Skip to main content

Multi-task Learning-Driven Volume and Slice Level Contrastive Learning for 3D Medical Image Classification

  • Conference paper
  • First Online:
Computational Mathematics Modeling in Cancer Analysis (CMMCA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13574))

  • 707 Accesses

Abstract

Automatic 3D medical image classification,e.g., brain tumor grading from 3D MRI images, is important in clinical practice. However, direct tumor grading from 3D MRI images is quite challenging due to the unknown tumor location and relatively small size of abnormal regions. One key point to deal with this problem is to learn more representative and distinctive features. Contrastive learning has shown its effectiveness with representative feature learning in both natural and medical image analysis tasks. However, for 3D medical images, where slices are continuous, simply performing contrastive learning at the volume-level may lead to inferior performance due to the ineffective use of spatial information and distinctive knowledge. To overcome this limitation, we present a novel contrastive learning framework from synergistic 3D and 2D perspectives for 3D medical image classification within a multi-task learning paradigm. We formulate the 3D medical image classification as a Multiple Instance Learning (MIL) problem and introduce an attention-based MIL module to integrate the 2D instance features of each slice into the 3D feature for classification. Then, we simultaneously consider volume-based and slice-based contrastive learning as the auxiliary tasks, aiming to enhance the global distinctive knowledge learning and explore the correspondence relationship among different slice clusters. We conducted experiments on two 3D MRI image classification datasets for brain tumor grading. The results demonstrate that the proposed volume- and slice-level contrastive learning scheme largely boost the main classification task by implicit network regularization during the model optimization, leading to a \(10.5\%\) average AUC improvement compared with the basic model on two datasets.

J. Zhu and S. Wang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 52.00
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 65.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Azizi, S., et al.: Big self-supervised models advance medical image classification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3478–3488 (2021)

    Google Scholar 

  2. Bai, W., et al.: Self-supervised learning for cardiac MR image segmentation by anatomical position prediction. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 541–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_60

    Chapter  Google Scholar 

  3. Bakas, S. et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  4. Bakas, S. et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  5. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  6. Bakas, S., et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the brats challenge. arXiv preprint. arXiv:1811.02629 (2018)

  7. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: Proceedings of the European conference on computer vision (ECCV), pp. 132–149 (2018)

    Google Scholar 

  8. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)

    Google Scholar 

  9. Chen, L., Bentley, P., Mori, K., Misawa, K., Fujiwara, M., Rueckert, D.: Self-supervised learning for medical image analysis using image context restoration. Med. Image Anal. 58, 101539 (2019)

    Article  Google Scholar 

  10. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International conference on machine learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  11. Chen, X., Xie, S., He, K.: An empirical study of training self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9640–9649 (2021)

    Google Scholar 

  12. Dauphin, Y.N., Fan, A., Auli, M., Grangier, D.: Language modeling with gated convolutional networks. In: International conference on machine learning, pp. 933–941. PMLR (2017)

    Google Scholar 

  13. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 9729–9738 (2020)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE international conference on computer vision, pp. 1026–1034 (2015)

    Google Scholar 

  15. He, X., Fang, L., Tan, M., Chen, X.: Intra-and inter-slice contrastive learning for point supervised oct fluid segmentation. IEEE Trans. Image Process. 31, 1870–1881 (2022)

    Article  Google Scholar 

  16. Ilse, M., Tomczak, J., Welling, M.: Attention-based deep multiple instance learning. In: International conference on machine learning, pp. 2127–2136. PMLR (2018)

    Google Scholar 

  17. Kamnitsas, K., et al.: Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 597–609. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_47

    Chapter  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint. arXiv:1412.6980 (2014)

  19. Koohbanani, N.A., Unnikrishnan, B., Khurram, S.A., Krishnaswamy, P., Rajpoot, N.: Self-path: self-supervision for classification of pathology images with limited annotations. IEEE Trans. Med. Imaging 40(10), 2845–2856 (2021)

    Article  Google Scholar 

  20. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  21. Oord, A.V.D., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint. arXiv:1807.03748 (2018)

  22. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  23. Wang, W., Chen, C., Ding, M., Yu, H., Zha, S., Li, J.: TransBTS: multimodal brain tumor segmentation using transformer. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 109–119. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_11

    Chapter  Google Scholar 

  24. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  25. Zhai, X., Oliver, A., Kolesnikov, A., Beyer, L.: S4l: self-supervised semi-supervised learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1476–1485 (2019)

    Google Scholar 

  26. Zhou, H.Y., Lu, C., Yang, S., Han, X., Yu, Y.: Preservational learning improves self-supervised medical image models by reconstructing diverse contexts. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3499–3509 (2021)

    Google Scholar 

  27. Zhou, Z., et al.: Models genesis: generic autodidactic models for 3d medical image analysis. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 384–393. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_42

    Chapter  Google Scholar 

  28. Zhuang, X., Li, Y., Hu, Y., Ma, K., Yang, Y., Zheng, Y.: Self-supervised feature learning for 3D medical images by playing a Rubik’s cube. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_46

    Chapter  Google Scholar 

Download references

Acknowledgements

The work described in this paper is supported by grants from HKU Seed Fund for Basic Research (Project No. 202009185079 & 202111159073). CBS acknowledges the Philip Leverhulme Prize, the EPSRC fellowship EP/V029428/1, EPSRC grants EP/T003553/1, EP/N014588/1, Wellcome Trust 215733/Z/19/Z and 221633/Z/20/Z, Horizon 2020 No. 777826 NoMADS and the CCIMI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, J., Wang, S., He, J., Schönlieb, CB., Yu, L. (2022). Multi-task Learning-Driven Volume and Slice Level Contrastive Learning for 3D Medical Image Classification. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2022. Lecture Notes in Computer Science, vol 13574. Springer, Cham. https://doi.org/10.1007/978-3-031-17266-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-17266-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-17265-6

  • Online ISBN: 978-3-031-17266-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

  NODES
INTERN 10
Note 2
Project 1