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Background
Amyotrophic lateral sclerosis (ALS) is a neurodegen-
erative disease that affects both upper and lower motor 
neurons [1]. Following the onset of symptoms, muscle 
weakness relentlessly progresses, eventually leading to 
respiratory failure and, unfortunately, death within a few 
years for most patients. Nonetheless, the rate of pro-
gression varies considerably among patients [1]. This 
variability in progression poses a challenge toward the 
development of therapeutics because clinical trials for 
ALS typically assess progression as the primary out-
come [2]. Therefore, gaining deep understanding on the 
pathogenesis of disease progression in ALS is of utmost 
importance.
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Abstract
The immune system has garnered attention due to its association with disease progression in amyotrophic 
lateral sclerosis (ALS). However, the role of peripheral immune cells in this context remains controversial. Here, 
we conducted single-cell RNA-sequencing of peripheral blood mononuclear cells to comprehensively profile 
immune cells concerning the rate of disease progression in patients with ALS. Our analysis revealed increased 
frequencies of T helper 17 cells (Th17) relative to regulatory T cells, effector CD8 T cells relative to naïve CD8 T 
cells, and CD16highCD56low mature natural killer cells relative to CD16lowCD56high naïve natural killer cells in patients 
with rapidly progressive ALS. Additionally, we employed serum proteomics through a proximity extension assay 
combined with next-generation sequencing to identify inflammation-related proteins associated with rapid disease 
progression. Among these proteins, interleukin-17 A correlated with the frequency of Th17, while killer cell lectin-
like receptor D1 (CD94) correlated with the frequency of effector CD8 T cells. These findings further support the 
active roles played by these specific immune cell types in the progression of ALS.
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The progression of ALS has been linked to immune 
cells and proteins in both the central nervous system 
(CNS) and peripheral circulation [3, 4]. However, several 
critical questions in this regard remain unanswered. For 
instance, a decrease or dysfunction in regulatory T cells 
(Treg), characterized by the expression of the FOXP3 
transcription factor, has been correlated with rapid pro-
gression [5–8]. Furthermore, a flow cytometric study has 
reported that reduced levels of peripheral CD4 T cells are 
associated with the rate of progression, with the assump-
tion that the reduction is linked to decreased Treg lev-
els, although subpopulations of the peripheral blood CD4 
T cells were not specifically examined [8]. Conversely, 
another flow cytometric study demonstrated that ALS 
patients with higher levels of CD4+ FOXP3− effector T 
cells in the cerebrospinal fluid (CSF) exhibited a higher 
rate of progression; although, detailed profiles of the CD4 
T cell subpopulations were unavailable [9]. Therefore, the 
roles of CD4 T cell subpopulations, other than Treg, in 
disease progression remain enigmatic in ALS.

Additionally, although an increase in CD8 T cells has 
been reported in ALS [10, 11], the function of CD8 T 
cells in disease progression remains unknown. Further-
more, studies investigating pro and anti-inflammatory 
cytokines in the blood of ALS patients, primarily based 
on enzyme-linked immunosorbent assays, have failed 
to detect correlations between cytokine levels and the 
Revised Amyotrophic Lateral Sclerosis Functional Scale 
(ALSFRS-R), which is used to assess disease severity and 
progression [12–17].

To address these unresolved issues, we conducted an 
unbiased evaluation of phenotypes in peripheral blood 
immune cells, encompassing not only CD4 T cells but 
also CD8 T cells and natural killer (NK) cells, in patients 
with ALS and healthy subjects. We assessed their asso-
ciation with the rate of progression in patients with ALS 
through single-cell RNA-sequencing (scRNA-seq) of 
peripheral blood mononuclear cells (PBMCs) [18–20]. 
We also analyzed differentially expressed genes (DEG) 
in the scRNA-seq data. Furthermore, we searched for 
inflammation-related proteins in the serum linked to 
progression using a proximity extension assay (PEA) in 
conjunction with a high-throughput sequencing read-out 
[21, 22]. Considering reproducibility, major findings of 
the PEA were tested with Single molecule array (Simoa). 
We aimed to elucidate the interplay between immune 
cells and proteins in the context of disease progression in 
ALS.

The scRNA-seq analysis highlighted the involvement 
of T helper 17 cells (Th17), effector CD8 T cells, and 
CD16highCD56low mature NK cells, while PEA identi-
fied associated proteins such as interleukin-17  A (IL-
17 A) and killer cell lectin-like receptor D1 (KLRD1, also 
known as CD94), in relation to the rapid progression of 

ALS. CD94, expressed on NK cells and a small subset 
of CD8 T cells, forms a heterodimer with NKG2. The 
CD94/NKG2 receptor complex recognizes nonclassi-
cal MHC class I molecules, including HLA-E in humans 
and Qa-1 in mice, and has established roles in tumor 
immunity, viral infection, and autoimmunity [23–25]. 
Meanwhile, DEG analysis revealed downregulation in 
SERPINA1 and AC103591.3 (RP11-386I14) in patients 
with ALS. SerpinA1, a serine protease inhibitor, is impli-
cated in modulating microglial-mediated inflammation 
in neurodegenerative diseases [26]. RP11-386I14, a long 
non-coding RNA expressed in B cells, monocytes, T 
cells, and NK cells [27], remains functionally uncharac-
terized. Together, these findings provide novel insights 
into peripheral immune mechanisms involved in the pro-
gression of ALS.

Results
Participants
Of the 46 screened participants, 10 healthy controls 
and 35 patients with ALS gave informed consent, and 
one participant with neuropathy was excluded. Addi-
tionally, five participants with ALS who had gastric 
cancer (n = 1), hepatocellular carcinoma (n = 1), human 
T-lymphotropic virus type 1 antibody (n = 1), SOD1 
(n = 1), and lung cancer and SOD1 (n = 1) were excluded 
because they met one or two of the exclusion criteria, 
such as persons with malignant tumors, persons with 
diseases in which immune abnormality is involved in 
the onset of the disease (e.g., autoimmune diseases), 
and patients with known pathogenic ALS variants (see 
Materials and Methods). Eventually, peripheral blood 
samples of 10 healthy controls (age, 63.6 ± 10.2; male, 7), 
23 patients with non-rapid ALS (ΔALSFRS-R/month < 1; 
age, 60.7 ± 10.8; male, 17), and 7 patients with rapid ALS 
(ΔALSFRS-R/month ≥ 1; age, 69.8 ± 14.4; male, 3) were 
analyzed (Table 1). Patients with ALS had disease dura-
tion of 10.4 ± 6.4 months and a mean ALSFRS-R score of 
39.9 ± 5.2. The clinical information was compared with 
scRNA-seq and proteomics data (Fig. 1A).

Single-cell RNA-sequencing
The integrated scRNA-seq classified the cells into 23 
types for further analysis (Fig.  1B, S1). The number of 
cells in each cell subset is shown in Table S1. We first cal-
culated the frequencies of cell types in all cells in healthy 
control, non-rapid ALS, and rapid ALS (Fig. 1C, S2). The 
number of Treg significantly increased in non-rapid ALS 
compared with control and rapid ALS (2.4% vs. 1.9%, 
p = 0.01 and 2.4% vs. 1.6%, p = 0.03, respectively; Fig. 2A). 
Next, we calculated the frequencies of cell types in related 
cells. The frequency of effector CD8 T cells in all CD8 T 
cells was significantly higher in rapid than non-rapid ALS 
(91.6% vs. 82.2%, p = 0.04). In contrast, the frequency 
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of regulatory B cells among all B cells (5.5% vs. 7.3%, 
p = 0.05) and those of naïve and exhausted CD8 T cells 
among all CD8 T cells (4.1% vs. 8.4%, p = 0.01 and 0.6% 
vs. 0.9%, p = 0.04, respectively) were significantly lower 
in rapid than non-rapid ALS (Fig. 2B). Furthermore, we 
calculated the frequency ratios between functionally 
related immune cells. The ratios of memory CD4 T cells/
Treg (4.9 vs. 2.9, p = 0.02), Th1/Treg (1.9 vs. 1.2, p = 0.02), 
Th17/Treg (1 vs. 0.6, p = 0.005), effector/naïve CD8 T 
cells (23.0 vs. 9.8, p = 0.01), effector/exhausted CD8 T 
cells (149.7 vs. 89.9, p = 0.02), and mature (CD16highCD-
56low)/naïve (CD16lowCD56high) NK cells (28.1 vs. 20.1, 
p = 0.04) were significantly higher in rapid than non-rapid 
ALS (Fig. 2C).

Cell type frequencies and progression rate
We investigated the relationship between cell type 
frequencies and progression rate in ALS. We used 
partial correlation because ΔALSFRS-R/month was cor-
related with age (Pearson’s correlation coefficient = 0.421, 
p = 0.02), and confounding with age could not be ignored 
in routine correlation analysis. The frequency of Th17 in 
CD4 T cells significantly correlated with ΔALSFRS-R/
month (coefficient = 0.390, p = 0.037). Moreover, the 
ratios of memory CD4 T cells/Treg (coefficient = 0.450, 
p = 0.014) and Th17/Treg (coefficient = 0.428, p = 0.021) 
moderately but significantly correlated with ΔALSFRS-R/
month (Fig. S3, Tables S2–4).

Differentially expressed genes
We performed DEG analysis of scRNA-seq data between 
ALS versus control, non-rapid ALS versus control, rapid 
ALS versus control, and rapid ALS versus non-rapid ALS, 
and then isolated the DEGs in 23 cell types (Bonferroni 
adjusted p < 0.05, fold change [FC] ≥ 1.2). SERPINA1 in 
naïve CD4 T cell and AC103591.3 in classical monocytes 
were downregulated in ALS than in control but were not 
different between rapid and non-rapid ALS (Table S5).

Inflammation proteins
PEA-based proteomics of serum identified KLRDD1 
(CD94) (FC = 2.2, p < 0.001), trefoil factor 2 (TFF2; 
FC = 2.3, p < 0.001), keratin, type I cytoskeletal 19 (KRT19; 
FC = 3.2, p < 0.001), IL-17  A (FC = 4.8, p = 0.007), YTH 
domain-containing family protein 3 (YTHDF3; FC = 2.6, 
p = 0.03), and neutrophil cytosolic factor 2 (NCF2; 
FC = 2.4, p = 0.04) as significantly elevated in rapid ver-
sus non-rapid ALS. Of these, KLRD1 (FC = 2.2, p < 0.001), 
KRT19 (FC = 2.7, p = 0.01), NCF2 (FC = 3.0, p = 0.02), 
YTHDF3 (FC = 3.0, p = 0.02), and IL-17  A (FC = 4.0, 
p = 0.04) were significantly elevated in rapid ALS than in 
control (Fig.  3A, B). IL-17  A concentrations measured 
with Simoa were also significantly higher in rapid ALS 
than in non-rapid ALS (p = 0.04, Tukey’s honestly signifi-
cant difference [HSD] test; p = 0.04, one-way ANOVA) 
(Fig. S4). Expression levels of phosphorylated neuro-
filament heavy chain (pNfH) were significantly higher 
in ALS (non-rapid + rapid) than in control (FC = 180, 
p = 0.001) and in rapid ALS than in control (FC = 3074, 
p < 0.001) (Fig.  3A, C), which supported the validity of 
our samples.

Moreover, we conducted a partial correlation analysis 
between serum protein levels and ΔALSFRS-R/month 
to examine whether the measured proteins correlated 
with the progression rate (Table S6). All the six differ-
entially expressed proteins (DEPs) that were elevated in 
rapid ALS versus non-rapid ALS had significant correla-
tions, especially KLRD1 (coefficient = 0.745, p < 0.0001), 
KRT19 (coefficient = 0.658, p = 0.0002), and IL-17 A (coef-
ficient = 0.556, p = 0.003), with partial correlation coeffi-
cients of > 0.5 and p-values of ≤ 0.003. In parallel, we also 
detected CD160, which is associated with NK and CD8 T 
cells with cytolytic effector activity, as highly correlated 
with disease progression.

Correlation between proteins and cell types
We investigated the correlation between the serum 
protein levels and the cell type ratios obtained by the 
scRNA-seq (Table S7). Regarding the proteins elevated 
in rapid versus non-rapid ALS, NCF2–classical mono-
cyte/all cells, IL-17 A–memory CD4 T cells/CD4 T cells, 
IL-17 A–Th17/CD4 T cells, TFF2–effector CD8 T cells/
CD8 T cells, KLRD1–effector CD8 cells/CD8 cells, and 

Table 1 Clinical features of 40 subjects
Healthy 
control 
(n = 10)

Non-
rapid ALS 
(n = 23)

Rapid 
ALS
(n = 7)

Age, years, mean ± SD 63.6 ± 10.2 60.7 ± 10.8 69.8 ± 14.4
Male, N (%) 7 (70.0) 17 (73.9) 3 (42.9)
ALSFRS-R at entry, mean ± SD - 41.8 ± 2.6 34.7 ± 7.1
Duration before entry, months, 
mean ± SD

- 12.4 ± 6.2 5.0 ± 2.5

ΔALSFRS-R/month, mean ± SD - 0.56 ± 0.22 2.81 ± 1.27
Site of onset, N (%)
Bulbar - 8 (34.8) 2 (28.6)
Limb - 14 (60.9) 5 (71.4)
Trunk - 1 (4.3) 0 (0.0)
%forced vital capacity, 
mean ± SD

- 87.6 ± 22.7 61.5 ± 41.0

Cognitive status, N (%)
Normal 10 (100.0) 21 (91.3) 4 (57.1)
Impaired - 2 (8.7): 

FTD, 2
3 (42.9): 
FTD, 1; 
suspicion 
of FTD, 1; 
unknown 
etiology, 1

ALS: amyotrophic lateral sclerosis; ALSFRS-R: Revised Amyotrophic Lateral 
Sclerosis Functional Rating Scale; FTD: frontotemporal dementia; SD: standard 
deviation
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KLRD1–effector CD8 T cells/exhausted CD8 T cells 
were the significant combinations with correlation coef-
ficients of > 0.5 (Fig.  4). In addition, the ratio of effec-
tor CD8 T cells correlated with tumor necrosis factor 
receptor superfamily member 11B, which also corre-
lated with ΔALSFRS-R/month (partial correlation coef-
ficient = 0.402, p = 0.031).

Discussion
This study applied multiomics to blood profiling and 
determined how immune changes relate to disease pro-
gression in patients with ALS. The scRNA-seq uncov-
ered cell type shifts from Treg toward Th17, naïve toward 
effector CD8 T cells, and naïve toward mature NK cells in 
rapidly progressive ALS. The serum proteomics revealed 
that IL-17  A and KLRD1 (CD94) increased in rapidly 

Fig. 1 Study design and profiling of cell types in single-cell RNA-sequencing. (A) Overview of this study integrating single-cell RNA-sequencing (scRNA-
seq) analysis of peripheral blood mononuclear cells (PBMCs), serum proteomics, and clinical information for healthy controls and patients with non-rapid 
and rapid amyotrophic lateral sclerosis (ALS). (B) Uniform manifold approximation and projection (UMAP) showing 23 identified cell types. (C) The fre-
quencies of cell types for each sample. The frequency is displayed as the percentage of each cell type when the total number of cells in each sample was 
100%. DC: dendritic cell; NK: natural killer
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progressive ALS and correlated with frequencies of Th17 
and effector CD8 T cells, respectively, thus reinforcing 
the active roles of these cell types.

Th17 can promote protective immunity against many 
pathogens but also drive inflammatory pathology during 
infection, autoimmunity such as multiple sclerosis, and 
neurodegeneration such as Alzheimer’s [28]. Flow cyto-
metric analyses using PBMCs revealed ALS patients had 
higher frequencies of Th1 and Th17 and lower frequen-
cies of Th2 and Treg compared with healthy controls 
[13, 14]. However, previous studies showed no relation-
ship between Th17 and disease progression. Similarly, an 
increase in IL-17 A, the major effector cytokine of Th17, 
was reported in serum or CSF in ALS patients [13–17]. 
However, the association between IL-17  A and dis-
ease progression remained unknown. Here, we success-
fully related not only Th17 but also IL-17 A to the rapid 

progression of ALS. The results regarding IL-17 A were 
reproduced by measurement with Simoa.

Notably, effector CD8 T cells, compared to naïve CD8 
T cells, have also emerged as a phenotype associated 
with the rapid progression of ALS. CD8 T cells have been 
reported to play significant roles in SOD1-ALS and juve-
nile ALS-4, which is caused by SETX mutation [29–31]. 
In SOD1 model mice, the depletion of CD8 T cells led 
to an increase in the number of surviving motor neu-
rons, whereas CD8 T cells expressing mutant SOD1 were 
found to selectively recognize and kill motor neurons in 
vitro [30]. More recently, in SETX knock-in mice with the 
L389S mutation, T cell receptor (TCR) repertoire analysis 
of both the CNS and blood revealed the presence of clon-
ally expanded PD-1+ CD8 T cells [31]. These expanded 
PD-1+ CD8 T cells were associated with immunity to 
glioma but not melanoma, suggesting their recognition of 
antigens of CNS origin. Additionally, clonally expanded, 

Fig. 2 Intergroup comparison of frequencies of each cell type. (A) Frequencies of regulatory T cells in all cells. (B) Frequencies of cell types in specific cell 
groups. (C) Ratios of cell types compared to related cell types. They revealed significant differences in rapid amyotrophic lateral sclerosis (ALS) compared 
to non-rapid ALS by Tukey’s HSD test. Lines and asterisks show significant combinations by Tukey’s HSD test (*p < 0.05, **p < 0.005, and ***p < 0.0005). Breg: 
regulatory B cells; NK: natural killer; Th1: T helper 1 cells; Th17: T helper 17 cells; Treg: regulatory T cells
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Fig. 3 Serum proteomics. (A) Volcano plots showing −log10p-values and log2 fold changes from differential expression analysis. Red dots indicate dif-
ferentially expressed proteins (DEPs) shown in gene names. (B) Violin plots showing normalized protein expression (NPX) values for six proteins isolated 
as DEPs with rapid versus non-rapid amyotrophic lateral sclerosis (ALS). (C) Violin plots showing expression levels for phosphorylated neurofilament H 
(pNfH). Lines and asterisks show significant combinations by Tukey’s HSD test (*p < 0.05, **p < 0.005, and ***p < 0.0005)
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terminally differentiated effector memory CD8 T cells 
were detected in the peripheral blood of patients with 
ALS4. These findings indicate that antigen-specific CD8 
T cell responses are involved in the pathogenesis of 
ALS4. Consistent with this, scRNA-seq of CSF showed 
higher levels of TCR expansions in effector CD4 and CD8 
T cells in five ALS patients compared to four disease con-
trols [9]. Together, these findings and our own suggest 
that effector CD8 T cells in the blood may recognize spe-
cific antigens, possibly self-antigens, in ALS patients.

The present and previous findings together suggest 
that the changes in peripheral immune cell profiles we 
observed, although they appear modest, are related to 
distinct disease conditions including progression rates. 
In a study using flow cytometry [5], like in the present 
study using scRNA-seq, the frequencies of Treg were 
higher in non-rapid ALS than in healthy control (1.0% 
versus 0.4–0.6%) but were similar between rapid ALS 
and healthy control. In addition, another study showed 
that Treg ratio was inversely correlated with the progres-
sion rate in ALS patients [7], which is consistent with our 
findings of a lower Treg ratio in rapid ALS. On the other 

hand, previous studies reported no relationship between 
the frequency of CD8 T cells and ALSFRS-R scores [10]. 
In contrast, our study further analyzed the subpopulation 
of CD8 T cells and revealed opposite trends for effector 
and naïve CD8 T cells between rapid and non-rapid ALS, 
suggesting the superiority of our methods.

KLRD1 (CD94), which was associated with the rate of 
progression and the frequency of effector and naïve CD8 
T cells, forms a heterodimer with NKG2. The CD94/
NKG2 complex can function as an inhibitor or activator, 
depending on the specific NKG2 isoforms. For instance, 
CD94/NKG2A acts as an inhibitory receptor, whereas 
CD94/NKG2C acts as an activating receptor. Conse-
quently, CD94/NKG2 may regulate the effector functions 
and survival of NK cells and CD8 T cells. CD94/NKG2A 
primarily counteracts TCR signaling in a subset of mem-
ory/effector CD8 T cells as part of an antigen-driven 
response to prevent autoimmunity [32]. Conversely, 
CD94/NKG2C can activate T cells, inducing proliferation 
and the killing of HLA-E-transfected target cells that lack 
expression of other MHC-I molecules, even without TCR 
stimulation. Thus, it constitutes an alternative activation 

Fig. 4 Correlation between serum proteins and ratios of cell types. Scatter plot between the normalized protein expression (NPX) of serum proteins and 
the cell frequencies or ratios in single-cell RNA-sequencing analysis using Pearson’s correlation coefficient. Numerical values show the correlation coef-
ficient using samples from 30 patients with amyotrophic lateral sclerosis and 10 healthy controls
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pathway for a subset of CD8 T cells [33]. In light of these 
findings, it is crucial to investigate the characteristics of 
CD94/NKG2 in ALS. Furthermore, our correlation anal-
ysis suggests that CD94 may serve as a marker of CD8 T 
cell activation in ALS, similar to other instances [25].

We found that the ratio of CD16highCD56low mature NK 
cells to CD16lowCD56high naïve NK cells was significantly 
higher in rapid than non-rapid ALS. It was reported that 
ALS patients with slower disease progression showed 
increased proportions of immune-regulatory CD56bright 
NK cells in the CSF compared with ALS patients with 
rapid disease progression [11]. Patients with rapid disease 
progression showed enhanced differentiation of intrathe-
cal CD56bright into CD56dim NK cells, likely accounting 
for their reduced frequencies in the CSF of these patients 
[11]. It was also reported that CD56bright NK cells play a 
role in regulating activated T cells in both the periphery 
and CSF, thereby attenuating adaptive immune responses 
and exerting protective effects in autoimmune diseases of 
the CNS [34]. These findings highlight the relevance of 
NK cell differentiation to the pathophysiology of ALS.

Our DEG analysis identified downregulation of SER-
PINA1 in naïve CD4 T cells and AC103591.3 (RP11-
386I14) in classical monocytes in ALS patients compared 
to controls, with no significant differences between rapid 
and non-rapid ALS groups. This aligns with a recent 
study [26] reporting decreased serum SerpinA1 in ALS 
patients and elevated CSF levels in fast progressors, sug-
gesting compartmentalized dysregulation of SerpinA1. 
A serine protease inhibitor with anti-inflammatory and 
neuroprotective properties, SerpinA1 modulates CNS 
inflammation, a key driver of ALS. Reduced serum levels 
may reflect systemic inflammation or impaired produc-
tion, compromising its protective effects on naïve CD4 T 
cells, while elevated CSF levels in fast progressors could 
represent compensatory upregulation due to CNS neuro-
inflammation. These alterations may disrupt T cell differ-
entiation and exacerbate immune dysregulation in ALS. 
Further studies are needed to clarify the mechanisms 
underlying SERPINA1 dysregulation and its role in dis-
ease progression.

On the other hand, information on the role of RP11-
386I14 in ALS is scarce. Regarding monocytes, it was 
reported that the ratio of classical to non-classical mono-
cytes was elevated in patients with ALS [35]. However, 
the association between monocytes and progression rate 
was not shown. We showed that the frequency of clas-
sical monocytes was correlated with the value of NCF2, 
which was elevated in rapid versus non-rapid ALS. NCF2 
is responsible for the synthesis of superoxide in neutro-
phils and was reported as one of the ferroptosis- and iron 
metabolism-related genes differentially expressed in ALS 
compared to control [36]. These findings suggest that the 

roles of monocytes in the pathophysiology of ALS war-
rant further investigation.

Several limitations were noted in this study. First, the 
number of participants was relatively small; the number 
was similar to or smaller than those in other studies using 
flow cytometry or ELISA in patients with ALS [13–16] 
and was comparable to those in recent scRNA-seq stud-
ies in other diseases [18, 20]. Meanwhile, we could not 
provide the analysis comparing patients with and with-
out cognitive impairment and with different onset sites 
due to the small sample size. Second, the difference in 
the numbers of patients between the non-rapid ALS and 
rapid ALS groups was relatively large. Third, longitudinal 
assessment was beyond the scope of this study. Addi-
tional evaluation in different stages would better clarify 
the temporal, progressive changes of immune profiles in 
ALS. Fourth, although not only the frequency but also the 
function of the immune cells such as Treg is important 
[37], we focused on their frequency in this study. Fifth, 
the evaluation of the CSF sample was beyond the scope 
of this study. Sixth, we did not measure neurofilament 
light chain with Simoa because of our limited budget.

Conclusions
In summary, this study revealed relationships between 
rapid progression and increase in Th17 against Treg, 
effector CD8 T cells against naïve CD8 T cells, and rel-
evant proteins such as IL-17  A and KLRD1 (CD94) in 
the blood in ALS patients, suggesting these cell types 
together relate to disease progression in ALS.

Materials and methods
Experimental design
We aimed to identify immune cells and proteins 
that relate to ALS progression rate via scRNA-seq of 
PBMCs and high-throughput PEA-based immunopro-
teomic analysis of serum. Then, the clinical information 
was compared with scRNA-seq and proteomics data 
(Fig. 1A).

Participants
We conducted a screening involving 36 patients diag-
nosed with ALS and 10 healthy volunteers at Tokushima 
University Hospital in Tokushima, Japan, spanning from 
March 29, 2021, to October 30, 2022. To be eligible for 
inclusion in the study, patients had to meet the ALS 
diagnostic criteria established by the Gold Coast crite-
ria [38] and have a disease duration of up to 2 years from 
the onset of symptoms. It is important to note that the 
patients’ ages and sexes were carefully matched with 
those of the healthy participants. Table S8 lists the exclu-
sion criteria for patients with ALS and healthy partici-
pants. We examined genetic background of the following 
genes: ALS2, ANG, ANXA11, ATXN2, BNIP3L, C9orf72, 
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CALCOCO2, CBL, CCNF, CHCHD10, CHMP2B, CSF1R, 
CYLD, DAO, DCTN1, DYNLL1, ELP3, ERBB4, EWSR1, 
FIG4, FUS, GABARAP, GLE1, GRN, HDAC6, HNRNPA1, 
HNRNPA2B1, HNRPA2B1, KIF5A, LRP12, MAP1LC3A, 
MATR3, NBR1, NEFH, NEK1, OPTN, PFN1, PRPH, 
RNASE4, RNF19A, SETX, SIGMAR1, SKP1, SOD1, 
SPAST, SPG11, SPTLC1, SQSTM1, SS18L1, TAF15, 
TARDBP, TBK1, TFG, TIA1, TNFRSF11A, TNFSF11, 
TUBA4A, UBQLN2, VAPB, VAPBC, and VCP. Patients 
with known pathogenic ALS variants were excluded 
beforehand from the analysis because the immunological 
profiles would be different from those of sporadic ALS. 
Rapid ALS was defined as a decrease in the ALSFRS-R 
score of ≥ 1.0 points per month (ΔALSFRS-R/month ≥ 1), 
whereas non-rapid ALS was defined as a decrease in the 
ALSFRS-R score of < 1.0 point per month (ΔALSFRS-R/
month < 1). As described below, we collected peripheral 
blood samples and conducted scRNA-seq and proteomic 
analyses. All study protocols were approved by the Ethics 
Committee of Tokushima University Hospital under pro-
tocol #3682. All clinical information was collected after 
patients provided written informed consent. The inves-
tigations were conducted following the principles of the 
Declaration of Helsinki.

Sample preparation
Peripheral blood samples were collected in Benoject 
II Vacuum Blood Collection Tube Sterilized Product 
VP-H100K (Terumo Corporation, Tokyo, Japan) from 
healthy volunteers and patients with ALS at Tokushima 
University Hospital. Ficoll-Hypaque (Lymphoprep™, 
Serumwerk Bernburg AG, Germany) density centrifu-
gation prepared PBMCs, which were washed with 
phosphate-buffered saline (PBS) and resuspended in 
X-VIVO™ medium (LONZA, Basel, Switzerland) with 5% 
fetal bovine serum. PBMCs were resuspended in CELL-
BANKER 1 cryopreservation medium (Nippon Zenyaku 
Kogyo Ltd, Fukushima, Japan) and then stored at − 80℃ 
until the library preparation. Serum samples were col-
lected in 8.0  ml of Insepack tube (SEKISUI MEDICAL 
CO., LTD., Tokyo, Japan), centrifuged at 3,500  rpm for 
10 min, aliquoted, and frozen at − 80℃ within 20 min fol-
lowing collection.

Single-cell RNA-sequencing
PBMCs preparation, library preparation, and sequencing
Cryopreserved human PBMCs were rapidly thawed in a 
37  °C water bath and washed with 1 × D-PBS (magne-
sium/calcium-free) containing 1% BSA. Cell collection 
was performed at 20  °C, with a centrifugation speed of 
250 × g for 10 min using a swing-out rotor. After being 
washed three times, the cells were resuspended in an 
appropriate volume of D-PBS with 1% BSA. Subse-
quently, the cell suspension was passed through a Flowmi 

Cell Strainer with a pore size of 40  μm to eliminate 
any remaining larger particles. Cell count and viability 
were assessed using a hemacytometer with trypan blue 
staining.

We used scRNA-seq and the 10x Genomics (Pleasan-
ton, CA) platform. The 10x Genomics Chromium con-
troller was employed to load single-cell suspensions 
(10,000 cells) onto a chip to generate GEMs (Gel Bead-
In-Emulsions). The Chromium Next GEM Single Cell 3’ 
Reagent Kits v3.1 from 10x Genomics was used to pre-
pare DNA libraries, following the manufacturer’s instruc-
tions. Before sequencing, quality control of the prepared 
libraries was conducted using the 4200 TapeStation 
D1000 ScreenTape (Agilent, Santa Clara, CA) and the 
Qubit dsDNA Assay (Thermo Fisher Scientific, Waltham, 
MA). The gene expression libraries were sequenced on 
the DNBSEQ-G400 platform from MGI Tech (Shenzhen, 
China) at a depth of 50,000 reads per cell.

Data normalization
We employed the 10x Genomics Cell Ranger version 3 
pipeline for primary analysis. The Cell Ranger “counts” 
software was utilized to convert Bcl files to FASTQ for-
mat. Subsequently, the FASTQ data underwent filtering 
and were mapped to the GRCh38 reference genome.

The secondary analysis used R version 4.0.2 with the 
Seurat version 3 package [39, 40]. To exclude data from 
low-quality cells and doublet cells, we utilized the Seurat 
and DoubletFinder packages [40]. The count data were 
subjected to normalization through a global-scaling nor-
malization method, employing the Seurat function “Log-
Normalize,” followed by log transformation using the 
Seurat function “NormalizeData.” Variable features were 
selected by directly modeling the mean-variance rela-
tionship, utilizing the Seurat function “FindVariableFea-
tures.” These selected variable features were then used to 
identify integration features through the Seurat function 
“SelectIntegrationFeatures.” The integration features were 
applied for linear transformation and utilized in principal 
component analysis (PCA) by employing the Seurat func-
tions “ScaleData” and “RunPCA,” respectively.

Reciprocal PCA was performed using the top 50 prin-
cipal components to identify anchors. The data were sep-
arated by anchor, and the batch features were extracted 
using the function ‘SelectIntegrationFeatures’ from the 
Seurat package and merged using the function ‘Integrat-
eData’ [41]. All scRNA-seq data generated in this study 
have been deposited in the Gene Expression Omnibus 
repository, accessible at  h t t  p : / /  w w w  . n  c b i . n l m . n i h . g o v / g e 
o     , under the accession number GSE244263.

Analysis
The integrated and normalized data underwent a lin-
ear transformation and PCA using Seurat functions 
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“ScaleData” and “RunPCA.” To identify important princi-
pal components, an elbow plot was generated by plotting 
standard deviations of the principal components. These 
significant principal components were then used to per-
form uniform manifold approximation and projection 
(UMAP) visualization, achieved through the Seurat func-
tions “ElbowPlot” and “RunUMAP.”

The identification of cell types was carried out using 
these crucial principal components. First, cell similari-
ties were calculated using a k-nearest neighbor graph 
based on the Euclidean distance in PCA space. The edge 
weights between any two cells were determined based 
on the shared overlap with their local neighborhoods 
using Jaccard’s similarity, facilitated by the Seurat func-
tion “FindNeighbors.” Subsequently, cell populations 
were divided through clustering, accomplished by assess-
ing the similarities between cells using the Louvain algo-
rithm and the Seurat function “FindClusters.”

Furthermore, cell types within each cluster were iden-
tified by examining cell-type-specific marker expression 
profiles for each cluster (Table S9). Although NK cells 
are commonly classified into two functionally distinct 
subsets, i.e., CD56brightCD16− and CD56dimCD16+, NK 
cells were clearly divided into three subsets based on the 
relative expression of CD16 and CD56 in our analysis 
(CD16lowCD56high for naïve NK cells, CD16highCD56low 
for mature NK cells, and CD16middleCD56low for activated 
NK cells) (Fig. S5). Activated NK cell subsets expressed 
CD247 (CD3zeta), suggesting enhanced activation and 
cytotoxic capacity through efficient signaling and interac-
tion with other immune receptors. The resolution used 
was “Seurat’s default value” and the cluster numbers 
before and after annotation were 22 and 23 respectively. 
The reason why the number of clusters increased after 
the annotation was that only CD4 T cell was extracted, 
reclustered, and subdivided (e.g., Th1, Th17) within it. 
The filter thresholds were “mitochondria genes < 15% 
and gene feature counts 500 ~ 4000” and the cell number 
“422,135 cells” used in the downstream analysis. Normal-
ized gene expression levels of cell-type marker genes for 
each cell type are shown in UMAPs (Fig. S5) and a heat-
map (Fig. S6). To identify DEGs between groups within 
each cell type, the nonparametric Wilcoxon rank sum test 
was employed, with the Seurat function “FindMarkers.”

Gene expression levels were visualized within each 
cluster using violin plots via the Seurat function “Vln-
Plot.” Differences in the frequencies of each cell type 
between groups were assessed using Tukey’s HSD test 
with the “TukeyHSD” function in the stats (R default) 
package.

Correlation tests used the “cor.test” function from the 
stats (R default) package. Finally, scatter plots, boxplots, 
and bar plots were created in R using the ggplot2 package 
[36] for visualization.

Protein measurement
We employed the Olink Target 96 Inflammation and 
Olink Explore 384 Inflammation panels from Olink 
Proteomics (Uppsala, Sweden) to simultaneously quan-
tify multiple human proteins associated with inflam-
mation (Table S10) [21, 22]. This quantification was 
achieved using PEA technology (for more information, 
visit https://www.olink.com). PEA technology involves 
a pair of antibodies, each linked to unique oligonucle-
otides (proximity probes) and bound to their respective 
protein targets. These probes only hybridize with each 
other when they are near forming double-stranded DNA. 
The resulting complex is then detected and quantified 
using quantitative real-time PCR for the Olink Target 
96 Inflammation panel or next-generation sequencing 
for the Olink Explore 384 Inflammation panel. The data 
were presented in normalized protein expression (NPX), 
which is an arbitrary unit on a log2-scale. NPX values 
represent relative expression rather than absolute pro-
tein levels. For proteins measured by next-generation 
sequencing, all items were selected for analysis. Regard-
ing items measured solely by real-time PCR, we selected 
those with > 50% of the samples above the detection limit 
for analysis. A scatter plot of the first and second princi-
pal components in the PCA of serum proteome samples 
is shown in Fig. S7.

To identify DEPs between groups, we used Tukey’s 
HSD test with the “TukeyHSD” function in the stats (R 
default) package. We visualized the results through vol-
cano plots created in R using the ggplot2 and ggrepel 
packages [42, 43] for visualization. Correlation tests used 
the “cor.test” function from the stats (R default) package. 
Furthermore, serum pNfH levels were measured using an 
ELISA kit from EUROIMMUN (Lübeck, Germany) [44, 
45].

To test the reproducibility of the measurement, the 
concentrations of IL-17  A, which was identified as one 
of the DEPs, were additionally assessed using the Simoa® 
IL-17  A Advantage PLUS kit (Catalog #104428; Quan-
terix, Billerica, MA) run on the Simoa® HD-X Analyzer 
(Quanterix), in the participants whose residual re-frozen 
samples were available (healthy controls, 9 of 10; non-
rapid ALS patients, 20 of 23, rapid ALS patients, 7 of 7). 
The functional lower limit of quantification was 0.012 pg/
ml. The samples except for one of the healthy controls 
were analyzed in duplicate. Samples were diluted 1:2 and 
distributed on 96-well plates. These measurements were 
performed according to the manufacturer’s instructions 
at SEKISUI MEDICAL CO., LTD. The data were pre-
sented in the log2-transformed scale.

Statistical analysis
Microsoft R open software (version 4.0.2) or GraphPad 
Prism version 10 (GraphPad Software, Boston, MA) 
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were used for statistical analyses. The nonparametric 
Wilcoxon rank sum test identified DEGs in scRNA-seq, 
which was corrected for multiple tests using Bonfer-
roni’s test. Tukey’s HSD for multiple testing was used 
to identify DEPs in serum proteome and the differences 
in the frequencies of each cell type between the groups. 
Pearson’s correlation coefficient was used for correlation 
tests. A 2-sided p < 0.05 was considered significant.
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