Abstract
Embedded-systems designers often use transition system-based notations for specifying, with respect to some refinement preorder, sets of deterministic implementations. This paper compares popular such refinement settings — ranging from transition systems equipped with failure-pair inclusion to disjunctive modal transition systems — regarding the sets of implementations they are able to express. The paper’s main result is an expressiveness hierarchy, as well as language-preserving transformations between various settings. In addition to system designers, the main beneficiaries of this work are tool builders who wish to reuse refinement checkers or model checkers across different settings.
Research support provided by DFG (FE 942/2-1, RO 1122/12-2), EPSRC (EP/E034853/1) and MEC (TIN2006-15660-C02-01, TIN2006-15578-C02-01).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baeten, J., Bergstra, J., Klop, J.: Ready-trace semantics for concrete process algebra with the priority operator. Computer J. 30(6), 498–506 (1987)
Bloom, B., Istrail, S., Meyer, A.: Bisimulation can’t be traced. J. ACM 42(1), 232–268 (1995)
Boudol, G., Larsen, K.G.: Graphical vs. logical specifications. Theoretical Computer Science 106(1), 3–20 (1992)
Brookes, S., Hoare, C., Roscoe, A.: A theory of communicating sequential processes. J. ACM 31(3), 560–599 (1984)
Cleaveland, R., Hennessy, M.: Testing equivalence as a bisimulation equivalence. Formal Aspects of Computing 5(1), 1–20 (1993)
Cleaveland, R., Sokolsky, O.: Equivalence and preorder checking for finite-state systems. In: Handbook of Process Algebra, pp. 391–424. North-Holland, Amsterdam (2001)
Dams, D., Gerth, R., Grumberg, O.: Abstract interpretation of reactive systems. ACM TOPLAS 19(2), 253–291 (1997)
Dams, D., Namjoshi, K.S.: The existence of finite abstractions for branching time model checking. In: LICS, pp. 335–344. IEEE, Los Alamitos (2004)
Dams, D., Namjoshi, K.S.: Automata as abstractions. In: Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 216–232. Springer, Heidelberg (2005)
Engelfriet, J.: Determinacy → (observation equivalence = trace equivalence). Theoretical Computer Science 36, 21–25 (1985)
Eshuis, R., Fokkinga, M.M.: Comparing refinements for failure and bisimulation semantics. Fundam. Inf. 52(4), 297–321 (2002)
Fecher, H., Grabe, I.: Finite abstract models for deterministic transition systems: Fair parallel composition and refinement-preserving logic. In: Arbab, F., Sirjani, M. (eds.) FSEN 2007. LNCS, vol. 4767, pp. 1–16. Springer, Heidelberg (2007)
Fecher, H., Huth, M.: Ranked predicate abstraction for branching time: Complete, incremental, and precise. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 322–336. Springer, Heidelberg (2006)
Fecher, H., Huth, M., Schmidt, H., Schönborn, J.: Refinement sensitive formal semantics of state machines with persistent choice. In: AVoCS. ENTCS (2007) (to appear)
Fecher, H., Schmidt, H.: Comparing disjunctive modal transition systems with an one-selecting variant. J. Logic and Algebraic Programming 77, 20–39 (2008)
Fecher, H., Steffen, M.: Characteristic μ-calculus formula for an underspecified transition system. In: EXPRESS 2004. ENTCS, vol. 128, pp. 103–116 (2005)
Glabbeek, R.v.: The linear time–branching time spectrum I. The semantics of concrete, sequential processes. In: Handbook of Process Algebra, pp. 3–99. North-Holland, Amsterdam (2001)
Godefroid, P., Jagadeesan, R.: On the expressiveness of 3-valued models. In: Zuck, L.D., Attie, P.C., Cortesi, A., Mukhopadhyay, S. (eds.) VMCAI 2003. LNCS, vol. 2575, pp. 206–222. Springer, Heidelberg (2002)
Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)
Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 32(1), 137–161 (1985)
Hussain, A., Huth, M.: Automata games for multiple-model checking. ENTCS 155, 401–421 (2006)
Janin, D., Walukiewicz, I.: Automata for the modal mu-calculus and related results. In: Hájek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562. Springer, Heidelberg (1995)
Larsen, K.G., Nyman, U., Wasowski, A.: On modal refinement and consistency. In: Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 105–119. Springer, Heidelberg (2007)
Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)
Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE, Los Alamitos (1988)
Larsen, K.G., Xinxin, L.: Equation solving using modal transition systems. In: LICS, pp. 108–117. IEEE, Los Alamitos (1990)
Olderog, E., Hoare, C.: Specification-oriented semantics for communicating processes. Acta Informatica 23(1), 9–66 (1986)
Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)
Phillips, I.: Refusal testing. Theoretical Computer Science 50(3), 241–284 (1987)
Shoham, S., Grumberg, O.: 3-valued abstraction: More precision at less cost. In: LICS, pp. 399–410. IEEE, Los Alamitos (2006)
Shukla, S., Hunt, H., Rosenkrantz, D., Stearns, R.: On the complexity of relational problems for finite state processes. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 466–477. Springer, Heidelberg (1996)
Veglioni, S., de Nicola, R.: Possible worlds for process algebras. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 179–193. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Fecher, H., de Frutos-Escrig, D., Lüttgen, G., Schmidt, H. (2010). On the Expressiveness of Refinement Settings. In: Arbab, F., Sirjani, M. (eds) Fundamentals of Software Engineering. FSEN 2009. Lecture Notes in Computer Science, vol 5961. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11623-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-11623-0_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-11622-3
Online ISBN: 978-3-642-11623-0
eBook Packages: Computer ScienceComputer Science (R0)