Skip to main content

New Perspective Application and Hazards of Nanomaterial in Aquatic Environment

  • Chapter
  • First Online:
Advanced Functional Nanoparticles "Boon or Bane" for Environment Remediation Applications

Abstract

Nanomaterials (NMs) are known to have at least one dimension between about 1 and 100 nm. These nanomaterials can be categorized into nanoparticles (NPs), nanoplates, and nanofibers. In the last few decades, nanomaterial has got attention due to their wide applications in various sectors (such as environmental, pharmaceutical, personal care products, disease diagnosis, and treatment) based on their physicochemical properties. However, there are more concerns among environmentalists and scientists about the release of nanoparticles into the environment through different sources, which can cause environmental problems, human health hazard, and ecotoxicological issues. Aquatic biota is predominantly affected by the pollution caused by NPs. The fate, transport, and toxicity of NPs in aquatic ecosystem are affected by the transformation, which is dependent upon the initial NM properties, and its surrounding chemical and biological environment. Numerous research investigations have explored different types of NPs and their properties, applications, and hazards, but only a few have focused on the effect of NPs on aquatic ecosystem. In this chapter, ecotoxicological effects of NPs on aquatic ecosystem have been discussed based on the physiochemical properties by exploiting the latest research reports and future directions are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 66.50
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 83.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
CHF 118.00
Price excludes VAT (Switzerland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abd Ellah NH, Abouelmagd SA (2017) Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv 14(2):201–214. https://doi.org/10.1080/17425247.2016.1213238

    Article  CAS  Google Scholar 

  • Abouelmagd SA, Meng F, Kim BK, Hyun H, Yeo Y (2016) Tannic acid-mediated surface functionalization of polymeric nanoparticles. ACS Biomater Sci Eng 2(12):2294–2303. https://doi.org/10.1021/acsbiomaterials.6b00497

    Article  CAS  Google Scholar 

  • Adams-Haduch JM, Paterson DL, Sidjabat HE, Pasculle AW, Potoski BA, Muto CA et al (2008) Genetic basis of multidrug resistance in Acinetobacter baumannii clinical isolates at a tertiary medical center in Pennsylvania. Antimicrob Agents Chemother 52(11):3837–3843

    Article  CAS  Google Scholar 

  • Aitken RJ, Chaudhry MQ, Boxall AB, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med (Lond) 56(5):300–306. doi:56/5/300 [pii]10.1093/occmed/kql051

    Article  CAS  Google Scholar 

  • Alexander DE (1999) Encyclopedia of environmental science. Springer. ISBN 0-412-74050-8

    Google Scholar 

  • Ali A, Zafar H, Zia M, Ul Haq I, Phull AR, Ali JS et al (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    Article  CAS  Google Scholar 

  • Allen BL, Kichambare PD, Gou P, Vlasova II, Kapralov AA, Konduru N et al (2008) Biodegradation of single-walled carbon nanotubes through enzymatic catalysis 8(11):3899–3903. https://doi.org/10.1021/nl802315h

    Article  CAS  Google Scholar 

  • Aruoja V, Pokhrel S, Sihtma¨e M, Mortimer M, Ma¨dler L, Kahru A (2015) Toxicity of 12 metalbased nanoparticles to algae, bacteria and protozoa. Environ Sci Nano 630(2)

    Google Scholar 

  • Asharani PV, Lian WY, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25):255102. doi:S0957-4484(08)71001-8 [pii]10.1088/0957-4484/19/25/255102

    Article  CAS  Google Scholar 

  • Ates M, Daniels J, Arslan Z, Farah IO, Rivera HF (2013) Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity. Environ Sci Process Impacts 15(1):225–233. https://doi.org/10.1039/c2em30540b

    Article  CAS  Google Scholar 

  • Avasare V, Zhang Z, Avasare D, Khan I, Qurashi A (2015) Room-temperature synthesis of TiO2 nanospheres and their solar driven photoelectrochemical hydrogen production. Int J Energy Res 39:1714–1719

    Article  CAS  Google Scholar 

  • Baptista MS, Miller RJ, Halewood ER, Hanna SK, Almeida CM, Vasconcelos VM et al (2015) Impacts of silver nanoparticles on a natural estuarine plankton community. Environ Sci Technol 49(21):12968–12974. https://doi.org/10.1021/acs.est.5b03285

    Article  CAS  Google Scholar 

  • Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueousenvironments: influence of ph, ionic strength, size, and adsorption ofhumic acid. Langmuir 27:6059–6068

    Article  CAS  Google Scholar 

  • Burchardt AD, Carvalho RN, Valente A, Nativo P, Gilliland D, Garcia CP et al (2012) Effects of silver nanoparticles in diatom Thalassiosira pseudonana and cyanobacterium Synechococcus sp. Environ Sci Technol 46(20):11336–11344. https://doi.org/10.1021/es300989e

    Article  CAS  Google Scholar 

  • Buseck PR, Posfai M (1999) Airborne minerals and related aerosol particles: effects on climate and the environment. Proc Natl Acad Sci U S A 96(7):3372–3379. https://doi.org/10.1073/pnas.96.7.3372

    Article  CAS  Google Scholar 

  • Calvo P, Remuoon-Lopez C, Vila-Jato JL, Alonso MJ (1997) Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 63:125–132

    Article  CAS  Google Scholar 

  • Champion JA, Mitragotri S (2006) Role of _target geometry in phagocytosis. Proc Natl Acad Sci USA 103(13):4930–4934. doi:0600997103 [pii]10.1073/pnas.0600997103

    Article  CAS  Google Scholar 

  • Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G et al (2006) Acute toxicological effects of copper nanoparticles in vivo. Toxicol Lett 163(2):109–120. doi:S0378-4274(05)00317-6 [pii]10.1016/j.toxlet.2005.10.003

    Article  CAS  Google Scholar 

  • Chithrani BD, Ghazani AA, Chan WC (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 6(4):662–668. https://doi.org/10.1021/nl052396o

    Article  CAS  Google Scholar 

  • Das P, Williams CJ, Fulthorpe RR, Hoque ME, Metcalfe CD, Xenopoulos MA (2012) Changes in bacterial community structure after exposure to silver nanoparticles in natural waters. Environ Sci Technol 46(16):9120–9128. https://doi.org/10.1021/es3019918

    Article  CAS  Google Scholar 

  • Domingo G, Bracale M, Vannini C (2019). Phytotoxicity of silver nanoparticles to aquatic plants, algae, and microorganisms

    Google Scholar 

  • Donaldson K, Stone V (2003) Current hypotheses on the mechanisms of toxicity of ultrafine particles. Ann Ist Super Sanita 39(3):405–410

    CAS  Google Scholar 

  • Dong H, Wen B, Melnik R (2014) Relative importance of grain boundaries and size effects in thermal conductivity of nanocrystalline materials. Sci Rep 4:7037. doi:srep07037 [pii]10.1038/srep07037

    Article  CAS  Google Scholar 

  • Donia DT, Carbone M (2019) Fate of the nanoparticles in environmental cycles. Int J Environ Sci Technol 16:583–600

    Article  CAS  Google Scholar 

  • Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779. https://doi.org/10.1039/c1cs15237h

    Article  CAS  Google Scholar 

  • Duong TT, Le TS, Huong Tran TT, Nguyen TK, Ho CT, Dao TH, Dang DK, Ha PT (2016) Inhibition effect of engineered silver nanoparticles to bloom forming cyanobacteria. Adv Nat Sci Nanosci Nanotechnol 7(3)

    Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2011) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45(1):283–287. https://doi.org/10.1021/es1034188

    Article  CAS  Google Scholar 

  • Elzey S, Grassian V (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 12(5):1945–1958

    Article  CAS  Google Scholar 

  • Fabrega J, Fawcett SR, Renshaw JC, Lead JR (2009) Silver nanoparticle impact on bacterial growth: effect of pH, concentration, and organic matter. Environ Sci Technol 43(19):7285–7290. https://doi.org/10.1021/es803259g

    Article  CAS  Google Scholar 

  • Fabrega J, Tantra R, Amer A, Stolpe B, Tomkins J, Fry T et al (2012) Sequestration of zinc from zinc oxide nanoparticles and life cycle effects in the sediment dweller amphipod Corophium volutator. Environ Sci Technol 46(2):1128–1135. https://doi.org/10.1021/es202570g

    Article  CAS  Google Scholar 

  • Fang XQ, Liu JX, Gupta V (2013) Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale 5(5):1716–1726. https://doi.org/10.1039/c2nr33531j

    Article  CAS  Google Scholar 

  • Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281(5374):237–240. https://doi.org/10.1126/science.281.5374.237

    Article  CAS  Google Scholar 

  • Gatoo MA, Naseem S, Arfat MY, Dar AM, Qasim K, Zubair S (2014) Physicochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014:498420. https://doi.org/10.1155/2014/498420

    Article  CAS  Google Scholar 

  • Gilbert B, Lu G, Kim CS (2007) Stable cluster formation in aqueous suspensions of iron oxyhydroxide nanoparticles. J Colloid Interface Sci 313(1):152–159. doi:S0021-9797(07)00479-1 [pii]10.1016/j.jcis.2007.04.038

    Article  CAS  Google Scholar 

  • Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900. https://doi.org/10.1021/bc049951i

    Article  CAS  Google Scholar 

  • Greeley J, Markovic NM (2012) The road from animal electricity to green energy: combining experiment and theory in electrocatalysis. Energy Environ Sci:5

    Google Scholar 

  • Griffitt RJ, Luo J, Gao J, Bonzongo JC, Barber DS (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27(9):1972–1978. doi:08-002 [pii]10.1897/08-002.1

    Article  CAS  Google Scholar 

  • Gubbins EJ, Batty LC, Lead JR (2011) Phytotoxicity of silver nanoparticles to Lemna minor L. Environ Pollut 159(6):1551–1559. doi:S0269-7491(11)00131-X [pii]10.1016/j.envpol.2011.03.002

    Article  CAS  Google Scholar 

  • Gujrati M, Malamas A, Shin T, Jin E, Sun Y, Lu ZR (2014) Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm 11(8):2734–2744. https://doi.org/10.1021/mp400787s

    Article  CAS  Google Scholar 

  • Guo D, Xie G, Luo J (2014) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47(13001)

    Google Scholar 

  • Hamilton RF, Wu N, Porter D, Buford M, Wolfarth M, Holian A (2009) Particle length-dependent titanium dioxide nanomaterials toxicity and bioactivity. Part Fibre Toxicol 6:35. doi:1743-8977-6-35 [pii]10.1186/1743-8977-6-35

    Article  Google Scholar 

  • He D, Dorantes-Aranda JJ, Waite TD (2012) Silver nanoparticle-algae interactions: oxidative dissolution, reactive oxygen species generation and synergistic toxic effects. Environ Sci Technol 46(16):8731–8738. https://doi.org/10.1021/es300588a

    Article  CAS  Google Scholar 

  • Holden PA, Klaessig F, Turco RF, Priester JH, Rico CM, Avila-Arias H et al (2014) Evaluation of exposure concentrations used in assessing manufactured nanomaterial environmental hazards: are they relevant? Environ Sci Technol 48(18):10541–10551. https://doi.org/10.1021/es502440s

    Article  CAS  Google Scholar 

  • Holgate ST (2010) Exposure, uptake, distribution and toxicity of nanomaterials in humans. J Biomed Nanotechnol 6(1):1–19. https://doi.org/10.1166/jbn.2010.1098

    Article  CAS  Google Scholar 

  • Hsiao IL, Huang YJ (2011) Effects of various physicochemical characteristics on the toxicities of ZnO and TiO nanoparticles toward human lung epithelial cells. Sci Total Environ 409(7):1219–1228. doi:S0048-9697(10)01364-1 [pii]10.1016/j.scitotenv.2010.12.033

    Article  CAS  Google Scholar 

  • Huang J, Cheng J, Yi J (2016) Impact of silver nanoparticles on marine diatom Skeletonema costatum. J Appl Toxicol 36(10):1343–1354. https://doi.org/10.1002/jat.3325

    Article  CAS  Google Scholar 

  • Iavicoli I, Leso V, Ricciardi W, Hodson LL, Hoover MD (2014) Opportunities and challenges of nanotechnology in the green economy. Environ Health 13:78. doi:1476-069X-13-78 [pii]10.1186/1476-069X-13-78

    Article  Google Scholar 

  • Jahan S, Yusoff IB, Alias YB, Bakar A (2017) Reviews of the toxicity behavior of five potential engineered nanomaterials (ENMs) into the aquatic ecosystem. Toxicol Rep 4:211–220. https://doi.org/10.1016/j.toxrep.2017.04.001S2214-7500(17)30017-3[pii]

    Article  CAS  Google Scholar 

  • Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK (2018) Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J Nanotechnol 9:1050–1074. https://doi.org/10.3762/bjnano.9.98

    Article  Google Scholar 

  • Jiang HS, Li M, Chang FY, Li W, Yin LY (2012) Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ Toxicol Chem 31(8):1880–1886. https://doi.org/10.1002/etc.1899

    Article  CAS  Google Scholar 

  • Jiang HS, Qiu XN, Li GB, Li W, Yin LY (2014) Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ Toxicol Chem 33(6):1398–1405. https://doi.org/10.1002/etc.2577

    Article  CAS  Google Scholar 

  • Kang S, Mauter MS, Elimelech M (2008) Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42(19):7528–7534. https://doi.org/10.1021/es8010173

    Article  CAS  Google Scholar 

  • Karnik BS, Davies SH, Baumann MJ, Masten SJ (2005) Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration. Environ Sci Technol 39(19):7656–7661. https://doi.org/10.1021/es0503938

    Article  CAS  Google Scholar 

  • Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ et al (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44(6):1962–1967. https://doi.org/10.1021/es902987d

    Article  CAS  Google Scholar 

  • Keller AA, McFerran S, Lazareva A, Suh S (2013) Global life cycle releases of engineered nanomaterials. J Nanopart Res 15:1–17

    Article  Google Scholar 

  • Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12(7):908–931

    Article  CAS  Google Scholar 

  • Kim J, Kim S, Lee S (2011) Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology 5(2):208–214. https://doi.org/10.3109/17435390.2010.508137

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE, Fernandes TF, Handy RD, Lyon DY et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851. https://doi.org/10.1897/08-090.1

    Article  CAS  Google Scholar 

  • Kohli AK, Alpar HO (2004) Potential use of nanoparticles for transcutaneous vaccine delivery: effect of particle size and charge. Int J Pharm 275(1–2):13–17

    Article  CAS  Google Scholar 

  • Kot M, Major Ł, Lackner JM, Chronowska-Przywara K, Janusz M, Rakowski W (2016) Mechanical and tribological properties of carbon-based graded coatings. J Nanomater:1–14

    Google Scholar 

  • Kraas M, Schlich K, Knopf B, Wege F, Kagi R, Terytze K et al (2017) Long-term effects of sulfidized silver nanoparticles in sewage sludge on soil microflora. Environ Toxicol Chem 36(12):3305–3313. https://doi.org/10.1002/etc.3904

    Article  CAS  Google Scholar 

  • Lankveld DP, Oomen AG, Krystek P, Neigh A, Troost-de Jong A, Noorlander CW et al (2010) The kinetics of the tissue distribution of silver nanoparticles of different sizes. Biomaterials 31(32):8350–8361. doi:S0142-9612(10)00888-4 [pii]10.1016/j.biomaterials.2010.07.045

    Article  CAS  Google Scholar 

  • Larner F, Dogra Y, Dybowska A, Fabrega J, Stolpe B, Bridgestock LJ et al (2012) Tracing bioavailability of ZnO nanoparticles using stable isotope labeling. Environ Sci Technol 46(21):12137–12145. https://doi.org/10.1021/es302602j

    Article  CAS  Google Scholar 

  • Laurent S, Bridot JL, Elst LV, Muller RN (2010) Magnetic iron oxide nanoparticles for biomedical applications. Future Med Chem 2(3):427–449. https://doi.org/10.4155/fmc.09.164

    Article  CAS  Google Scholar 

  • Lee R (2001) Bioavailability, biotransformation and fate of organic contaminants in estuarine animals. CRC Press

    Book  Google Scholar 

  • Lee JE, Lee N, Kim T, Kim J, Hyeon T (2011) Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc Chem Res 44(10):893–902. https://doi.org/10.1021/ar2000259

    Article  CAS  Google Scholar 

  • Lei YM, Huang WX, Zhao M, Chai YQ, Yuan R, Zhuo Y (2015) Electrochemiluminescence resonance energy transfer system: mechanism and application in Ratiometric Aptasensor for lead ion. Anal Chem 87(15):7787–7794. https://doi.org/10.1021/acs.analchem.5b01445

    Article  CAS  Google Scholar 

  • Levard C, Hotze EM, Lowry GV, Brown GE Jr (2012) Environmental transformations of silver nanoparticles: impact on stability and toxicity. Environ Sci Technol 46(13):6900–6914. https://doi.org/10.1021/es2037405

    Article  CAS  Google Scholar 

  • Li X, Schirmer K, Bernard L, Sigg L, Pillai P, Behra R (2015) Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environ Sci Nano 2(6):594e602

    Article  Google Scholar 

  • Liu J, Hurt RH (2010) Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ Sci Technol 44(6):2169–2175. https://doi.org/10.1021/es9035557

    Article  CAS  Google Scholar 

  • Liu D, Li C, Zhou F, Zhang T, Zhang H, Li X et al (2015) Rapid synthesis of monodisperse Au nanospheres through a laser irradiation-induced shape conversion, self-assembly and their electromagnetic coupling SERS enhancement. Sci Rep 5:7686. doi:srep07686 [pii]10.1038/srep07686

    Article  CAS  Google Scholar 

  • Loureiro A, Azoia NG, Gomes AC, Cavaco-Paulo A (2016) Albumin-based Nanodevices as drug carriers. Curr Pharm Des 22(10):1371–1390. doi:CPD-EPUB-73211 [pii]10.2174/1381612822666160125114900

    Article  CAS  Google Scholar 

  • Lowry GV, Gregory KB, Apte SC, Lead JR (2012) Transformations of nanomaterials in the environment. Environ Sci Technol 46(13):6893–6899. https://doi.org/10.1021/es300839e

    Article  CAS  Google Scholar 

  • Mansha M, Khan I, Ullah N, Qurashi A (2017) Synthesis, characterization and visible-light-driven photoelectrochemical hydrogen evolution reaction of carbazole-containing conjugated polymers. Int J Hydrog Energy. https://doi.org/10.1016/j

    Google Scholar 

  • Martis E, Badve R, Degwekar M (2012) Nanotechnology based devices and applications in medicine: an overview. Chron Young Sci 3(68)

    Google Scholar 

  • Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2010) Impact of metal oxidenanoparticles on marine phytoplankton. Environ Sci Technol 44(19):7329–7334

    Article  CAS  Google Scholar 

  • Monteiro-Riviere NA, Wiench K, Landsiedel R, Schulte S, Inman AO, Riviere JE (2011) Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: an in vitro and in vivo study. Toxicol Sci 123(1):264–280. doi:kfr148 [pii]10.1093/toxsci/kfr148

    Article  CAS  Google Scholar 

  • Montes MO, Hanna SK, Lenihan HS, Keller AA (2012) Uptake, accumulation, and biotransformation of metal oxide nanoparticles by a marine suspension-feeder. J Hazard Mater 225-226:139–145. doi:S0304-3894(12)00491-8 [pii]10.1016/j.jhazmat.2012.05.009

    Article  CAS  Google Scholar 

  • Movafeghi A, Khataee A, Abedi M, Tarrahi R, Dadpour M, Vafaei F (2018) Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: evaluation of growth parameters, pigment contents and antioxidant enzyme activities. J Environ Sci (China) 64:130–138. doi:S1001-0742(17)30321-2 [pii]10.1016/j.jes.2016.12.020

    Article  CAS  Google Scholar 

  • Mueller NC, Nowack B (2008) Exposure modeling of engineered nanoparticles in the environment. Environ Sci Technol 42(12):4447–4453. https://doi.org/10.1021/es7029637

    Article  CAS  Google Scholar 

  • Nikalje AP (2015) Nanotechnology and its applications in medicine. Med Chem 5

    Google Scholar 

  • Ning Z, Cheung CS, Fu J, Liu MA, Schnell MA (2006) Experimental study of environmental tobacco smoke particles under actual indoor environment. Sci Total Environ 367(2–3):822–830. doi:S0048-9697(06)00155-0 [pii]10.1016/j.scitotenv.2006.02.017

    Article  CAS  Google Scholar 

  • OECD OfEC, Development. Guidelines for testing of chemicals, section 2: effects on biotic systems, procedure 201. Algal Growth Inhibition Test 1984; Organisation for Economic Cooperation and Development, Paris

    Google Scholar 

  • Oukarroum A, Barhoumi L, Pirastru L, Dewez D (2013) Silver nanoparticle toxicity effect on growth and cellular viability of the aquatic plant Lemnagibba. Environ Toxicol Chem 32(902e907)

    Google Scholar 

  • Park KH, Chhowalla M, Iqbal Z, Sesti F (2003) Single-walled carbon nanotubes are a new class of ion channel blockers. J Biol Chem 278(50):50212–50216. https://doi.org/10.1074/jbc.M310216200M310216200[pii]

    Article  CAS  Google Scholar 

  • Peng X, Palma S, Fisher NS, Wong SS (2011) Effect of morphology of ZnO nanostructures on their toxicity to marine algae. Aquat Toxicol 102(3–4):186–196. doi:S0166-445X(11)00021-X [pii]10.1016/j.aquatox.2011.01.014

    Article  CAS  Google Scholar 

  • Petersen EJ, Nelson BC (2010) Mechanisms and measurements of nanomaterial-induced oxidative damage to DNA. Anal Bioanal Chem 398(2):613–650. https://doi.org/10.1007/s00216-010-3881-7

    Article  CAS  Google Scholar 

  • Powers KW, Palazuelos M, Moudgil BM, Roberts SM (2007) Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 1(1):42–51

    Article  CAS  Google Scholar 

  • Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E et al (2009) Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst 26(6):523–580. doi:7a0c3bee026fb778,313cd9ee34e9e406 [pii]10.1615/critrevtherdrugcarriersyst.v26.i6.10

    Article  CAS  Google Scholar 

  • Rao JP, Geckeler KE (2011) Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci 36:887–913

    Article  CAS  Google Scholar 

  • Risom L, Moller P, Loft S (2005) Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res 592(1–2):119–137. doi:S0027-5107(05)00246-0 [pii]10.1016/j.mrfmmm.2005.06.012

    Article  CAS  Google Scholar 

  • Rogozea EA, Petcu AR, Olteanu NL, Lazar CA, Cadar D, Mihaly M (2017) Tandem adsorption-photodegradation activity induced by light on NiO-ZnO p–n couple modified silica nanomaterials. Mater Sci Semicond Process 57:1–11

    Article  CAS  Google Scholar 

  • Saeed K, Khan I (2014) Preparation and properties of single-walled carbon nanotubes/poly(butylene terephthalate) nanocomposites. Iran Polym J 23:53–58

    Article  CAS  Google Scholar 

  • Saeed K, Khan I (2016) Preparation and characterization of singlewalled carbon nanotube/nylon 6,6 nanocomposites. Instrum Sci Technol 44:435–444

    Article  CAS  Google Scholar 

  • Sani-Kast N, Labille J, Ollivier P, Slomberg D, Hungerbuhler K, Scheringer M (2017) A network perspective reveals decreasing material diversity in studies on nanoparticle interactions with dissolved organic matter. Proc Natl Acad Sci U S A 114(10):E1756–E1E65. doi:1608106114 [pii]10.1073/pnas.1608106114

    Article  CAS  Google Scholar 

  • Sapkota A, Symons JM, Kleissl J, Wang L, Parlange MB, Ondov J et al (2005) Impact of the 2002 Canadian forest fires on particulate matter air quality in Baltimore city. Environ Sci Technol 39(1):24–32. https://doi.org/10.1021/es035311z

    Article  CAS  Google Scholar 

  • Scown TM, Santos EM, Johnston BD, Gaiser B, Baalousha M, Mitov S et al (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicol Sci 115(2):521–534. doi:kfq076 [pii]10.1093/toxsci/kfq076

    Article  CAS  Google Scholar 

  • Shao W, Nabb D, Renevier N, Sherrington I, Luo JK (2012) Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition. IOP Conf Ser Mater Sci Eng 40(12042)

    Google Scholar 

  • Shin WK, Cho J, Kannan AG, Lee YS, Kim DW (2016) Cross-linked composite gel polymer electrolyte using mesoporous methacrylate-functionalized SiO2 nanoparticles for lithium-ion polymer batteries. Sci Rep 6:26332. doi:srep26332 [pii]10.1038/srep26332

    Article  CAS  Google Scholar 

  • Sioutas C, Delfino RJ, Singh M (2005) Exposure assessment for atmospheric ultrafine particles (UFPs) and implications in epidemiologic research. Environ Health Perspect 113(8):947–955. https://doi.org/10.1289/ehp.7939

    Article  Google Scholar 

  • Sohm B, Immel F, Bauda P, Pagnout C (2015) Insight into the primary mode of action of TiO2 nanoparticles on Escherichia coli in the dark. Proteomics 15(1):98–113. https://doi.org/10.1002/pmic.201400101

    Article  CAS  Google Scholar 

  • Stefani D, Wardman D, Lambert T (2005) The implosion of the Calgary general hospital: ambient air quality issues. J Air Waste Manag Assoc 55(1):52–59. https://doi.org/10.1080/10473289.2005.10464605

    Article  CAS  Google Scholar 

  • Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992. doi:8349 [pii]10.1126/science.287.5460.1989

    Article  CAS  Google Scholar 

  • Taylor DA (2002) Dust in the wind. Environ Health Perspect 110(2):A80–A87. doi:sc271_5_1835 [pii]10.1289/ehp.110-a80

    Article  Google Scholar 

  • Taylor C, Matzke M, Kroll A, Read DS, Svendsen C, Crossley A (2016) Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances. Environ Sci Nano 3(396e408)

    Google Scholar 

  • Thalmann B, Voegelin A, Morgenroth E, Kaegi R (2016) Effect of humic acid on the kinetics of silver nanoparticle sulfidation. Environ Sci Nano 3(1):203–212

    Article  CAS  Google Scholar 

  • Thomas SC, Harshita, Mishra PK, Talegaonkar S (2015) Ceramic nanoparticles: fabrication methods and applications in drug delivery. Curr Pharm Des 21(42):6165–6188. doi:CPD-EPUB-71344 [pii]10.2174/1381612821666151027153246

    Article  CAS  Google Scholar 

  • Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1:44–48

    Article  Google Scholar 

  • Turan NB, Erkan HS, Engin GO, Bilgili MS (2019) Nanoparticles in the aquatic environment: usage, properties,transformation and toxicity—a review. Process Saf Environ Prot 130:238–249

    Article  CAS  Google Scholar 

  • Turner A, Brice D, Brown MT (2012) Interactions of silver nanoparticles with the marine macroalga. Ulva lactuca Ecotoxicology 21(1):148–154. https://doi.org/10.1007/s10646-011-0774-2

    Article  CAS  Google Scholar 

  • Ullah H, Khan I, Yamani ZH, Qurashi A (2017) Sonochemical-driven ultrafast facile synthesis of SnO2 nanoparticles: growth mechanism structural electrical and hydrogen gas sensing properties. Ultrason Sonochem 34:484–490. doi:S1350-4177(16)30223-1 [pii]10.1016/j.ultsonch.2016.06.025

    Article  CAS  Google Scholar 

  • Unser S, Bruzas I, He J, Sagle L (2015) Localized surface Plasmon resonance biosensing: current challenges and approaches. Sensors (Basel) 15(7):15684–15716. doi:s150715684 [pii]10.3390/s150715684

    Article  Google Scholar 

  • USEPA UEPA (1996) Ecological effect test guidelines. OPPTS 850.5400. Algal Toxicity, Tiers I and II

    Google Scholar 

  • Vaccari DA (2005) Environmental biology for engineers and scientists. Wiley-Interscience. ISBN 0-471-74178-7

    Book  Google Scholar 

  • Walters C, Pool E, Somerset V (2013) Aggregation and dissolution of silver nanoparticles in alaboratory-based freshwater microcosm under simulated environmental conditions. Toxicol Environ Chem 95(10):1690–1701

    Article  CAS  Google Scholar 

  • Walters C, Pool E, Somerset V (2016) Nanotoxicology: a review, toxicology – new aspects to this scientific conundrum. Larramendy. IntechOpen. https://doi.org/10.5772/64754

    Book  Google Scholar 

  • Weinberg H, Galyean A, Leopold M (2011) Evaluating engineered nanoparticlesin natural waters. TrAC Trends Anal Chem 30:72–83

    Article  CAS  Google Scholar 

  • Wong SW, Leung PT, Djurisic AB, Leung KM (2010) Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Anal Bioanal Chem 396(2):609–618. https://doi.org/10.1007/s00216-009-3249-z

    Article  CAS  Google Scholar 

  • Wu J, Lu H, Zhu G, Chen L, Chang Y, Yu R (2017) Regulation of membrane fixation and energy production/conversion for adaptation and recovery of ZnO nanoparticle impacted Nitrosomonas europaea. Appl Microbiol Biotechnol 101(7):2953–2965. https://doi.org/10.1007/s00253-017-8092-010.1007/s00253-017-8092-0[pii]

    Article  CAS  Google Scholar 

  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409(8):1444–1452

    Article  CAS  Google Scholar 

  • Xiu ZM, Zhang QB, Puppala HL, Colvin VL, Alvarez PJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12(8):4271–4275. https://doi.org/10.1021/nl301934w

    Article  CAS  Google Scholar 

  • Yang ST, Wang X, Jia G, Gu Y, Wang T, Nie H et al (2008) Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol Lett 181(3):182–189. doi:S0378-4274(08)01199-5 [pii]10.1016/j.toxlet.2008.07.020

    Article  CAS  Google Scholar 

  • Young KJ, Martini LA, Milot RL, Snoeberger RC III, Batista VS, Schmuttenmaer CA et al (2012) Light-driven water oxidation for solar fuels. Coord Chem Rev 256(21–22):2503–2520. https://doi.org/10.1016/j.ccr.2012.03.031

    Article  CAS  Google Scholar 

  • Zhao J, Wang Z, White JC, Xing B (2014) Graphene in the aquatic environment: adsorption, dispersion, toxicity and transformation. Environ Sci Technol 48(17):9995–10009. https://doi.org/10.1021/es5022679

    Article  CAS  Google Scholar 

  • Zhu X, Wang J, Zhang X, Chang Y, Chen Y (2009) The impact of ZnO nanoparticle aggregates on the embryonic development of zebrafish (Danio rerio). Nanotechnology 20(19):195103. doi:S0957-4484(09)03849-5 [pii]10.1088/0957-4484/20/19/195103

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Questions

  1. 1.

    What type of nanoparticles are 100 times stronger than steel and can be used for the structural reinforcement?

    1. A.

      Carbon-based nanoparticles.

    2. B.

      Semiconductor nanoparticles.

    3. C.

      Ceramic nanoparticles.

    4. D.

      None of the above.

  2. 2.

    How elevated temperature affects the aggregation property in relevance to toxicity of nanoparticles?

  3. 3.

    How does size and surface area affect the toxicity of nanoparticles?

  4. 4.

    What are the different categories of environmental applications of nanoparticles?

  5. 5.

    What are the different sources of nanoparticles release into the environment?

  6. 6.

    What is transformation of nanoparticles? What are the different forms of nanoparticle transformation occurring in natural systems?

  7. 7.

    What are the ecotoxicological effects of NPs on phytoplankton, which are the primary producers of aquatic food web.

Answers

  1. 1.

    (A) Carbon-based nanoparticles

  2. 2.

    With increase in temperature, smaller aggregates will be formed, which further increases toxicity of nanoparticles.

  3. 3.

    Size affects the toxicity of NPs as it leads to change in surface area. As the size of the material decreases, the surface area increases exponentially, which enhances the reactivity of nanoparticle surface. For example, with decrease in size of copper nanoparticles, the oral toxicity also increases.

  4. 4.

    Three categories:

    1. A.

      Environmentally benign and/or sustainable products (e.g., green chemistry or pollution prevention).

    2. B.

      Remediation of materials contaminated with hazardous substances.

    3. C.

      Sensors for environmental agents.

  5. 5.

    There are three main sources, which include: incidental, engineered, and naturally released nanoparticles.

  6. 6.

    The process of converting the nanoparticles into different reactive forms has potential impacts on their behavior, and effects in the environment are called as transformation of nanoparticles. The chemical, physical, and biological were different forms of nanoparticle transformation occurring in natural systems.

  7. 7.

    NPs affect the phytoplankton in numerous ways, such as the growth rate of phytoplankton gets suppressed by NPs. They also decline the equilibrium densities of phytoplankton as well as zooplankton, as the contact with NPs and phytoplankton increases. Photosynthetic efficiency of them was also reduced by the toxicity of NPs.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhary, R., Kumar, S., Sethi, P. (2023). New Perspective Application and Hazards of Nanomaterial in Aquatic Environment. In: Kumar, R., Kumar, R., Chaudhary, S. (eds) Advanced Functional Nanoparticles "Boon or Bane" for Environment Remediation Applications. Environmental Contamination Remediation and Management. Springer, Cham. https://doi.org/10.1007/978-3-031-24416-2_10

Download citation

Publish with us

Policies and ethics

  NODES
Association 1
COMMUNITY 2
Note 10