs (cBAECs) [266] 
and mouse brain microvessel ECs (mBMECs) [246, 
316]. All TRPC channel complexes in humans can be 
activated by PLC-mediated hydrolysis of PIP2 [278, 
317]. This can directly lead to TRPC channel open-
ing by binding of diacylglycerol (DAG) or removal of 
PIP2-dependent inhibition [317–319]. Alternatively, IP3 
may travel through the cytoplasm, bind to its recep-
tor and trigger the release of Ca2+ from intracellular 
stores, which in turn activates TRPC channels by Ca2+ 
or Ca2+-calmodulin binding [35, 260, 317, 320]. Activa-
tion by mechanical stress might thus involve mechano-
sensing GPCRs activating Gq/11 proteins, which in turn 
stimulate PLC and lead to TRPC channel opening fur-
ther downstream [313].

Whereas TRPC1 is essential for cell migration and 
polarization [203, 243, 313], TRPC6 plays an impor-
tant regulatory role in barrier-forming tissue [40, 209]. 
Endothelial TRPC6 channels mediate the intracellu-
lar Ca2+ signalling to allow leukocyte diapedesis [189, 
209]. Weber et  al. [209] showed that TRPC6-deficient 
ECs prevent paracellular diapedesis, whereas selec-
tive activation of TRPC6 by a DAG analogue allows for 
transmigration even when PECAM-1 is blocked. These 
results suggest that TRPC6 is activated downstream of 
PECAM-1-mediated mechanosensing and is required 
for the cytoskeletal adaptations in ECs enabling leu-
kocytes passing through. The same study also showed 
that TRPC6 channels accumulate around PECAM-1 
and promote translocation of intracellular stores of 
PECAM-1 and other adhesion molecules to the site 
of diapedesis [209]. TRPC6-induced Ca2+ signalling is 
likely also responsible for the formation of the F-actin 
ring surrounding migrating immune cells [189]. Under 
pro-inflammatory and disturbed flow conditions, 
TRPC6 expression and activation are elevated inde-
pendently of diapedesis, leading to EC contraction and 
increased vascular permeability [321, 322].

TRPC channels function both as homomeric com-
plexes and in heteromeric combinations, which differ in 
terms of activation characteristics, sensitivity and cation 
selectivity [40, 314, 323]. For example, vasorelaxation by 
ECs in response to high WSS is in part realized by het-
eromeric complexes of TRPC1 and TRPV4 [40, 314, 324]. 
The formation of heteromers might explain the multi-
ple and often overlapping functionalities of TRP subu-
nits [40, 314] and may be a major reason why most TRP 
knockouts in animal models do not show a detrimental 
phenotype [309]. How the formation of these complexes 
is regulated and how their functionalities differ from their 
homomeric counterparts requires further investigation.

TRPP, TRPM and TRPA1 channels regulate vascular tone, 
permeability and function
TRPP1 and TRPP2, also known as Polycytin-1 and −2, 
are nonselective cation channels involved in flow and 
pressure sensing of vascular ECs [323, 325]. Both subu-
nits accumulate at primary cilia where they regulate vas-
cular tone in response to WSS by inducing nitric oxide 
production [284, 325, 326]. Upon mechanical injury of 
BMECs, TRPP2 is involved in stress fibre formation and 
cytoskeletal remodelling leading to BBB dysfunction 
[245, 247]. Interestingly, TRPP2 may only be mecha-
nosensitive in combination with other TRP subunits, 
including TRPP1, TRPC1 and TRPV4, once again high-
lighting the relevance of heteromeric TRP complexes 
[323, 325]. Accordingly, pressure sensing by ECs was 
shown to be dependent on relative expression of TRPP1 
and TRPP2 [325], and heteromeric complexes of TRPV4 
and TRPP2 are much more sensitive to laminar WSS 
than homomeric TRPV4 channels [327]. Changing com-
position of heteromeric TRP channels might thus present 
a useful way by which cells regulate their sensitivity to 
mechanical stress.

TRPM channels are widely expressed in the brain and 
are involved in many neurological disorders [35]. TRPM4 
was shown to be activated by membrane stretch in vas-
cular smooth muscle cells [280], but its role in BMECs 
still remains elusive. In vascular ECs, TRPM4 associates 
with Sulfonylurea receptor 1, which is upregulated in 
BMECs after ischemic stroke [35]. This causes continu-
ous Na+ influx and can lead to cell death, disintegration 
of capillaries and secondary bleeding [35, 328]. TRPM7 
is another potentially mechanosensitive channel, which 
is activated by shear stress in fibroblasts [329], vascular 
smooth muscle cells [330] and mesenchymal stem cells 
[331]. Knockdown of TRPM7 in human umbilical cord 
ECs (HUVECs) prevents adhesion of ECs and promotes 
their growth and proliferation, suggesting a regulatory 
role in cell differentiation [283].

TRPA1 is involved in vasodilation of BMECs [262, 
332] and is also expressed in T cells, where it promotes 
immune functions in response to mechanical stress and 
is implicated with several inflammatory conditions [263, 
264]. TRPA1 can be activated by Ca2+ influx [35] and may 
even be mechanosensing itself. Although a recent study 
showed that TRPA1 in reconstituted proteoliposomes 
is insensitive to membrane stretch [259], another study 
revealed that single-channel currents of TRPA1 in arti-
ficial lipid bilayers respond to mechanical stretch in a 
pressure-dependent way [333]. This discrepancy might 
be explained by its redox state, as mechanosensing of 
TRPA1 was abolished under reducing conditions [333]. 
Clearly, TRP channel activation and function are not 
yet fully explained. Further studies should focus on the 
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effects of redox and other environmental conditions on 
TRP subunits, as these might help to better explain their 
activation, function and changes under pathological 
conditions.

Discussion and future perspectives
Mechanical stressors are crucial regulators of BBB func-
tion. Physiological WSS and BM stiffness support the 
formation of AJs and TJs and suppress inflammatory 
signalling, whereas alterations under pathological condi-
tions lead to enhanced vascular permeability, endothelial 
dysfunction, reduced vascular reactivity and facilitate 
leukocyte infiltration. In this review, we took a holis-
tic view of the various aspects of mechanical forces and 
mechanosensing at BMECs in different neuropatholo-
gies, which open new future intervention avenues.

Increasing evidence suggests that mechanisms of 
immune cell infiltration are not conserved across the 
body and depend on the tissue and immune cell type 
involved. Such cell-type-specific events offer great oppor-
tunities for therapeutic interventions. In MS, for exam-
ple, Th1, Th17 and CD8+ T cells are thought to promote 
inflammation in the CNS, whereas Th2 cells are associ-
ated with a protective effect [334, 335]. Th2 cells show 
lower ability to form tethers and slings and thus egress 
to a much lesser extent under high WSS [336, 337]. T cell 
subtype-dependent behaviour has also been observed 
for crawling [338] and diapedesis [185], but the underly-
ing molecular mechanisms governing these differences 
remain mostly undescribed [189]. Closer examination 
of the molecular players driving cell-type-specific events 
throughout migration could reveal novel therapeutic tar-
gets for the treatment of MS and other neuroinflamma-
tory or age-related conditions.

TEM is controlled by a range of mechanosen-
sory elements on both migrating leukocytes and the 
endothelium. It is not always clear whether certain mech-
anosensory proteins adapt to pathological conditions 
to maintain vascular integrity, or whether these condi-
tions throw mechanosignalling events off-balance and 
thereby contribute to pathological hallmarks. For exam-
ple, PECAM-1 mediates vasodilation to alleviate high 
shear stress and might be involved in restoring the BBB 
after disruption in MS [206, 339], but also contributes to 
immune cell infiltration and inflammation in atheroscle-
rosis, stroke and MS [211, 339, 340]. Moreover, disturbed 
flow and inflammation frequently affect expression and 
localization of endothelial proteins, further altering their 
response [341]. Decreased surface expression of VE-cad-
herin during inflammation increases permeability and 
reduces the ability of ECs to respond to WSS [342]. To 
arrive at a better understanding of pathological effects 
on the mechanosensory response, future research will 

require a more detailed exploration of mechanosensing 
and -sensitive proteins during neuroinflammation and 
aging.

Mechanosensitive TRP channels fulfil a wide range 
of functions and thus offer a plethora of potential drug 
interventions. Tremendous effort has been put into the 
development of specific TRP channel agonists and antag-
onists as drug targets for a range of diseases, including 
MS, Alzheimer’s disease and stroke [343]. A recent study 
from our lab explores specifically the potential of TRPV4 
inhibition to reduce leukocyte migration across the BBB 
in MS, however without integrating WSS or BM stiffness 
[248]. Although numerous potential compounds have 
entered clinical trials, several of them were eventually 
withdrawn due to lacking effectiveness and a variety of 
adverse effects [343, 344]. To effectively use TRP chan-
nels for drug discovery, a better understanding of channel 
expression and activity during pathology is required.

In conclusion, biomechanical signalling is an essen-
tial component of BBB function, yet many questions 
remain open on how these signals change during neuro-
pathology. Continuing research in this field will provide 
new insights into the cumulative effects of mechanical 
alterations in WSS, BM stiffness and cell–cell interac-
tions during immune cell migration. Ideally, such under-
standing would lead to the development of novel drug 
candidates selectively altering mechanosensory prop-
erties of immune cell subsets while leaving other func-
tionalities unaffected, thus counteracting the problem of 
multifunctionality.
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TRP	� Transient receptor potential
VCAM-1	� Vascular cell adhesion molecule-1
VEGFR2	� Vascular endothelial growth factor receptor 2
VLA-4	� Very-late antigen 4
YAP	� Yes-associated protein
ZO	� Zonula occludens
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