Abstract
Deep learning has been widely used to segment tumour regions in stained histopathology images. However, precise annotations are expensive and labour-consuming. To reduce the manual annotation workload, we propose a light annotation-based fine-level segmentation approach for histology images based on a VGG-based Fusion network with Global Normalisation CAM. The experts are only required to provide a rough segmentation annotation on the images, and then accurate fine-level segmentation boundaries can be produced using this method. To validate the proposed approach, three datasets with rough and fine quality segmentation annotation are built. The fine quality labels are used only as ground truth in evaluation. The VFGN-CAM method includes three main components: an annotation enhancement to boost boundary accuracy and model generalisability; a VGG Fusion module that integrates multi-scale tumour features; and a Global Normalisation CAM module that combines local and global gradient information of tumour regions. Our VGG fusion and Global Normalisation CAM outperform the existing methods with a Dice of 84.188%. The final improvement for our proposed methods against the original rough labels is around 22.8%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Durand, T., Mordan, T., Thome, N., Cord, M.: Wildcat: weakly supervised learning of deep convnets for image classification, pointwise localization and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 642–651 (2017)
Huang, Z., Wang, X., Wang, J., Liu, W., Wang, J.: Weakly-supervised semantic segmentation network with deep seeded region growing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7014–7023 (2018)
Kweon, H., Yoon, S.H., Kim, H., Park, D., Yoon, K.J.: Unlocking the potential of ordinary classifier: class-specific adversarial erasing framework for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6994–7003 (2021)
Luo, X., et al.: Scribble-supervised medical image segmentation via dual-branch network and dynamically mixed pseudo labels supervision. arXiv preprint. arXiv:2203.02106 (2022)
Qin, J., Wu, J., Xiao, X., Li, L., Wang, X.: Activation modulation and recalibration scheme for weakly supervised semantic segmentation. arXiv preprint. arXiv:2112.08996 (2021)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale visual recognition. arXiv preprint. arXiv:1409.1556 (2014)
Stammes, E., Runia, T.F., Hofmann, M., Ghafoorian, M.: Find it if you can: end-to-end adversarial erasing for weakly-supervised semantic segmentation. In: Thirteenth International Conference on Digital Image Processing (ICDIP 2021), vol. 11878, p. 1187825. International Society for Optics and Photonics (2021)
Sun, G., Wang, W., Dai, J., Van Gool, L.: Mining cross-image semantics for weakly supervised semantic segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 347–365. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_21
Teichmann, M.T., Cipolla, R.: Convolutional CRFs for semantic segmentation. arXiv preprint. arXiv:1805.04777 (2018)
Tian, K., et al.: Weakly-supervised nucleus segmentation based on point annotations: a coarse-to-fine self-stimulated learning strategy. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 299–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_29
Wang, X., You, S., Li, X., Ma, H.: Weakly-supervised semantic segmentation by iteratively mining common object features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1354–1362 (2018)
Wang, Y., Zhang, J., Kan, M., Shan, S., Chen, X.: Self-supervised equivariant attention mechanism for weakly supervised semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12275–12284 (2020)
Yuan, L., Tay, F.E., Li, G., Wang, T., Feng, J.: Revisiting knowledge distillation via label smoothing regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3903–3911 (2020)
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 2921–2929 (2016)
Acknowledgement
This work was supported by the Zhejiang Provincial Natural Science Foundation of China (No. LY21F020017, 2022C03043), National Natural Science Foundation of China (No. 61702146).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Li, Y. et al. (2022). Light Annotation Fine Segmentation: Histology Image Segmentation Based on VGG Fusion with Global Normalisation CAM. In: Qin, W., Zaki, N., Zhang, F., Wu, J., Yang, F. (eds) Computational Mathematics Modeling in Cancer Analysis. CMMCA 2022. Lecture Notes in Computer Science, vol 13574. Springer, Cham. https://doi.org/10.1007/978-3-031-17266-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-17266-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-17265-6
Online ISBN: 978-3-031-17266-3
eBook Packages: Computer ScienceComputer Science (R0)