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Abstract

The trace element selenium (Se) is capable of exerting
multiple actions on endocrine systems by modifying the
expression of at least 30 selenoproteins, many of which
have clearly defined functions. Well-characterized seleno-
enzymes are the families of glutathione peroxidases
(GPXs), thioredoxin reductases (TRs) and iodothyronine
deiodinases (Ds). These selenoenzymes are capable of
modifying cell function by acting as antioxidants and
modifying redox status and thyroid hormone metabolism.
Se is also involved in cell growth, apoptosis and modifying
the action of cell signalling systems and transcription
factors. During thyroid hormone synthesis GPX1, GPX3
and TR1 are up-regulated, providing the thyrocytes with
considerable protection from peroxidative damage. Thy-
roidal D1 in rats and both D1 and D2 in humans are also
up-regulated to increase the production of bioactive
3,5,3�-tri-iodothyronine (T3). In the basal state, GPX3 is
secreted into the follicular lumen where it may down-

regulate thyroid hormone synthesis by decreasing hydro-
gen peroxide concentrations. The deiodinases are present
in most tissues and provide a mechanism whereby indi-
vidual tissues may control their exposure to T3. Se is also
able to modify the immune response in patients with
autoimmune thyroiditis. Low sperm production and poor
sperm quality are consistent features of Se-deficient ani-
mals. The pivotal link between Se, sperm quality and male
fertility is GPX4 since the enzyme is essential to allow the
production of the correct architecture of the midpiece of
spermatozoa. Se also has insulin-mimetic properties, an
effect that is probably brought about by stimulating the
tyrosine kinases involved in the insulin signalling cascade.
Furthermore, in the diabetic rat, Se not only restores
glycaemic control but it also prevents or alleviates the
adverse effects that diabetes has on cardiac, renal and
platelet function.
Journal of Endocrinology (2005) 184, 455–465

Introduction

The biological roles ascribed to selenium (Se) include the
prevention of cancer (Combs & Lu 2001) cardiovascular
disease (Rayman 2002, Beckett et al. 2004) and viral
mutation (Beck 2001). In addition the trace element is
essential for optimal endocrine and immune function and
moderating the inflammatory response (McKenzie et al.
2002b, Arthur et al. 2003).

These biological actions are mediated in most cases
through the expression of at least 30 selenoproteins coded
by 25 selenoprotein genes in humans (Kryukov et al.
2003). The importance of Se to endocrine systems is
highlighted by the fact that many endocrine tissues have
evolved mechanisms to maintain relatively high concen-
trations of Se even when there is severe dietary deficiency.
This review will focus on the various mechanisms by
which Se may modify thyroid function, fertility and
glucose homeostasis.

The current recommended dietary intake of Se in
humans is between 55 and 75 µg per day (Rayman 2000).
These amounts are based on the Se intake that maximally
induces the activity of glutathione peroxidase (GPX) in
plasma or erythrocytes. The anticancer properties of Se
operate at intakes of the order of 200 µg/day, suggesting
that a re-appraisal of dietary Se intake may be useful. Many
areas of the globe including the UK have Se intakes that
are significantly below the current recommended intake,
leading to sub-maximal expression of GPX and other
selenoproteins in blood and tissues (Brown et al. 2000,
Rayman 2002).

The selenoproteins

The selenoproteins incorporate Se co-translationally as a
selenocysteine residue that is fully ionized at physiological
pH and acts as a very efficient redox catalyst. Of the up
to 30 selenoproteins that have been characterized or
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identified bioinformatically (Table 1), six are GPXs, three
are iodothyronine deiodinases (Ds) and three are thio-
redoxin reductases (TRs; Kryukov et al. 2003). Seleno-
protein P is quantitatively the major selenoprotein in
plasma and has both antioxidant and transport roles (Burk
et al. 2003, Hill et al. 2003, Mostert et al. 2003). Thus Se
can influence at least three broad areas of cell biochemistry,
namely antioxidant function, redox status and thyroid
hormone metabolism.

TRs

The TRs, with thioredoxin as a substrate and NADPH
as a cofactor, form a powerful dithiol–disulphide oxido-
reductase system that regulates the cellular redox state
of cells and may also protect against oxidative stress
(Holmgren 2001, Kryukov et al. 2003). The system is also
involved in many diverse cellular functions including cell
signalling, regulation of cell growth and inhibition of
apoptosis (Saitoh et al. 1998, Rundlof & Arner 2004). A
range of diseases in humans are suspected to be related to
the activity of TR and the enzyme has become a major

target for the development of therapeutic drugs (Becker
et al. 2000, Gromer et al. 2004).

GPXs

At least six mammalian GPX isoenzymes have been
described (Table 1). Cytosolic enzyme (GPX1) is ex-
pressed by all cells types in mammals. Extracellular GPX
(GPX3) is a secreted glycoprotein that is the second most
abundant selenoprotein in plasma while phospholipid
hydroperoxide GPX (GPX4) can specifically reduce
phospholipid hydroperoxides (Imai & Nakagawa 2003)
and may be involved in moderating apoptotic cell death
(Nomura et al. 2001) and sperm maturation.

Thyroid hormone deiodinases

Three iodothyroinine deiodinases (D1, D2 and D3) have
been identified. All are integral membrane proteins of
29–33 kDa, sharing 50% sequence identity. Each has a
selenocysteine residue at the active centre that confers the
high catalytic activity of the enzymes. The deiodinases

Table 1 Mammalian selenoproteins and their functions

Proposed function

Selenoprotein
Glutathione peroxidases (GPXs)
GPX1 Antioxidant in cell cytosol; Selenium store?
GPX2 Antioxidant in GI tract
GPX3 Antioxidant in extracellular space and plasma
GPX4 Membrane antioxidant; structural protein in sperm;

apoptosis?
GPX5 Unknown
GPX6 GPX1 homologue?

Thioredoxin reductase (TRs) Multiple roles including dithiol-disulphide oxoreductase
Detoxifies peroxides, reduces thioredoxin
(control of cell growth); maintains redox state of
transcription factors

TR1 Mainly cystosolic, ubiquitous
TR2 Expressed by testes
TR3 Mitochondrial, ubiquitous

Iodothyronine deiodinases
Type D1 and D2 Converts thyroxine (T4) to

bioactive 3,5,3�-tri-iodothyronine (T3)
Type D1 and D3 Converts thyroxine (T4) to bioinactive 3�, 3�, 5� reverse T3

Selenoprotein P Selenium-transport protein. Antioxidant on endothelium

Selenoprotein W Antioxidant in cardiac and skeletal muscle?

Selenophosphate synthetase
(SPS2)

Synthesis of selenophosphate for selenoprotein synthesis.

15 kDa Selenoprotein (Sep 15) Protects against cancer?

H, I, K, M, N, O, R, S, T, V Role largely unknown

GI, gastrointestinal.
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have differing substrate specificities and tissue distribution
(Bianco et al. 2002). The enzymes can catalyse the removal
of iodine from the 5 or 5� positions of iodothyronine
substrates and in doing so have an important regulatory
role in the activation and inactivation of the thyroid
hormones in all tissues (Fig. 1).

Recently details of the protein structure of the deiodi-
nases has become available. The extra-membrane portion
of the deiodinases belongs to the thioredoxin-fold super-
family, a superfamily that also includes the GPXs. Fur-
thermore, a large deiodinase region embedded in the
thioredoxin fold shares strong similarities with the active
site of iduronidase, a member of the clan GH-A-fold
glycoside hydrolases. The substrates for the deiodinases
(iodothyronines such as thyroxine (T4), reverse tri-
iodothyronine (rT3) and 3,5,3�-tri-iodothyronine (T3))
and substrates for the iduronidase (sulphated �--iduronic
acid) are structurally similar, having O-linked hex-
agonal rings substituted with bulky groups lying ortho
to the linker. It would thus appear that the deiodinases
have iduronidase-like sequences embedded in the

selenocyteine-containing thioredoxin fold that are critical
for iodothyronine binding. The predicted protein structure
of the deiodinases together with site-directed mutagenesis
experiments have allowed the elucidation of some of the
critical amino acids that are responsible for the differences
in substrate specificity and enzyme kinetics observed
between D1, D2 and D3 (Callebaut et al. 2003).

The deiodinases show marked tissue- and time-specific
expression during the foetal period and may be important
regulators of this maturation process by modifying the
supply of T3 to T3-responsive genes (Hume et al. 2001,
Kester et al. 2004). However, the ontogeny of the deiodi-
nases and their tissue distribution is quite different in rats
than humans, thus data obtained from rat models cannot
always be appropriately applied to humans.

Regulation of selenoprotein expression

The predominant control of selenoprotein expression is Se
supply with a strict hierarchy of selenoprotein expression

Figure 1 Characteristics of the iodothyronine deiodinases. T3 sulphate is also a substrate for 5-deiodination by D1. CNS, central
nervous system; BAT, brown adipose tissue; T2 3,3�-di-iodothyronine; (R), rat not human; (H), human not rat.
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when Se supply is limited. Endocrine tissues are well
adapted to maintaining selenoprotein expression in Se
deficiency and within any single tissue the expression of
the deiodinases, GPX4 and TRs is maintained at the
expense of GPX1, which is quickly lost (Behne et al. 1988,
Bermano et al. 1995, 1996, Crosley et al. 2003). Oxidative
stress induces TR1 and GPX (Sun et al. 1999) and
isothiocyanates such as sulforaphane induce TR1 (Zhang
et al. 2003). Activation of second-messenger pathways also
modifies the expression of specific selenoproteins in a
tissue-specific manner (Beech et al. 1995, Howie et al.
1995, 1998, Anema et al. 1999).

Se and thyroid function

The thyroid contains more Se per gram of tissue than any
other organ (Dickson & Tomlinson 1967) and Se, like
iodine, is essential for normal thyroid function and thyroid
hormone homeostasis. Labelling cultured human thyro-
cytes with [75Se]selenite reveals numerous selenoproteins
with TRs and GPXs predominating (Fig. 2).

Thyroid hormone synthesis

Synthesis of thyroid hormone requires iodination of tyrosyl
residues on thyroglobulin which is stored in the lumen of
the thyroid follicle. This iodination is catalysed by thyroid
peroxidase (TPO) and requires the generation of high
H2O2 concentrations which are potentially harmful to the
thyrocyte. The generation of H2O2 appears to be the
rate-limiting step in thyroid hormone synthesis and is
regulated through the action of thyroid-stimulating hor-
mone (TSH) via a complex network of interacting,
second-messenger systems (Corvilain et al. 1991, 1994,
Raspe et al. 1991, Kimura et al. 1995). The iodination of
thyroglobulin and generation of H2O2 takes place on the
luminal surface of the apical membrane of the thyrocyte
(Fig. 3). This organization allows the H2O2 formed on the
surface of the thryocyte to be made readily available for
iodination reactions, while any harmful H2O2 that diffuses
into the thryocyte can be degraded by the intracellular
GPX, TR and catalase systems (Ekholm & Bjorkman
1997).

GPX3 as a potential regulator of thyroidal hormone production

The thyrocyte is capable of synthesizing and secreting
GPX3 in a controlled manner. In basal conditions, cul-
tured human thyrocytes secrete GPX3 and this secretion is
prevented by the co-addition of the calcium ionophore
A23187 and phobol ester (PMA), known stimulators of
H2O2 production (Howie et al. 1995). This raises the
intriguing possibility that GPX3 may provide an additional
mechanism for controlling thyroid hormone synthesis
through regulating the concentration of H2O2 in the

follicular lumen. Thus when increased thyroid hormone
production is signalled through the TSH receptor, in-
creased synthesis of H2O2 at the apical membrane is
accompanied by impaired secretion of GPX3 and thus
diminished degradation of the peroxide. These concurrent
changes would have the effect of amplifying the concen-
tration of H2O2 available for iodination of thyroglobulin.
When thyroid hormone synthesis is not strongly signalled,
thyroid hormone production would be prevented both by
diminished H2O2 synthesis and by active secretion of
GPX3 across the apical membrane that would promote
degradation of H2O2 produced in the basal state.

Se as an antioxidant in the thyroid

The thyrocyte is continually exposed to potentially toxic
concentrations of H2O2 and lipid hydroperoxides. The
cytotoxic effects of H2O2 on thyroid cells include caspase-
3-dependent apoptosis that occurs at H2O2 concentrations
that are insufficient to induce necrosis. In Se deficiency
the apoptotic response to H2O2 is increased (Demelash
et al. 2004). When Se intake is adequate the intracellular
GPX and TR systems protect the thyrocyte from these
peroxides. Furthermore, in iodine deficiency or Grave’s
disease, where hyperstimulation of the TSH receptor
signals increased H2O2 production, activation of the
calcium-phosphoinositol cascade stimulates GPX1 pro-
duction and particularly TR1 (Fig. 2; Howie et al. 1998)
thus providing an up-regulation of antioxidant protection
(Fig. 3).

Se as a regulator of T3 production

The deiodinase D1 is the major isoform in liver, kidney,
thyroid and pituitary. It can catalyse 5 or 5�-
monodeiodination and thus can convert T4 to the inactive
metabolite rT3 or the active isomer T3. The important
physiological roles of D1 include providing an impor-
tant source of plasma T3 and degrading rT3 and T3
sulphate.

There are species-specific differences in the expression
of D2. In rats, D2 is predominantly expressed in brain,
brown adipose tissue and pituitary with little or no
expression being found in thyroid, skeletal muscle or heart.
In humans, Northern blotting or activity measurements
suggest that D2 expression occurs in thyroid, heart,
brain, spinal cord, skeletal muscle, placenta, pituitary and
keratinocytes and to some extent in kidney and pancreas.
D2 can only perform 5�-deiodination reactions and the
enzyme has a short half-life (<1 h), which is controlled by
ubiquitination. Physiologically, D2 provides an intracellu-
lar source of T3 to specific tissues and, particularly in
humans, it also appears to provide a significant source of
plasma T3. Among its other physiological roles, D2 is
critical for regulating brain development, TSH secretion
in the pituitary and adaptive thermogenesis in brown
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adipose tissue. D3 is found in the plasma membrane of
brain, placenta and foetal liver and performs only
5-monodeiodination (Fig. 1; Baqui et al. 2003). The
biochemistry, cellular and molecular biology and physio-
logical roles of the deiodinases have been reviewed
extensively (St Germain 2001, Bianco et al. 2002).

In Se-sufficient rats, hepatic D1 provides an important
source of circulating T3 yet in Se-deficient animals, when
hepatic D1 expression falls to approximately 10% of that in
Se-adequate animals, plasma T3 concentrations are largely
maintained. The maintenance of plasma T3 in these
Se-deficient animals arises from an adaptive response
driven by a rise in TSH that in turn signals increased
de novo synthesis of T3 on thyroglobulin and also increased
expression of thyroidal D1 that promotes high rates of
T4-to-T3 conversion (Beckett et al. 1987, Arthur et al.
1990). In humans, thyroidal D2 may also contibute to
maintaining plasma T3 in Se deficiency. The paradoxical
increase in thyroidal D1 found in Se-deficient rats is made
possible because the gland retains adequate amounts of
the trace element in dietary Se deficiency (Bermano
et al., 1995). Not all animal species express thyroidal D1
and theoretically those lacking the enzyme may be
less able to maintain plasma T3 concentrations in Se
deficiency (Beech et al. 1993). Since D2 expression and
T3 production are vital for regulating thermogenesis in
brown adipose tissue, Se-deficient animals may show
impaired production of D2 and uncoupling protein, with
poor survival when subjected to a cold stress (Arthur et al.
1991).

Se and iodine deficiency

In humans, attention has focused on how Se status may
modify the effects of iodine deficiency and the pathogen-
esis of endemic myxoedematous cretinism (reviewed by
Corvilain et al. 1993, Arthur et al. 1999, Rundlof & Arner
2004), a condition associated with severe hypothyroidism,
thyroid involution and stunted growth. Some epidemio-
logical studies have suggested that the increased generation
of H2O2 caused by the high TSH associated with iodine
deficiency, together with a loss of thyroidal selenoperoxi-
dase activity due to concurrent Se deficiency, produces the
marked thyroid atrophy found in myxoedematous cretin-
ism. In contrast, if Se supply is adequate thyroid destruc-
tion may be prevented due to the maintenance of thyroidal
GPX and TR. The importance of Se in protecting the
thyroid from oxidative damage is supported by rodent
experiments (Contempre et al. 1995). These animal studies
suggest also that myxoedematous cretinism may also result
from a Se-deficiency-induced disturbance in the inflam-
matory response (Contempre et al. 1996). More recent
reports have failed to provide convincing support for this
hypothesis and the possible roles of other additional factors
such as dietary thiocyanates must again be considered
(Moreno-Reyes et al. 1998).

Figure 2 Selenoproteins in human thyrocytes. Autoradiograph of
an SDS/PAGE gel taken from sonicates of human thyrocytes
grown in the presence of [75Se]selenite. Lane 1, thyrocytes grown
in basal medium; lane 2, thyrocytes treated with 10�6 M phobol
ester (PMA) and the calcium ionophore A23187.
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Se and autoimmune thyroid disease

The links between Se deficiency, altered immune func-
tion and inflammation have prompted studies in humans
to examine if Se supplementation can modify auto-
antibody production in patients with chronic autoimmune
thyroiditis. Double-blind, randomized, placebo-controlled
trials using daily Se supplements of 200 µg selenite pro-
duced a significant decline in TPO antibody (TPOAb)
concentration accompanied in some patients by an im-
proved ultrasound echogenicity of the thyroid (Gartner
et al. 2002, Gartner & Gasnier 2003). This effect of Se on
TPOAb concentration has been demonstrated both in an
area of Germany with marginal dietary iodine and Se
intakes (Gartner et al. 2002) and in an area around Athens
where iodine and Se intakes were close to requirement
(Duntas et al. 2003). In these studies Se supplements had
no significant effect on the concentration of thyroglobulin
antibodies or the concentration of TSH or thyroid hor-
mone concentrations. The mechanism by which Se exerts
effects on TPOAb production is likely to be due to the
ability of high doses of Se to modify the inflammatory and
immune responses (reviewed in (McKenzie et al. 2002a,
2002b). Further work is required to examine what long-
term clinical benefits Se supplementation may have
when given to patients with autoimmune thryoiditis. It
would be important to determine if Se supplementation
could modify the course of Graves’ disease since there
is one report of Se supplements decreasing the titre of
TSH receptor antibodies in such patients (Vrca et al.
2004).

Se and fertility

Se and fertility in males
The testes contain high concentrations of Se and work
with selenoprotein P-knockout mice indicates that Se is
essential for testicular function (Hill et al. 2003). Low
sperm production and poor sperm quality including
impaired motility with flagella defects localized primarily
to the midpiece have been a consistent feature in Se-
deficient animals (Watanabe & Endo 1991, Behne et al.
1996) but it is only relatively recently that an explanation

for this phenomenon has been recognized and studies
extended to humans (Maiorino et al. 1999, Flohe et al.
2001, Foresta et al. 2002, Maiorino & Ursini 2002).

GPX4 provides the pivotal link between Se, sperm
quality and male fertility since GPX4 is essential to allow
the production of the correct architecture of the midpiece
of spermatozoa. In testes GPX4 is present as three isoforms
that are derived from the same gene and are found in the
cytosol, mitochondria and nucleus. The nuclear form
differs from the other forms in having an arginine-rich
N-terminus (Puglisi et al. 2003, Tramer et al. 2004a,
2004b). In the developing spermatozoa GPX4 probably
provides protection from harmful reactive oxygen species
but during sperm maturation the selenoenzyme takes on a
structural role. In the midpiece of mature sperm GPX4 is
a major component present as a polymeric form with no
enzymic activity. Thus during sperm development GPX4
first appears in pachytene spermatocyte stages VII–X and
its expression gradually increases through the stages of
round spermatids with peak levels being found in elongat-
ing spermatids. As the spermatozoa mature there is a
marked redox switch that is accompanied by an almost
complete loss of glutathione. As this occurs reduction of
peroxides catalysed by GPX4 in the spermatozoa utilizes
protein thiols as an alternative donor substrate to glutath-
ione. This results in GPX4 forming covalent cross-links
with itself and other proteins that ultimately build up as a
keratin-like material. This material is largely incorporated
into the helix of mitochondria in the midpiece of sperma-
tozoa that ultimately forms up to 50% of the capsule
material.

Many human subjects who have infertility due to low
sperm count and poor sperm quality have marked de-
creases in polymerized GPX4 in their sperm. The loss in
GPX4 is particularly marked in oligoasthenozoospermic
specimens (Foresta et al., 2002). It is unlikely that dietary
Se deficiency alone could be the cause since in most
patients other pathologies causing infertility could be
identified. However, one study performed in Scotland
(where Se intakes are below requirements at only 30–
40 µg/day) showed the sperm quality and fertility of
the patients improved after Se supplementation (Scott
et al. 1998). Further research is clearly required to deter-
mine the association between male fertility in humans

Figure 3 Changes in selenoprotein expression in thyrocytes in the basal state and following stimulation of the TSH receptor. In the
TSH-stimulated cells, activation of the Ca2+/phosphoinositol (Pi) signalling pathways stimulate hydrogen peroxide production and the
expression of GPX1 and TR1. In addition the secretion of GPX3 is prevented. These changes provide a large increase in the cells’
antioxidant protection systems to prevent peroxidative damage from any hydrogen peroxide that may diffuse into the thyrocyte (see also
Fig. 2). The selenoenzymes also detoxify any harmful lipid hydroperoxides. The cAMP (Cy AMP) signalling pathway stimulates the
expression of D1 (and D2 in humans but not rats) to promote deiodination of the pro-hormone thyroxine (T4) to the metabolically active
hormone tri-iodothyronine (T3). In the basal state GPX3 is actively secreted into the follicular lumen where it will damp-down hormone
synthesis by degrading hydrogen peroxide produced in the basal state. In addition, expression of GPX1, TR1 and D1 is diminished in the
basal state. The expression of GPX4 is unaltered by TSH stimulation or activation of the Ca2+/phosphoinositol signalling pathways. MIT,
mono-iodotyrosine; DIT, di-iodotyrosine.
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and the range of Se intakes that are seen throughout the
world.

Female fertility

Information regarding the importance of Se in female
reproduction is sparse; however, experiments in rodents
suggests that Se deficiency has no significant effect on
female reproduction even in sixth-generation animals
(Bates et al. 2000). In humans a significant depletion of Se
in follicular fluid of women with unexplained fertility has
been described (Paszkowski et al. 1995). A decrease in the
concentration of serum Se occurs throughout normal
pregnancy but women with first-trimester miscarriages
have significantly lower serum Se concentrations than
women in the first trimester whose pregnancies went to
term (Barrington et al. 1996). In vitro studies using bovine
granulosa cells obtained from different-sized follicles
found that Se significantly stimulated the proliferation of
cells from small follicles and augmented the stimulatory
effects of gonadotrophins in the same cells. Se also
enhanced oestradiol production (Basini & Tamanini
2000). The relevance of these observations to humans is
not known.

Se and diabetes

Se has insulin-mimetic properties in vitro and in vivo.
Insulin-stimulated glucose metabolism is impaired in
adipocytes isolated from Se-deficient rats (Souness et al.
1983). An insulin-like effect of Se in cultured rat adipo-
cytes include stimulating glucose transport, phosphodi-
esterase activity and ribosomal S6 protein phosphorylation
(Ezaki 1990). When administered to streptozotocin-
diabetic rats, Se restores glycaemic control and modifies
the activity of a range of enzymes involved in hepatic
glycolysis and gluconeogenesis. These changes are not
linked to changes in insulin levels (McNeill et al. 1991,
Ghosh et al. 1994, Becker et al. 1996, Battell et al. 1998,
Mukherjee et al. 1998, Ghose et al. 2001). In animal
models, Se also prevents or alleviates the adverse effects
that diabetes has on cardiac (Battell et al. 1998, Ayaz et al.
2002, 2004), renal and platelet function (Douillet et al.
1996a, 1996b). We are unaware of any publications
describing Se-supplementation trials in diabetic humans.
Se may exert these insulin-like effects on glucose metabo-
lism by stimulating the tyrosine kinases involved in the
distal signalling of the insulin signalling cascade (Pillay &
Makgoba 1992, Stapleton et al. 1997, Hei et al. 1998,
McKenzie et al. 2002a).

Conclusions

The role of Se in the aetiology of several diseases and the
impact that Se status has on several endocrine systems has

now been established. The multiple roles that selenopro-
teins play in cell signalling systems and in modifying the
immune response, cell growth and cell survival suggest
that there are more roles waiting to be discovered for Se in
endocrine systems. Se may also have a role in treating
malignancies that are responsive to endocrine manipu-
lation. For example Se is effective at reducing the risk of
prostatic cancer possibly by inhibiting tumour cell growth
via down-regulation of androgen receptor expression
(Dong et al. 2003, Dong et al. 2004).
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