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Haptic Codecs for the Tactile Internet
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Abstract—The Tactile Internet will enable users to physically explore remote environments and to make their skills available across
distances. An important technological aspect in this context is the acquisition, compression, transmission, and display of haptic
information. In this paper, we present the fundamentals and state-of-the-art in haptic codec design for the Tactile Internet. The
discussion covers both kinesthetic data reduction and tactile signal compression approaches. We put a special focus on how limitations
of the human haptic perception system can be exploited for efficient perceptual coding of kinesthetic and tactile information. Further
aspects addressed in this paper are the multiplexing of audio and video with haptic information and the quality evaluation of haptic
communication solutions. Finally, we describe the current status of the ongoing IEEE standardization activity P1918.1.1 which has the
ambition to standardize the first set of codecs for kinesthetic and tactile information exchange across communication networks.

Index Terms—Tactile Internet, Haptic Codecs, Perceptual Coding, Haptics
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1 INTRODUCTION

V ISUAL and auditory information are predominant in modern
multimedia systems. The acquisition, storage, transmission

and display of these modalities have reached a quality level which
is typically referred to as high-definition (HD) and beyond. For ex-
ample, high-end video cameras capture ultra-high-definition con-
tent, highly efficient video codecs such as H.265/HEVC achieve
remarkable compression factors, and high-resolution monitors and
Virtual Reality (VR) Head Mounted Displays (HMDs) enable
high-end virtual experiences. Similar HD technology for audio
is also available. Technical solutions addressing the sense of touch
(also referred to as haptic technology), in contrast, have not yet
reached the same level of sophistication.

In the context of the Tactile Internet [1], these solutions,
however, will significantly gain in relevance. Enabling remote
physical interaction with convincing touch experiences is one
of the key technologies that allows motor skills to be available
across distances and enables fully immersive multi-sensory remote
exploration of real or virtual environments where users can see,
hear and, in particular, feel remote objects. For the latter, haptic
information needs to be captured, compressed, transmitted and
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displayed with minimum latency. The compression of haptic
information is handled by haptic codecs which is the focus of
this paper.

Haptic data consists of two submodalities, i.e. kinesthetic
and tactile information (see Sections 2.1 and 3.1 for a detailed
description of the characteristics of both of these haptic submodal-
ities). While the compression of kinesthetic information has been
studied extensively in the context of bilateral teleoperation systems
with kinesthetic feedback (see e.g. [2]–[8]), the compression of
tactile information has received comparatively little attention so
far. This is an increasingly active area of research as the focus
in machine and computer haptics during recent years has clearly
shifted toward the realization of tactile touch experiences [9].
This is not surprising as we humans heavily rely on the tactile
modality to interact with objects in our environment. Also, from
a technical perspective, the tactile modality has high relevance in
many applications. In a Virtual Reality application, for example, a
typical intention of a user is to interact physically with the objects
in the virtual scene and to experience their material and surface
properties. Many challenges have to be overcome before tactile
solutions will reach the same level of sophistication as corre-
sponding HD video or audio solutions. With recent advances in
Virtual Reality (VR), Augmented Reality (AR) and Telepresence,
however, the topic is rapidly gaining in relevance and is becoming
an enabling technology for novel fields of application, such as
E-Commerce with tactile feedback (T-Commerce), telepresence
applications like Skype with touch interaction (T-Skype), or touch-
augmented VR systems (T-VR).

The main contributions of this paper can be summarized as
follows:
• We describe selected use cases and application scenarios

for haptic communication. This discussion motivates the
development of haptic codecs for the Tactile Internet.
• We present the state-of-the-art in the area of kinesthetic and

tactile data compression. In order to make this discussion as
accessible as possible, we provide the relevant background in
psychophysics and human haptic perception.
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• We introduce the kinesthetic codec currently under inves-
tigation by the IEEE standardization group P1918.1.1. In
this context, we present the reference hardware and software
setup used to develop the kinesthetic codec as well as
the provided reference data traces. Furthermore, we present
the recently completed cross-validation experiments which
demonstrate that the selected kinesthetic codec solution
shows remarkable data reduction performance.
• We introduce a novel tactile processing pipeline which covers

the acquisition of surface material properties, the processing
of the acquired sensor signals, the compression of the raw
or processed tactile data as well as the presentation of
corresponding tactile experiences to the user. The latter takes
the interaction pattern of the user into account.
• We present the recently approved hardware and software

reference setup for tactile codec development within IEEE
P1918.1.1 which consists of a sensorized surface material
scanning tool and a voicecoil-based display. In this context
we also show example data traces which can be used to
evaluate tactile codecs.
• We provide an overview of the available objective quality

evaluation measures for kinesthetic information. These ob-
jective measures are experimentally evaluated and compared
with subjective evaluation results.
• Additionally, we discuss several topics which become rele-

vant in the context of the Tactile Internet, such as the mul-
tiplexing of several video, audio, and haptic data streams as
well as handshaking mechanisms for session establishment.
• Finally, we present the requirements for haptic codec design

identified by IEEE P1918.1.1 as well as the current status of
this standardization activity.

This paper is organized as follows. In the remainder of Section 1,
we further discuss the relevance of haptic communication for the
Tactile Internet. Additionally, we present several use cases for the
Tactile Internet which require high-fidelity haptic codec solutions.
Section 2 is then dedicated to tactile information and tactile
codecs. Section 3 provides details about kinesthetic information
and the state-of-the-art data reduction approaches for this type of
data. Section 4 addresses the multiplexing of audiovisual infor-
mation with haptic information. Section 5 discusses objective and
subjective quality evaluation approaches for haptic communication
solutions. Section 6 summarizes the current status of the ongoing
standardization activity IEEE P1918.1.1 Haptic Codecs for the
Tactile Internet. In Section 7 we conclude the paper.

1.1 The relevance of haptic communication for the Tac-
tile Internet

Emergence of the Tactile Internet [1], which aims at provid-
ing ultra-low delay and ultra-high reliability communications,
has enabled a paradigm shift from conventional content-oriented
communication to control-oriented communication. The Tactile
Internet is of particular relevance for the realization of human-in-
the-loop applications which are highly delay sensitive and require
a tight integration of the communication and control mechanisms
[10]. The human-in-the-loop Tactile Internet paves the way for
delivering human skills in addition to the human knowledge,
remotely, giving life to the Internet of skills [11]. Within this
paradigm, human multi-sensory information for interaction and
communication with the remote environment needs to be ex-
changed. To this end, haptic communications, by exchanging

kinesthetic and tactile information, provides the platform for the
human-in-the-loop Tactile Internet, and the possibility of deliver-
ing remote physical experiences globally.

1.2 Use cases and application scenarios
The human haptic perception system processes kinesthetic and
tactile stimuli simultaneously. Different sensing mechanisms are
responsible for perceiving the two haptic submodalities [12].
Depending on the Tactile Internet use case or application scenario
considered, one modality or the other or a combination of both
form the input to the haptic codecs. Please note that in haptic
technology the two modalities are often considered independently,
as different sensing and actuation principles are applied. For a
human user, however, both types of information are fused into a
joint touch experience. In the following, we discuss selected use
cases and application scenarios which rely on either kinesthetic
or tactile information exchange. Finally, we will discuss a virtual
material showroom as an example where the user benefits from a
combination of both modalities.

Fig. 1: Bilateral teleoperation with kinesthetic feedback. The
operator controls the position of the remote robot (teleoperator).
Interaction forces are measured during contact and sent back to the
operator. Additionally, visual and auditory information is streamed
back to the operator.

1.2.1 Bilateral Teleoperation with Kinesthetic Feedback
We start with bilateral teleoperation with kinesthetic feedback
which is the classical use case for kinesthetic information ex-
change. We keep this part relatively short as it has been discussed
in detail in many other works, e.g. as early as in 1967 by [13],
or, later in the context of stabilizing the closed-loop kinesthetic
interaction in the presence of communication delay in, e.g., [14]
and [15], or more recently in overview papers such as [16]
and [17]. Traditional teleoperation scenarios with purely kines-
thetic feedback enable the remote control of robots in, e.g., distant
or dangerous environments. Figure 1 illustrates a typical setup
where the user is connected to a kinesthetic input/output device
and the teleoperator is realized using a robotic arm equipped
with force sensors, a video camera, a microphone and an end-
effector or tool. Possible use cases are tele-maintenance and tele-
surgery. Although most previous works in teleoperation consider
the kinesthetic submodality only, the combination of kinesthetic
and tactile feedback promises improved user experience [18], [19].
Besides low-frequency kinesthetic force feedback, high-frequency
tactile signals and thermal feedback allow, e.g., for the remote
perception of object surface properties [20].

1.2.2 E-Commerce with Tactile Feedback
The presentation of object surface properties on touch screens
enables novel applications for online-shopping, which we denote
as T-Commerce in the following. For example, novel tactile
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Fig. 2: Example applications which allow users to experience
selected surface properties of offered products on websites using
surface haptics displays (left: Tanvas Touch tablet [21], right: TPad
Phone [22]).

displays [21], [22] as shown in Fig. 2 allow for the display of
fine surface roughness information on glass displays. A high-
fidelity T-Commerce scenario, however, requires additional effort
in the object data acquisition, transmission and display. If we
want to provide the user with a high-quality and comprehen-
sive remote touch experience, a complete object representation
should be available which includes all relevant kinesthetic and
tactile properties. Ideally, the user will not be able to distinguish
between locally touching the real object and the provided online
experience.

1.2.3 Telepresence with Tactile Feedback (T-Skype)
Todays telepresence systems (e.g., video conference or video chat)
exchange high-quality audio and video among two or more par-
ticipants. While these systems at least partially fulfill the promise
of immersing a user into a remote space and to generate a certain
level of presence, they lack the capability to also exchange touch
experiences during interaction. If the users are equipped with
tactile actuators, tactile feedback experiences (e.g. vibrotactile
stimuli) can be provided. This could be for instance useful for
calming a child by touching her or him gently from a distance
during a business trip.

Fig. 3: Material Showroom. A user can interact with different
material probes and receives kinesthetic and tactile feedback.

1.2.4 Virtual Reality with Kinesthetic and Tactile Feedback
Current VR systems only display visual and audible information
to the user. The most intuitive reaction in VR, however, is trying to
grasp and interact with objects. A large number of wearable haptic
devices have been proposed during recent years to address this
issue (see [23] for a extensive survey in this field). As a common
problem, these devices generally lack the ability to combine
kinesthetic and tactile feedback in a lightweight system. The first

non-wearable approaches have been proposed that combine tactile
and kinesthetic feedback. For example, [24] uses the capabilities of
a kinesthetic interface (Phantom Omni device) augmented with a
vibromechanical actuator to create selected tactile stimuli (friction,
stiffness and roughness). The authors in [25] use a solenoid
plunger and a rolling stainless steel ball to render different friction
forces. Figure 3 shows the example of a haptic showroom where
the user can freely move around and interact with material samples
while receiving both kinesthetic and tactile feedback.

2 TACTILE INFORMATION AND TACTILE CODECS

Besides a solid understanding of human psychophysics, the provi-
sion of high-quality tactile experiences in the context of the Tactile
Internet requires, in our opinion, three main components: efficient
acquisition of tactile object properties, analysis and compression
of tactile information, and tactile display technology which ideally
can reproduce all relevant tactile dimensions simultaneously. The
corresponding tactile pipeline is shown in Fig. 4.

2.1 Tactile Perception

This section first describes the human tactile perception of object
properties. It is followed by approaches to collect and display
such tactile information as well as how it can be compressed and
transmitted. Table 1, which is adapted from [26] and reproduced
from [27], shows the mechanoreceptors that are responsible for
human tactile perception of, e.g., fine roughness or friction.

TABLE 1: Function, roles and respective frequency range of
four types of mechanoreceptors in the human skin (reproduced
from [27]).

Merkel
cell

Ruffini
ending

Meissner
corpuscle

Pacinian
corpuscle

Best
stimulus

Pressure
(hardness),

edges,
corner,
points

Stretch Lateral
motion

High-
frequency
vibration

Example
use cases

Reading
braille

Holding
large

objects

Sensing
slippage

of objects
(friction)

Sensing
haptic texture

Frequency
range (Hz) 0−100 / 1−300 5−1,000

Most
sensitive

frequency (Hz)
5 / 50 200

2.1.1 Object Identification

The human haptic perception system relies on kinesthetic as well
as tactile sensory information in the interaction with objects.
Humans typically perform six types of exploration patterns, as
described in [28], [29], to identify unknown objects. During the
interaction with objects, enclosure and contour following reveal
spatial content about the object shape and its coarse contour
properties. Humans lift objects to estimate their weight. Static
touch is used to identify the thermal conductance through the
bare finger. Pressing on the material reveals information about
its stiffness. Finally, arbitrary sliding motions allow for the
perception of the fine roughness, also known as haptic texture,
and the friction properties of the object surface.
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Fig. 4: Acquisition, analysis, transmission, and display of tactile information.

2.1.2 Tactile Dimensions

Based on the evaluation of the adjectives used to describe tactile
information in previous studies, the authors in [30] have identified
five major tactile dimensions:

1) Friction between a bare finger and a surface forces the
human to apply a specific lateral force during sliding motions.
Components of friction models [31] commonly are the surface-
specific force to break the adhesion with it, or, the required traction
to slide the bare finger [32] [33].

2) Hardness perception results from specific exploration pat-
terns such as tapping on an object surface, pinching an object, or
pressing on the surface [34]–[36]. The authors in [37] compared
the realism of virtual surfaces using a database approach, an
input-output approach, and Hooke’s law. The study showed that
overlaying either the recorded acceleration transients or manually
tuned and velocity-scaled decaying sinusoids on a virtual surface
resulted in a perceived hardness that closely matched that of a
real surface. LaMottes study of tool-based interactions found that
humans were significantly better at discriminating the hardness
of surfaces when tapping rather than when pressing into the sur-
face [34]. This result indicates that the transient vibrations elicited
by tapping largely determine the surfaces perceived hardness and
can be used to change the perceived hardness of a virtual surface.
This dimension further considers, e.g., the compliance, or, the
persistence of the material deformation [32].

3) Warmth conductivity is perceived by the thermal receptors
in the human skin [29]. The combination of the ambient temper-
ature and the warmth conductivity of a material determine how
warm or cold the direct touch is perceived [38]. The response
range of thermal receptors lies in the range of 5◦C− 45◦C.
The influence of warmth conductivity is underscored in current
research [29], because materials like glass and steel can only
be discriminated by their different warmth conductivities [38]
in the absence of visual surface information. While some object
properties such as the shape or size can be visually determined

by a human without touch, thermal attributes of objects or the
environment can only be sensed through the skin. Basically,
humans are very sensitive to rapid changes in temperature, but
respond slowly to gradual changes [27]. As a result, temperature
scenarios are classified into four types, i.e. cold, cool, warm and
hot. The recent study in [27] presents that the receptors responsible
for thermal sensation include four classes of thermo-receptors:
1) high-threshold cold receptors 2) low-threshold cold receptors
3) high-threshold warm receptors and 4) low-threshold warm
receptors, and two classes of nociceptors, i.e., 1) heat nociceptor
and 2) cold nociceptor. The low-threshold cold receptor is sensitive
to sudden cooling changes, such as a breeze from an open window,
whereas the high-threshold cold receptor is less sensitive to the
temperature change, but functions sensibly when the temperature
is very low, even below 0◦C. Low-threshold and high-threshold
warm receptors are classified in a similar way. Nociceptors are
responsible for sensing pain when the skin temperature is beyond
a certain threshold [39].

4) Macroscopic Roughness and 5) Microscopic Roughness
The duplex nature of roughness (introduced by David Katz in

1925 [40]), consisting of microscopic and macroscopic roughness,
has been described and confirmed in different works like [29]
and [30] and is based on the presence of different mechanorecep-
tors in the human skin. The surface material structural threshold
between coarse and fine haptic textures has been determined as
approximately 200 microns [41]. Four types of receptors, namely,
cutaneous and subcutaneous mechanoreceptors, are responsible
for the sense of touch. These mechanoreceptors, including Meiss-
ner corpuscles, Merkel cells, Pacinian corpuscles and Ruffini
endings are described in [26]. Their function and roles are also
shown in Table 1.

Macroscopic Roughness comprises the existence of visible
height profiles and the regularity of the surface of the object. These
spatial cues are responsible for coarse structures and sensations
described as uneven, relief or voluminous. Object surfaces can be
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regularly structured, possess perceivable irregular patterns or be
completely flat.

Microscopic Roughness also known as fine roughness, re-
sults from high-frequency vibrations during active surface-tool or
surface-finger sliding motions. Vibrations between 40 Hz and 400
Hz are perceived by the Pacinian corpuscles, also known as FA2
receptors [29]. Current technical systems mainly concentrate on
the acquisition and display of vibrotactile signals using accelerom-
eters during tool-mediated material surface interactions [42]–
[44]. These tactile signals are either used to recreate the feel of
real object surfaces using voice coil actuators, or, to recognize
material surfaces using robots [33], [45] or during human freehand
movements [46], [47].

There is still an active discussion about the feature space
describing all relevant tactile experiences [48]. The previously
described feature space with five major dimensions as proposed
by [30] appears to summarize most of the sensations except per-
ceived surface moistness. The inventors of the BioTac sensor (Syn-
touch, USA) propose a 15-dimensional feature space [32] which
allows for a further subtle distinction between these five major
dimensions by separating, for example, hardness into compliance,
yielding, relaxation, damping and local deformation around the
sensing device.

2.2 Acquisition and Display of Tactile Information

Capturing relevant tactile information is the first step of the
proposed tactile pipeline (see Fig. 4). In the following, we list
potential sensing and actuation principles for each of the five major
tactile dimensions.

2.2.1 Friction

Friction requires the measurement of normal and tangential in-
teraction forces following the Coulomb friction model [31] and
is mainly measured using 3 degree-of-freedom (DoF) force sen-
sors [44], a combination of force sensitive resistors [47], or, as the
required motor current to drag a linear stage [33]. The authors in
[49], [50] also explored pre-sliding and sliding friction using data
recorded with a tribometer.

Friction forces can be displayed using common haptic devices,
e.g., the Phantom Omni device (Geomagic Touch), or, by mechani-
cally changing the friction between moving elements of the device
with the underlying ground [25].

2.2.2 Hardness

Hardness is usually defined as spring stiffness according to
Hooke’s law [51] and can be represented by using the values
of force sensors divided by the indentation depth measurements.
It has additionally been observed that acceleration signals aide
to represent hardness as high-frequency components of tap-
pings [52]. The work in [37] confirmed that such accelerometer-
recorded high frequency tapping transients can appropriately rep-
resent the dynamic component of object hardness and be used for
haptic display as well using vibrotactile actuators.

The spring stiffness of virtual objects is generally displayed
by using commonly available haptic devices [51] or using DC
motors [53]. These approaches, however, need to be extended
to display high-frequency tapping transients using vibrotactile
devices as shown in [24], [37] for realistic recreation of hardness
sensations.

2.2.3 Warmth
Warmth, or thermal conductivity, can be measured using ther-
mistors [33] or by thermal camera-based nondestructive infrared
recordings as shown in [54], [55]. Note that thermal sensing
using any device requires the surface of the object being heated
in advance, e.g., using a laser [54], to measure the temporal
dissipation of thermal energy. If a liquid is part of the sensing
device, as, e.g., in [33], the thermal conductivity can directly be
measured without prior heating of the surface.

Thermal displays generally are realized using closed-loop
controlled Peltier elements, as e.g., reported in [55]–[57].

2.2.4 Macroscopic Roughness
The studies in [47], [58], [59] capture the surface structure of
objects using a laser scanner or infrared reflective sensors during
non-contact scans and then generate height profiles for the simula-
tion of coarse structural information. Most recently, stereoscopy-
based approaches have been presented to determine the surface
structures in [60].

The authors in [61] built a discrete height-field model and
subsequently applied the well-known bump mapping technique
from computer graphics to map the model to the virtual objects
for simulating height structures on surfaces perceivable using
common haptic devices. Other displacement-based approaches are
reported for wearable haptic interfaces [23] using mainly servo
motors.

2.2.5 Microscopic Roughness
Traditional haptic rendering algorithms (e.g., the aforementioned
bump mapping technique) and devices cannot output high-fidelity
reproductions of finger-surface interactions [62]. The motor drive
circuitry as well as the friction and flexibility in the device limit
their ability to accurately reproduce high-frequency vibrations. As
a result, the display of virtual surfaces often does not include
haptic texture and thus feels smooth and slippery. Also, while
it is straightforward to acquire data that changes slowly, such
as temperature and pressure, accurately recording high-frequency
vibrations is a more challenging task since these signals heavily
depend on, e.g., scan force and scan speed [42], [63]. Approaches
have been developed both for tool-mediated haptics and for bare-
finger haptics. The authors in [42], [63]–[68] recorded such high-
frequency acceleration signals using tool-mediated setups and
created data-driven models for tactile display. The work in [69]
additionally considers the speed components vx and vy to account
for anisotropic (i.e., direction-depending) haptic textures, e.g.,
wooden structures.

Several tactile display technologies can be used to present
tactile information to human users. The three major current trends
in research are based on vibrotactile, ultrasonic and electrostatic
actuation. On the one hand, vibrotactile actuators come in different
implementation forms like voice coil actuators, eccentric mass mo-
tors, piezo-ceramic actuators or tactile pattern displays [70]–[72].
Most commonly, voice coil actuators are used to recreate high-
frequency mechanical vibrations within a range of 50 Hz to 1 kHz.
Figure 5 shows our proposed setup for the acquisition and display
of tactile signals using an accelerometer and a voice coil actuator.
This setup currently serves as the reference setup for tactile codec
development in IEEE P1918.1.1 (see also Section 6). Various 3D-
printed steel tool tips (lower right image) can be used to collect
vibrotactile data during surface interaction. The measured signals
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Fig. 5: Setup for the acquisition and display of tactile signals, which can be reproduced using commonly available hardware. Example
signals (1-second-long) and corresponding spectral domain plots are shown in the upper right for two different materials. Several
stainless steel tool tips have been printed (lower right) to collect tool-surface interaction signals.

are stored for further use, e.g., applying compression schemes,
and subsequently displayed on the attached vibrotactile actuator
for subjective evaluation of the recorded data trace, or, objective
evaluation measurements using another acceleration sensor. On
the other hand, electrostatic actuation has been investigated in
multiple studies ( [21], [73]–[77]), or, ultrasonic actuations [78]
as, e.g., the TPad Phone [22], the ultraShiver device [79], or
combinations of these approaches [80], [81].

2.2.6 Combinations of tactile dimensions

Several approaches present multiple tactile dimensions simulta-
neously to the user. For example, the haptography-based approach
in [24] renders friction, stiffness and roughness material properties
during tool-mediated interaction, or, the approach in [57] displays
thermal and vibrotactile sensations. Figure 6 shows a recent ap-
proach of combining all five tactile dimensions into a single output
device. The Tactile Computer Mouse (TCM) described in [82]
enhances the input capabilities of a common computer mouse
with additional actuators which are used to change the friction
between the TCM and the underlying pad, display macroscopic
roughness cues by changing the inclination of the upper mouse
body, generate microscopic roughness impressions using voice
coil actuators, simulate thermal flow using Peltier elements, and
generate different hardness perceptions.

2.3 Compression of Tactile Information

The data size of single point of interaction tactile infor- mation
is much smaller than that of video and is comparable to that
of speech signals. Moreover, a large number of tactile sensors
are expected to be deployed in future haptic communication
systems, thereby it is essential to develop tactile codecs that exploit
the properties and conceptual limitations of tactile information.
Depending on the transmission scenario (see Fig. 4), either a
waveform-based or parametric representation of the tactile signal
is required.

2.3.1 Waveform-based Representation and Compression
of Tactile Signals

Recent works in [42], [44], [83] define data-driven models for
single interaction point tactile information captured with acceler-
ation sensors, which output signals that depend on scan force and
scan velocity. In [44], a two-dimensional space of scan velocity
and scan force is defined and the Autoregressive Moving Average
(ARMA) coefficients of the acceleration segments are extracted.
These ARMA coefficients can be transmitted over a network, and,
depending on the exerted force and velocity, the displayed tactile
signal is generated by filtering a white noise signal using the
received ARMA coefficients. The work in [69] further improved
the procedure to take anisotropic surface properties into account
and proposed a compression scheme for n-dimensional data-driven
tactile signal representations which considers the dimensions of
scan force and scan velocity in x and y dimensions and report a
two-fold compression rate.

Based on Weber’s law, [58] presents a frequency-domain
compression algorithm for tactile information. Firstly, the re-
searchers use a high-resolution laser to scan the surface of objects
with constant velocity, and then model roughness as a height
profile. Next, the height profile is transformed into frequency
domain using the discrete cosine transform (DCT). Assuming
that stimuli which fall below the perceptual threshold can be
removed without reducing subjective quality, [58] modifies the
DCT coefficients by eliminating the stimuli that have amplitudes
beneath the thresholds. The perceptual threshold is preliminarily
determined by psychophysical experiments. Finally, the modified
DCT coefficients are converted to a new height profile through an
inverse DCT. Subjective experiments are conducted and demon-
strate that this algorithm achieves a compression ratio of 4:1 with
acceptable perceptual quality. However, this approach is an offline
algorithm as it requires the height profile of the whole surface at
the beginning.

The authors in [84] proposed a real-time compression algo-
rithm by adapting a standard speech codec (G.729). The results
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Fig. 6: Presentation of the five major tactile dimensions (upper plot) on a computer mouse-like tactile display (lower left). The Tactile
Computer Mouse described in [82] uses several actuators to display surface material properties. It has been shown that this device is
able to represent the five major tactile dimensions in a real - virtual material comparison test and that subjects were able to identify 10
virtual surfaces (VS0 to VS9) using this device absent visual and audible information (lower right confusion plot).

of subjective tests show that the algorithm achieves a compression
ratio of 8:1 without perceptual degradation. Subsequently, they
empirically showed that masking phenomena are applicable to
tactile signals and extend the codec from [84] into a bitrate-
scalable version [85].

The compression algorithms developed so far are not suffi-
cient because they only address single-point tactile interaction. In
practice, humans commonly use multiple fingers for perceiving
objects and multi-point scenarios are gaining importance as tac-
tile data acquisition is improving (e.g., artificial skin, finger-like
tactile sensors like the BioTac [33], etc). Consequently, spatial
compression algorithms for multi-point tactile scenarios need to be
developed in future work. Since [27] demonstrates that tactile and
audio signals share similarities, one possible direction is to adapt
the available audio codecs and treat multi-point tactile interaction
as multi-channel audio interaction. With this approach it should
be possible to build a family of tactile codecs similar to what
researchers have done for audio codecs.

2.3.2 Feature Extraction for Parametric Representations
and Classification
Instead of using raw signal representations as discussed in the
previous section, tactile features can be extracted to form a
parametric representation. Inspired by the dimensions of tactile
perception, related approaches like [33], [44], [45], [47] define

mathematical tactile features capturing for instance the friction,
roughness, or hardness of the object surfaces. A feature vector
for each material can then be sent to a remote tactile rendering
framework to reproduce the tactile impressions in a VE. Either
handcrafted features, or deep learning-based features, as reported
in [86], can be used in this context.

The research in [87] made the first extensive scan material
database (consisting of 100 materials) publicly available following
the principle of data-driven approaches as introduced in [42]. The
approaches in [47] and [88] follow the idea of defining tactile
features that mitigate the influence of scan speed and scan force.
Another haptic database has been recorded in [89] and further sig-
nal modalities, such as audio, infrared reflection or friction force,
are considered. The work in [47] further uses the aforementioned
tactile features to perform surface material retrieval of the most
similar materials in the haptic database. The approach has been
validated using ground truth data from a subjective experiment
where human participants grouped the materials according to their
perceptual similarity. In a teleoperation scenario, e.g., a remotely
explored material may not be part of the database, but the most
similar material is identified and the corresponding identifier is
transmitted to the operator side, which uses the material represen-
tation to drive a tactile feedback system.
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3 KINESTHETIC INFORMATION AND KINESTHETIC
CODECS

In this section, we discuss kinesthetic information and state-of-
the-art kinesthetic data reduction schemes.

3.1 Kinesthetic Perception

The sensory information provided by the mechanoreceptors in
our muscles, tendons and joints is collectively referred to as
the kinesthetic sense [29], [90], [91], and the resulting infor-
mation contributes to human perception of limb position and
limb movement (velocity) in space and the perception of applied
forces/torques acting on the human body. This information also
helps in determining physical properties of touched objects such
as viscosity, stiffness and inertia. In the literature, kinesthetic
perception is also referred to as proprioception [92].

Similar to other senses, kinesthetic perceptual limitations
are also captured in terms of just-noticeable difference (JND)
explained in Section 3.3. In the literature, the JND for force
perception is reported to be between 7% to 15% [93]–[97]. For
stiffness it is reported to be between 13% to 28% [98]–[100].

3.2 Acquisition of kinesthetic information

Kinesthetic information refers to the position/orientation of human
body parts and external forces/torques applied to them. Hence,
position, velocity, angular velocity, force, and torque all fall into
the category of kinesthetic signals. Kinesthetic haptic interfaces
(devices) are used to capture the position/orientation information,
and provide force/torque feedback to the user.

For instance, in a teleoperation scenario, while interacting
with a remote real or virtual environment, kinesthetic signals are
transmitted from the user (master) to the remote (slave) side, and
the resultant kinesthetic feedback signals are transmitted from the
slave to master side. In case the remote environment is geograph-
ically distant, the kinesthetic information needs to be transmitted
across a wide-area communication network (see Fig. 1). More
specifically, in a 2-port position/force architecture, the operator
transmits position/velocity values to the remote robot, and the
remote robot returns the resulting interaction force/torque signals
to the operator. Local control loops exist at both the operator
and the teleoperator side. These local loops are responsible for
displaying the desired force/torque and moving the robot and its
tools into the desired pose, respectively. These two local loops
are connected into a global control loop which is closed over the
communication network. In order to maintain the stability of this
global control loop, kinesthetic signals are sampled at a rate equal
to or greater than 1 kHz.

The global control loop gets unstable in the presence of com-
munication delays [14]. In order to minimize delay, kinesthetic
information is transmitted once available. Since kinesthetic signals
are sampled, packetized, and transmitted at a rate equal to or
greater than 1 kHz, this leads to a high packet rate which is difficult
to be sustained over a shared network like the Internet [101].
Therefore, the kinesthetic packet rate needs to be reduced while
maintaining perceptual transparency [102], [103]. Conventional
approaches for lossy compression like DCT, DWT and Vector
Quantization have a block-based structure, which introduces addi-
tional processing delay. Thus, these methods cannot be employed
here.

3.3 Compression of kinesthetic information

3.3.1 Kinesthetic data reduction based on Weber’s Law
In the literature, perceptual deadband (PD)-based data reduction
schemes for kinesthetic information have been proposed [104]–
[106]. These codecs are based on Weber’s law of just-noticeable
differences. According to this law, only if the relative difference
between two subsequent stimuli exceeds the JND, the signal will
be perceivable and needs to be transmitted. For example, if X be
the current stimulus, and Xn−1 be the last transmitted stimulus,
then the current stimulus is perceived as different only if the
following condition is satisfied∣∣∣∣X−Xn−1

Xn−1

∣∣∣∣≥ δ (1)

where δ is the Weber fraction. In the kinesthetic codecs the param-
eter δ can be selected smaller or larger than the Weber fraction.
Values of δ which are smaller than the Weber fraction indicate that
the kinesthetic codec is operating conservatively below the JND.
Values of δ above the Weber fraction refer to a more aggressive
mode of operation where perceivable impairments are introduced.
In the following we refer to δ as the deadband parameter or DBP
for short.

t

I

Fig. 7: Illustration of the perceptual deadband principle. The size
of the perceptual deadband depends on the stimulus intensity I.
Samples falling within the perceptual deadband are considered
as perceptually insignificant, thus can be dropped (adopted from
[105]).

Figure 7 illustrates the perceptual deadband-based data reduc-
tion approach for a one-dimensional kinesthetic signal. Black dot
samples are the output of the kinesthetic data reduction scheme.
These samples determine a perceptual deadband for subsequent
values, illustrated as gray zones. Samples falling within the cur-
rently defined perceptual deadband are perceptually insignificant,
and thus can be dropped. Consequently, only perceptually signifi-
cant samples are transmitted using the PD approach. This approach
reduces the average packet rate by 80−90%, while maintaining a
high quality of experience. For compression performance results
of the kinesthetic codec, please refer to Figs. 14 and 15 in Section
VI.

The authors of [106] employ a data-driven approach to un-
derstand the structure of the perceptual threshold region for
one dimensional force stimuli in the range of 0-3 N. For that
purpose, machine learning classifiers are designed to predict the
label (perceiced/non-perceived) of recorded user responses. The
authors have defined two classifiers: Weber classifier and level
crossing classifier. The Weber classifier is based on Weber’s law
of perception, and thus labels the user responses (perceived/non-
perceived) based on the absolute relative difference criterion as
given in Eq. (1). On the other hand, the level crossing classifier
considers the absolute difference criterion (i.e., |X − Xn−1| > c
where c is a level crossing constant) to label the user responses
as perceived or non-perceived. Each classifier is optimized with
respect to its threshold parameter (i.e, δ for the Weber classifier
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and c for the level crossing classifier), and the corresponding
misclassification error is computed. The overall classification
performances of both classifiers are observed to be nearly equal,
and thus their classification criteria may be used in defining
the structure of the perceptual deadband defined above. During
reconstruction of the signals at the receiver end, the level crossing
classifier-based sampler provides less mean squared error (MSE)
between the original and the reconstructed signal than the Weber
sampler for small values of force stimuli and vice versa for high
force values. Thus, both classifiers are complementary to each
other. As Weber’s law is unable to capture perceptual limitations
for small values of the force stimulus, the level crossing-based
classifier may be used in this range for defining the perceptual
deadband.

In [104], [107], the single degree-of-freedom (DoF) perceptual
deadband approach has been extended to three DoF. For higher
dimensional signals, Weber’s law (mathematically defined in Eq.
(1)) is applied on vectored stimuli, and the perceptual deadband
is defined accordingly. Thus, the approach gives a circular and
spherical deadband around a typical two and three dimensional
reference stimulus, respectively. Their radii are directly propor-
tional to the magnitude of the reference stimulus, and the DBP
parameter is the proportionality constant. For determining these
structures of the perceptual deadzone for higher dimensional
signals, the authors of [104] consider only the force magnitude,
not the force direction. As the direction of the force stimulus
comes in to the picture when we extend the perceptual deadband
approach for higher dimensional signals, the effect of the force
direction on the Weber fraction needs to be investigated. The
authors of [108] studied the effect of force direction on the Weber
fraction. Results show that the Weber fraction is a function of
both the reference force magnitude and force direction, thus,
the perceptual deadband approach should also consider the force
direction for data reduction performance. The exact shape of
the multi-dimensional deadzone needs further investigation as the
data-driven study in [109] did not observe the effect of the force
direction on the perceptual deadzone. The quality of the used
haptic interfaces might play an important role in this context.

In the literature, there are studies on parameters which affect
the Weber fraction, and thus the perceptual deadband approach.
In the aforementioned studies, the Weber fraction is assumed to
be independent of temporal variations of the force stimulus, thus
considering it a fixed quantity for an individual. In [110], the
authors examine how the rate of change of the force stimulus
(i.e., slope in N/s) affects the Weber fraction. The Weber fraction
tends to decrease monotonically with an increase in the slope of
the force stimulus. This means that for fast varying signals, we
easily perceive the change in the signal. Thus, this study claims
that the Weber fraction is not a fixed quantity, but a function of
the temporal variations of the force stimulus. Another example is
the study in [111] which showed that the perceptual deadband for
force signals is affected by the velocity of the operator movement.

3.3.2 Integration of kinesthetic data reduction and stability-
ensuring control schemes
Several types of control schemes, e.g. the wave-variable (WV)
transformation [116], [117], the time domain passivity approach
(TDPA) [118], and the model-mediated teleoperation (MMT)
architecture [119], [120], were developed to guarantee the sta-
bility of closed-loop kinesthetic communication in the presence
of communication delays. The originally proposed versions of

these control schemes ignore the high packet rate of kinesthetic
information. As a result, there is a strong need for the integration
of stability-ensuring control schemes and kinesthetic data reduc-
tion algorithms for the realization of the Tactile Internet. Table 2
summarizes the related work in this research direction.

The PD-based kinesthetic data reduction scheme has been
combined with the WV control scheme in [112]. The resulting
approach operates on haptic signals in the time domain (i.e.,
directly on the force and velocity signals). This scheme, however,
is suited only for constant communication delay.

Recently, the integration of the PD-based data rate reduction
approach and the TDPA control scheme was proposed in [114].
The resulting joint compression/control approach preserves stabil-
ity of the system in the presence of time-varying and unknown
delays.

3.4 Display of Kinesthetic Information

Kinesthetic information (force, torque, position, orientation) is
captured and displayed with the help of force feedback devices
(also called kinesthetic devices). A force feedback device is
comprised of sensors and actuators controlled by DC motors.
Sensors provide information about the position and orientation
of the device in virtual/real world. Once the device interacts with
an object, actuators display the resultant force/torque to the user.
Thus, a kinesthetic devices enables us to perceive force and torque
feedback. Kinesthetic devices are typically categorized based on
the degrees of freedom provided for inputs (position/orientation)
and outputs (force/torque).

There are various kinesthetic devices available. The Novint
Falcon developed by Novint Technologies [121] and the phantom
devices (Phantom Omni and Phantom Premium) initially devel-
oped by Sensable (now offered by 3D Systems) [122] are the
most widely used devices because of their low cost. The Novint
Falcon device provide three DoF for inputs and 3 for force outputs
while the phantom devices provides 6 DoF for inputs and 3 for
force outputs. The Novint Falcon and the Phantom Omni devices
are generally used for low-end applications, and the Phantom Pre-
mium device is generally used for high-end applications. Devices
developed by Force Dimension such as the omega.x, delta.x and
sigma.x [123] are also preferred for high-end applications because
of their high position resolution and large peak force.

The kinesthetic devices mentioned above are termed as
grounded devices because they apply their reaction force to a
massive stationary object such as a desk, ceiling or wall [124].
There is another category of haptic devices, such as gloves or
exoskeletons, which apply their reaction force to a part of the op-
erator’s body. These devices are called ungrounded since they gen-
erate self-equilibrating forces that do not need to be mechanically
grounded (such as grasping an object). Examples of ungrounded
haptic devices include the Rutgers Master displays (Master I and
Master II) [125], TorqueBar [126], Gyro Moment Display [127],
Gyro effect [128], HapticGear [129] and joystick [130]. Recently,
the authors in [131] designed an ungrounded haptic device for
spatial guidance where a piezoelectric actuator is used to generate
the haptic illusion of an external force. An ungrounded haptic
augmented reality system is designed in [25] to alter the roughness
and friction properties of a rigid 3-D object. Note that ungrounded
device design is focused mainly on tactile sensations [132]–[134].
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TABLE 2: Overview of the combination of teleoperation control architectures with haptic data reduction schemes for different communication assumptions.
Studies on combining the control schemes with the haptic data reduction approaches are not quite complete. The missing parts (marked with ’-’) are mainly with
respect to the handling of time-varying delays and packet loss.

known unknown time-varying time-varying packet loss
const. delay const. delay delay (known stat.) delay (unknown stat.)

WV + compression [112] [113] - - -
TDPA + compression [114] [114] [114] [114] -
MMT + compression [115] [115] - - -

3.5 Kinesthetic Interaction Setup

[135] describes an example hardware and software setup for
the evaluation of the kinesthetic codecs. The setup realizes a
teleoperation scenario in a virtual environment with closed-loop
kinesthetic interaction. It is implemented based on the widely used
haptic application development platform Chai3d. Figure 8 shows a
snapshot of the virtual environment which consists of a rigid cube
(movable) lying on a rigid planar surface. In the virtual space, the
haptic device is represented by the small grey colored ball (virtual
tool) shown in the figure. The operator controls the position and
velocity of the virtual tool using the Novint Falcon kinesthetic
device, and receives three DoF force feedback whenever the
virtual tool makes contact with the objects in the environment.
The implementation of this setup is available at [136]. The

Fig. 8: A screenshot of the virtual environment designed for the
kinesthetic codec development setup.

setup is independent of the design/structure of the kinesthetic
codecs being used. For illustrating the principle of a kinesthetic
codec in the setup, [135] includes the perceptual deadband-based
data reduction scheme (described in Section 3.3.1). In Figure 8,
selected parameters of the perceptual deadband-based codec are
shown under demo settings. Here Force DB and Velocity DB
denote the deadband parameters for the force and velocity signals,
respectively. In addition, one can also see the velocity packet
rate (forward channel), and force packet rate (backward channel)
generated by the perceptual deadband-based kinesthetic codec.
The setup also comes with raw data traces (position and velocity
signals of master, force signal of slave) for both static interactions
with the rigid planar surface and dynamic interactions with the
movable cube. These traces allow the evaluation of kinesthetic
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Fig. 9: Velocity data traces of the operator for the static interaction
scenario.

codecs even without installing the setup. Figures 9 and 10 show an
excerpt of the three dimensional velocity and force traces recorded
for the case of static interaction. The complete recorded data traces
can be downloaded from [137]. Performance evaluation results for
the perceptual deadband-based kinesthetic codec on these traces
are presented in Section 6.3.

4 HANDSHAKING AND MULTIPLEXING

Handshaking protocols for haptic devices support the exchange
of device capabilities such as the number of degrees of free-
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Fig. 10: Force data traces of the teleoperator for the static interac-
tion scenario.

dom, the workspace dimensions, the signal representation and the
maximum input and output values. Multiplexing schemes support
the simultaneous transmission of multiple data streams over the
same communication channel. Multiplexing in the context of the
TI in its most general form refers to the joint transmission of
several video, audio and haptic data streams. The multiplexing
scheme provides appropriate network shares to each of the streams
depending on both the application needs (requirements) and/or
the available network resources. Finally, the multiplexing scheme
provides synchronization information across multiple streams.

4.1 Tactile Internet Meta Data (TIM)
With the rise of the TI, haptic devices will undergo wide deploy-
ment and use. Currently, haptic devices are highly diversified in
their specifications (input/output degrees of freedom, workspace,
update rate, etc.), and they use different APIs which results in mak-
ing application development device and API specific. Similar to
audio or video clips, that can be recorded and/or played back with
standard commercial players independently from the recording
device, a standard technology-neutral meta-data by which haptic

application components such as haptic devices and haptic APIs,
or, graphic models make themselves and their capabilities known
becomes a necessity.

Several modeling languages, such as SensorML [138] and
Transducer Markup Language (TML) [139] have been proposed
that can describe a haptic application to some extent. For instance,
SensorML models a sensor or actuator as a process that has
input(s) and produces output(s) based on predefined methods. Sen-
sorML cannot be efficiently used to describe haptic applications
for two main reasons. First, the haptic interface is characterized
by bidirectional flow of data where the division between input and
output is fine and difficult to define. Additionally, SensorML does
not provide a description for the mechanical design and behavior
of the device such as applied forces and workspace dimensions.
Virtual environment modeling languages such as VRML [140]
and Web3D Consortiums X3D [141] fall short in describing the
haptic interface hardware and consequently, designing the virtual
environment to fit to a particular haptic device is not desired.
Furthermore, neither VRML nor X3D provide descriptions for
communication specifications such as QoS network requirements.

Recently, Haptic Application Meta Data (HAML), which can
be extended to define Tactile Internet Metadata (TIM), is designed
to provide a technology-neutral description of haptic applications
[142], [143]. HAML defines five description schemes (DS): (1)
Application DS, (2) Haptic Rendering DS, (3) Haptic Device
DS, (4) Haptic Data DS, and (5) Quality of Experience DS.
The application DS describes the application owner, the system
requirements, and metadata. The haptic rendering DS describes the
haptic rendering API, kinesthetic and/or tactile rendering mecha-
nisms, and graphic modeling. The haptic device DS includes phys-
ical properties about the haptic interface, actuation technology,
and performance characteristics (including spatial and temporal).
The haptic data DS describes the data format, acquisition, and
encoding of haptic data. Finally, the quality of experience DS
describes kinesthetic, tactile and thermal perception attributes, in
addition to quality of service parameters.

4.2 Multiplexing Scheme for Multiple Haptic Streams
A haptic application may involve the communication of multiple
haptic data streams (such as different degrees of freedom of
kinesthetic and/or tactile data). A key challenge arises due to
the fact that different haptic streams have different requirements
in terms of communication (QoS) requirements. A multiplexing
scheme addresses this challenge by combining multiple haptic
streams into one. The multiplexing scheme provides appropriate
network share to each of the haptic streams depending on both the
application needs (requirements) or dynamics and/or the available
network resources. Finally, the multiplexing scheme provides
synchronization information across the multiple haptic streams.

Several approaches have been proposed to address the problem
of haptic data multiplexing (along with audio-visual data stream).
One effective approach is to use statistical multiplexing. This
technique has proven to achieve high efficiency and better network
utilization [144], compared to other multiplexing schemes such as
neural networks [145] and Round Robin approaches [146].

The authors in [147] proposed an adaptive statistical multi-
plexer, termed as Admux, to integrate different modalities where
each haptic stream is provided with a dynamic share of the
network resources depending on the respective priorities of each
stream (contribution to the quality of user experience). A visual-
haptic multiplexing scheme is proposed by Cizmeci et al. in [148],
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[149] for teleoperation over constant bitrate (CBR) communica-
tion links. The proposed approach divides the shared channel into
1 ms resource buckets and controls the size of the transmitted
video packets as a function of irregular haptic transmission events
that are generated by a kinesthetic codec such as the one described
in Section 3.1.1. Further developments in this area are needed to
support generic haptic data multiplexing (involving both tactile
and kinesthetic haptic data) for the Tactile Internet.

5 SUBJECTIVE AND OBJECTIVE QUALITY EVALUA-
TION FOR HAPTIC CODECS

To evaluate haptic codec technologies for the Tactile Internet,
evaluation metrics need to be defined that capture the end users’
Quality of Experience (QoE). In addition, the evaluation process
has to consider the bidirectional nature of haptics, i.e, users not
only feel haptic feedback, similar to audio/video, but also physi-
cally act upon an environment [150]. QoE is defined as a multi-
level paradigm of the users’ perceptions and behaviors, represent-
ing emotional, cognitive, and behavioral reactions that are both
subjective and objective, while dealing with services, products,
or applications [151], [152]. Accordingly, the QoE taxonomy for
Tactile Internet applications should include: technical metrics, i.e.,
Quality of Service (QoS) and non technical metrics, i.e., User
Experience (UX). The UX category includes three parts: per-
ceptional, physiological, and psychological metrics. This higher
level organization, as shown in Fig. 11, replicates an apparent
taxonomy for TI applications evaluation and all together is more
customizable depending on the parameters needed for evaluation.
For instance, service providers desiring to only evaluate the QoS
of the application can neglect the UX parameters.

The QoS parameters for haptics typically involve technical
factors such as delay, jitter, synchronization and packet loss, etc.
The rendering quality relates to the quality of the major modali-
ties in Tactile Internet applications. Each modality is considered
separately first and eventually blended and mixed modalities are
considered. On the other hand, relevant UX parameters have
been classified as: perception-related parameters, psychological,
and physiological parameters. Perception measurements reflect
how users objectively perceive the haptics-based application. The
psychological and physiological parameters capture subjective
user-states. Examples of parameters that represent these categories
[153] are media synchronization (QoS parameter), fatigue and
user intuitiveness (perception-related), haptic rendering (rendering
quality parameter), and degree of immersion (psychological).

5.1 Subjective QoE in Haptic Systems
So far, QoE in haptics has mainly been evaluated through sub-
jective tests with the user-in-the-loop [8]. Classically, subjects
evaluate system artifacts on an Absolute Category Rating (ACR)
scale that uses a five-category quality judgment [157] labeled
with adjectives like imperceptible, perceptible but not disturbing,
slightly disturbing, disturbing, and strongly disturbing. Guidelines
for designing experiments with human subjects can be found for
instance in [153].

5.2 Objective QoE in Haptic Systems
Subjective QoE testing in haptics is usually time-consuming
and expensive [155] since customized haptic hardware makes it
challenging to parallelize tests. In addition, since the test persons

are typically new to haptics technology, extensive experimenter
monitoring is needed. To tackle these issues, objective QoE testing
is desirable. The evaluation of QoE through objective testing
is based on algorithmic models of human perception and/or the
measurement of several parameters related to service delivery. So
far, only very few studies for QoE evaluation for haptic communi-
cations are available in the literature. They can be categorized in
two groups based on how the quality is predicted.

5.2.1 Signal-level Quality Prediction
The first work in this research line was introduced in [154].

In this work a Haptic Perceptually Weighted Peak Signal-To-
Noise Ratio (HPW-PSNR) was derived to account for perceptual
significance of haptic signal degradation using the Just Noticeable
Difference (JND). The mathematical formulation is described as
follows:

HPW −PSNR = 10 · log10

(
||vmax− vmin||2

MSE ·HPW

)
(2)

HPW =

{
C if |v− v̂| ≤ JND(v)
k · (|v− v̂|− JND(v)) + C otherwise

(3)

where vmax and vmin are the maximum and minimum values of the
haptic original signal v. C is a constant term that weights the signal
degradations below the perceptual threshold. k is a penalty factor
that weights the haptic degradations beyond the JND of the signal.
JND(v) = av · |v|, with av being the percentage of the tolerable
degradation of signal values.

Another work in [155] proposed a quality prediction frame-
work for the compression of kinesthetic signals for closed-loop
teleoperation. However, the proposed approach is only able to
qualitatively predict user ratings. In [153], the Perceptual Mean
Squared Error metric (P-MSE) is introduced. A perceptual com-
parison of a compressed haptic signal relative to the uncompressed
one is made based on the Weber-Fechner law [158] which relates
the psychophysical sensation S with the magnitude of physical
stimulus x as follows

S = c · log
( x

x0

)
, (4)

where x0 represents the absolute detection threshold of the physi-
cal stimulus and c be a proportionality constant. For N samples in
the time domain, the P-MSE is defined as

P−MSE =
1
N

N−1

∑
i=0

[S(i)− Ŝ(i)]2

=
c2

N

N−1

∑
i=0

[log
xi

x̂i
]2

(5)

where S and Ŝ are the original and distorted psychophysical
sensations, respectively, and x and x̂ are their corresponding values
of the physical stimulus, and c is a scaling constant that is
determined experimentally. The quality-prediction results show a
(decreasing) quality trend equivalent to that from subjective tests,
as the strength of the applied compression increases.

All of the above objective quality measures focus on measur-
ing the signal fidelity by computing the ”distance” between the
two signals in a perceptual way. However, they all assess signal
quality based on error measures that operate solely on a sample-
by-sample basis such that content-dependent variations are not
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Fig. 11: Higher level organization of QoE evaluation model for TI applications (adapted from [153]).
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Fig. 12: Scatter plots of linear-scale mean rank scores (ls-MRS) versus objective quality assessment methods. Each sample point
represents one force-feedback signal. (a) PSNR, (b) HPW-PSNR [154], (c) P-MSE [155], and (d) HSSIM [156].

considered. To fill this gap, [156] introduced the haptic quality
assessment measure Haptic SSIM (HSSIM). HSSIM employs the

generic definition of SSIM [159] in conjunction with Stevens
power law as a haptic perception model. The underlying premise is



PROCEEDINGS OF THE IEEE 14

that the signal quality is evaluated considering neighbouring sam-
ple dependencies and that only perceived distortions are penalized
after accounting for human sensitivities.

In order to quantitatively ascertain the potential of the above
described objective quality measures to predict human haptic
judgement, a force-feedback database was built and used to
conduct subjective experiment. The database contains 10 original
and 40 distorted force-feedback test signals using the perceptual
deadband-based data reduction technique described in Section 3.3.
The force-feedback test signals are generated from a static interac-
tion with objects in a virtual environment. The DB parameters are
chosen to span the range of below, within, and above distortion
detection threshold. Twenty-five participants participated in the
subjective experiment. More details on the subjective experiment
can be found in [156]. Figure 12 depicts the scatter plots for four
objective quality measures against subjective scores. Table 3 com-
pares the overall performance using three most used correlation
coefficients and root mean squared error (RMSE). For most of
these measures, HSSIM performs better with high correlation and
low RMSE values, which suggests better prediction accuracy and
monotonicity. However, it is worth noting that PSNR and P-MSE
also perform quite well.

5.2.2 System-level Quality Prediction
The work in [160] provides a system-level mathematical model for
Haptic Audio Visual Environment (HAVE) applications based-on
a weighted linear combination between QoS and User-Experience
parameters described as follows:

QoE = ζ ·QoS+(1−ζ ) ·UX

QoS =
∑i ηi Si

∑i ηi

UX = A
∑i αi Pi

∑i αi
+B

∑ j β j R j

∑ j β j
+C

∑k γk Uk

∑k γk
(6)

where αi,β j,γk and A,B,C are the model weighting factors
which are used to maintain the overall quality of experience
between 0 and 1. Si represents the QoS parameters in terms
of delay, jitter, and packet loss whereas Pi, R j, and Uk denote
the user experience parameters in terms of perception measures,
rendering quality measures, and user state measures. Lastly, ζ is
used to control the relative priority of the QoS parameters versus
user experience parameters. The authors’ model was evaluated
empirically using subjective testbeds on 30 participants who used
a HAVE game called the Balance Ball game. A Fuzzy logic
Inference System (FIS) was further implemented to predict the
user’s QoE based on input parameters which gives 4.6% error and
0.92 correlation.

In short, system-level QoE prediction for haptic systems can
be done in three approaches. The first approach is based on

TABLE 3: Overall performance comparison of five quality assess-
ment measures.

PLCC SROCC KRCC RMSE

MSE 0.3008 0.6156 0.4910 27.967

P-MSE [155] 0.8895 0.9342 0.7481 13.398

HPW-PSNR [154] 0.8500 0.8935 0.7172 15.448

PSNR 0.9235 0.9288 0.7661 11.245

HSSIM [156] 0.9357 0.9312 0.7764 10.342

subjective tests in which users explicitly give their opinion about
the haptic system they used. Then, the results are passed through
regression analysis to come up with the optimized technical
factors that enhance the overall experience. This approach is
very expensive, time consuming, and lacks repeatability. Also,
it cannot be applied in real time. The second method is based
on algorithmic and/or mathematical derivations. In this approach,
QoE augments QoS but does not totally replace it. Such ap-
proach suffers from feasibility and accuracy issues as there is no
comprehensive model that can quantify the multi dimensionality
and large individual variability. However, to precisely capture the
QoE using objective testing, more developments are needed, such
as the mapping of network performance metrics (intrinsic QoS
factors) to user experience related factors (e.g. haptic perception),
the integration of sophisticated models for human haptic control
into the objective quality metrics, and the development of joint
metrics for auditory, visual, and haptic modalities. The third type
is based on a machine learning-based approach. In visual quality
assessment domain, many universal machine learning models have
been proposed [161], [162]. The main challenge for the machine
learning approach is how to learn rules from human semantic
description of what they are experiencing. For example, humans
can describe their experience as ”very good”, ”fair”, or ”horrible”.
Directly mapping human linguistic descriptions to meaningful
features that well represent the quality of the stimuli is a crucial
step. One way to tackle this challenge is to classify signal quality
with respect to quality classes and from the obtained classification,
class distribution can be modelled in order to design a quality
function.

6 IEEE P1918.1.1 HAPTIC CODECS FOR THE
TACTILE INTERNET

The ongoing IEEE standardization activity IEEE P1918.1.1 (also
known as Haptic Codec Task Group) defines codecs that enable
the interoperability of various haptic interfaces (kinesthetic and/or
tactile). These codecs address TI applications where the human
is in the loop (teleoperation scenarios) as well as applications
involving machine remote control. The standard defines data
reduction algorithms and schemes for the communication of kines-
thetic, tactile, or combination of kinesthetic/tactile information.
The haptic codecs are designed to support both time-delayed
and no-delay scenarios. Finally, the standard also specifies the
mechanisms and protocols for the exchange of the capabilities of
the communicating haptic interfaces (e.g. workspace, degrees of
freedom, temporal and spatial resolution, etc.), in order to enable
plug-and-play haptic communication.

6.1 Requirements

This section presents the identified requirements within IEEE
P1918.1.1 for the haptic codec development. These requirements
capture the use cases defined in IEEE P1918.1 (Tactile Internet
Working Group) [163], but are not limited to these use cases only.
Haptic Codec requirements include 1) handshaking mechanisms
for plug-and-play haptic communications; 2) kinesthetic codecs;
3) tactile codecs; 4) subjective quality evaluation metrics; 5)
objective quality evaluation metrics; 6) reference software; 7)
reference hardware; 8) haptic multiplexing systems.
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TABLE 4: Requirements for handshaking protocols.

Requirements Type Examples
Codec scheme and parameters (data) Required Kinesthetic or tactile (device-, data-, and session-specific)
Traffic types (device, session) Required Kinesthetic/tactile

Control scheme for kinesthetic information exchange and parameters
(data)

Required 1. None;
2. One control scheme to be defined

Haptics modalities / streams (device, session) Required Position, velocity, kinesthetic force, torque, angular velocity, stiffness,
temperature, haptic texture, etc.

Workspace of the transmitter (device, session) Required > 100 W x 100 H x 50 D mm (kinesthetic)
Artificial skin (spatial arrangement of sensor elements) (tactile)

Temporal-resolution, amplitude-resolution and bit depth (data, device) Required

1kHz (kinesthetic), 200 Hz (tactile) − temporal resolution
0.1 N (force), amplitude resolution
2 Bytes per sample − bit depth
32 bits (float) − bit depth

Degrees of Freedom (data, device) Required Input: 6 DoF, Output: 3 DoF
Inter- and intra-stream synchronization (data, session) Required Timestamp at each packet, or periodic preamble
Packet format and multiplexing of different haptic streams (data) Required Packet header: payload, max size, time stamp, etc. Payload: multiplex-

ing of individual coded streams
Session management protocol (initialization, termination, setting up
different streams, etc.) (session)

Required To be determined if to be defined by the Haptic Codec Task Group or
if existing protocols, such as SIP can be adapted.

Range (min/max value) (data, device) Optional Max. force, max vibration intensity, min/max frequency
Minimum update rate (data, device) Optional >100 packets per second

Mechanical bandwidth Optional Kinesthetic: 50 Hz
Tactile: 400 Hz

Feedback about transmission characteristics from the remote side Optional Time stamp, packet ID

6.1.1 Requirements for Handshaking Protocols
IEEE P1918.1.1 shall provide means for handshaking between the
communicating haptic devices in order to exchange their capabil-
ities and define communication protocols (session management,
packet format, multiplexing scheme for different haptic streams,
etc.). The specifications for handshaking protocols are listed in
Table 4.

6.1.2 Requirements for Kinesthetic Codec
IEEE P1918.1.1 shall provide means for kinesthetic data commu-
nication. The specifications for kinesthetic data coding are listed
in Table 5.

TABLE 5: Requirements for kinesthetic codec.

Requirements Type Examples
Packet rate adaptability Required Low interaction quality to

lossless
Minimum algorithmic de-
lay

Required Ideally, no algorithmic de-
lay

Control scheme (delay
tuneable/adaptable)

Required None or one control
scheme to be defined

Real-time capability Required Coder complexity related
Multi-point support Optional Strongly correlated to

grasping scenarios

6.1.3 Requirements for Tactile Codec
IEEE P1918.1.1 shall provide means for tactile haptic data com-
munication. The specifications for tactile data coding are listed in
Table 6.

6.1.4 Requirements for Objective Quality Evaluation
Contributions to IEEE P1918.1.1 are evaluated using a set of
objective metrics, including average and peak packet rates and
Mean Squared Error (MSE) as well as the Perceptual Mean
Squared Error P-MSE defined in Eq. (5). IEEE P1918.1.1 also
encourages contributors to propose perceptual quality evaluation
metrics for adoption in the evaluation or in the final standard.

TABLE 6: Requirements for tactile codec.

Requirements Type Examples
Support for single point /
multi-point

Required Single sensor, artificial
skin

Bitrate control Required low interaction quality to
lossless

Maximum algorithmic de-
lay (Tmax)

Required e.g. 50 ms

Real-time capability Required Coder complexity related

6.1.5 Requirements for Subjective Quality Evaluation
Subjective testing uses the reference setup(s) provided and main-
tained by the Haptic Codec Task Group. The currently used
reference setup for kinesthetic codec development is described
in Section 3.5. The reference setup for tactile codec development
is shown in Fig. 5.

Proponents are invited to contribute to the reference setups.
Every proposal that shows sufficient evidence in terms of relevance
and performance needs to undergo a cross-validation step which
means that a second group needs to re-implement the proposal and
perform subjective tests to confirm the presented results.

6.2 Call for Contributions
The Call for Contributions (CFC) includes the timeline for the
call, deadlines for submitting contributions, and a tentative date
for a complete working draft for the kinesthetic codecs. The CFC
also provides explicit definitions for several terms and notations
that are commonly used. Finally, the CFC provides details on the
reference hardware and software, the submission process, test data
traces and conditions for codecs. The CFC: Part I (kinesthetic
codecs) is available at [164].

6.3 Current status
IEEE P1918.1.1 currently considers the kinesthetic codec de-
scribed in Section 3.3 for standardization. The group has recently
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finished the cross-validation experiments for the proposed kines-
thetic codec, which will be presented in the next section.

6.3.1 Cross-validation Results
The proposed kinesthetic codec reduces the average haptic packet
rate by approximately 80-90%, while maintaining a high quality
of experience (i.e., transparency). In order to verify the imple-
mentation feasibility of the proposed kinesthetic codec, the Haptic
Codec Task Group has conducted a cross-validation process, as
shown in Fig. 13. The codec was independently implemented by
two groups, Technical University of Munich (TUM) and Dalian
University of Technology (DUT) and the results were presented
at the Haptic Codec Task Group meetings. In the cross-validation
experiments, four series of trace data were recorded using the
reference software (described in Section 3.5) representing different
types of interaction with static and dynamic virtual environments.
These data traces can be downloaded from [165].

When the experiment starts, the trace data are used as input
to the implemented kinesthetic codecs, then the encoded signals
are recorded. The transmission rate (i.e. percentage of original
signal samples transmitted), mean squared error (MSE) and P-
MSE (Eq. 5) between the original signals and the decoded signals
are considered as key metrics for the cross validation. The cross
validation is considered to be successful only when all results
from the two groups are identical except floating number precision
errors (marked with red colors in Table 7, 9, and 10).

Fig. 13: Flow chart of cross-validation experiments at each group.

We list the results of the key metrics from the two groups
side by side for a direct comparison. In Tables 7-12, each row
represents results for a given trace with respect to all tested
deadband parameters (DBP), while each column denotes results
of a given DBP with respect to all four traces. Figs. 14-19 plot the
averaged results.

Table 7. Transmission rates (percentage) of velocity signals.

Table 8. Transmission rates (percentage) of force signals.

Table 9. MSE of velocity signals.

Table 10. MSE of force signals.

Table 11. P-MSE of velocity signals.

Table 12. P-MSE of force signals.

Fig. 14: Average transmission rate (percentage) of velocity signals.

Fig. 15: Average transmission rate/percentage of force signals.

These side-by-side comparisons show that the two groups
achieved the same results through independent implementations.
Therefore, IEEE P1918.1.1 has decided that the proposed kines-
thetic codec passed the cross validation tests and is ready for
standardization. The completion of the draft standard is expected
for the end of 2018.
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Fig. 16: Average MSE of velocity signals.

Fig. 17: Average MSE of force signals.

Fig. 18: Average P-MSE of velocity signals.

Fig. 19: Average P-MSE of force signals.

For the tactile codec development, the group currently prepares
the respective Call for Contributions CFC: Part II (tactile codec).
The group is planning to dedicate several face-to-face meetings
to discuss and evaluate the competing (or complementing) con-
tributions. An evaluation report will be prepared to document the
evaluation process. Once agreed on specific technologies to be
adopted in the standard, a standard draft will be prepared and
presented to the IEEE P1918.1 group at large for feedback and
approval. The current timeline expects the submission of the tactile
codec proposals until December 2018 and the completion of the

draft standard by the middle of 2019.

7 CONCLUSIONS

This paper discusses the development of haptic codecs for the
Tactile Internet. It introduces relevant background on the acqui-
sition and display of both kinesthetic and tactile information.
Additionally, the most important aspects of haptic perception as
well as the current state-of-the-art in haptic quality evaluation are
introduced. A substantial part of the paper focuses on kinesthetic
and tactile codec development. We also discuss the status of
the ongoing IEEE standardization activity Haptic Codecs for the
Tactile Internet (IEEE P1918.1.1) which at the time of writing this
paper is ready to standardize the first kinesthetic codec. We present
the recently obtained cross-validation results for this kinesthetic
codec which show its remarkable data reduction performance. The
current work in IEEE P1918.1.1 focuses on the standardization of
a corresponding tactile codec.
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