Skip to main content

The Non-selective Monovalent Cationic Channels TRPM4 and TRPM5

  • Chapter
  • First Online:
Transient Receptor Potential Channels

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

Transient Receptor Potential (TRP) proteins are non-selective cationic channels with a consistent Ca2+-permeability, except for TRPM4 and TRPM5 that are not permeable to this ion. However, Ca2+ is a major regulator of their activity since both channels are activated by a rise in internal Ca2+. Thus TRPM4 and TRPM5 are responsible for most of the Ca2+-activated non-selective cationic currents (NSCCa) recorded in a large variety of tissues. Their activation induces cell-membrane depolarization that modifies the driving force for ions as well as activity of voltage gated channels and thereby strongly impacts cell physiology. In the last few years, the ubiquitously expressed TRPM4 channel has been implicated in insulin secretion, the immune response, constriction of cerebral arteries, the activity of inspiratory neurons and cardiac dysfunction. Conversely, TRPM5 whose expression is more restricted, has until now been mainly implicated in taste transduction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
CHF34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
CHF 24.95
Price includes VAT (Switzerland)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
CHF 188.50
Price excludes VAT (Switzerland)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
CHF 236.00
Price excludes VAT (Switzerland)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
CHF 236.00
Price excludes VAT (Switzerland)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AMPA-R:

α-amino-3-hydroxyl-5-methyl-4-isoxalone-propionate receptor

calcin.:

calcineurin

DAG:

diacylglycerol

ΔV:

membrane potential

ΔΨ:

driving force

ER:

endoplasmic reticulum

G:

G-protein

GPCR:

G-protein coupled receptor

IP3 :

inositol 1,4,5-triphosphate

IP3R:

IP3 receptor

KATP :

ATP-dependant potassium channel;

mGLU-R:

metabotropic-glutamate receptor

PIP2 :

phosphatidylinositol 4,5-biphosphate

PKC:

protein kinase C

PLC:

phospholipase C

RyR:

ryanodine receptor

SUR:

sulphonylurea receptor

TCR:

T-cell receptor

TRPC6:

transient receptor potential canonical 6

TRPM4:

transient receptor potential melastatin 4

TRPM5:

transient receptor potential melastatin 5

Tyr-K:

tyrosine kinase

VDCa:

voltage-dependant calcium channel

VDNa channel:

voltage-dependant sodium channel

VR:

vasopressin receptor

References

  1. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109:397–407

    CAS  PubMed  Google Scholar 

  2. Enklaar T, Esswein M, Oswald M, Hilbert K, Winterpacht A, Higgins M, Zabel B, Prawitt D (2000) Mtr1, a novel biallelically expressed gene in the center of the mouse distal chromosome 7 imprinting cluster, is a member of the Trp gene family. Genomics 67:179–187

    CAS  PubMed  Google Scholar 

  3. Teulon J (2000) Ca2+-activated nonselective cation channels. In: Endo M, Kurachi Y, Mishina M (eds) Pharmacology of ionic channel function: activators and inhibitors. Springer, Berlin, pp 625–649

    Google Scholar 

  4. Vennekens R, Nilius B (2007) Insights into TRPM4 function, regulation and physiological role. Handb Exp Pharmacol 179:269–285

    CAS  PubMed  Google Scholar 

  5. Guinamard R, Demion M, Chatelier A, Bois P (2006) Calcium-activated nonselective cation channels in mammalian cardiomyocytes. Trends Cardiovasc Med 16:245–250

    CAS  PubMed  Google Scholar 

  6. Csanády L, Adam-Vizi V (2003) Ca(2+)- and voltage-dependent gating of Ca(2+)- and ATP-sensitive cationic channels in brain capillary endothelium. Biophys J 85:313–327

    PubMed Central  PubMed  Google Scholar 

  7. Popp R, Gögelein H (1992) A calcium and ATP sensitive nonselective cation channel in the antiluminal membrane of rat cerebral capillary endothelial cells. Biochim Biophys Acta 1108:59–66

    CAS  PubMed  Google Scholar 

  8. Chraïbi A, Van den Abbeele T, Guinamard R, Teulon J (1994) A ubiquitous non-selective cation channel in the mouse renal tubule with variable sensitivity to calcium. Pflugers Arch 429:90–97

    PubMed  Google Scholar 

  9. Teulon J, Paulais M, Bouthier M (1987) A Ca2-activated cation-selective channel in the basolateral membrane of the cortical thick ascending limb of Henle’s loop of the mouse. Biochim Biophys Acta 905:125–132

    CAS  PubMed  Google Scholar 

  10. Siemer C, Gögelein H (1992) Activation of nonselective cation channels in the basolateral membrane of rat distal colon crypt cells by prostaglandin E2. Pflugers Arch 420:319–328

    CAS  PubMed  Google Scholar 

  11. Maruyama Y, Petersen OH (1984) Single calcium-dependent cation channels in mouse pancreatic acinar cells. J Membr Biol 81:83–87

    CAS  PubMed  Google Scholar 

  12. Cheng H, Beck A, Launay P, Gross SA, Stokes AJ, Kinet JP, Fleig A, Penner R (2007) TRPM4 controls insulin secretion in pancreatic beta-cells. Cell Calcium 41:51–61

    CAS  PubMed  Google Scholar 

  13. Sturgess NC, Hales CN, Ashford ML (1986) Inhibition of a calcium-activated, non-selective cation channel, in a rat insulinoma cell line, by adenine derivatives. FEBS Lett 208:397–400

    CAS  PubMed  Google Scholar 

  14. Van den Abbeele T, Tran Ba Huy P, Teulon J (1994) A calcium-activated nonselective cationic channel in the basolateral membrane of outer hair cells of the guinea-pig cochlea. Pflugers Arch 427:56–63

    PubMed  Google Scholar 

  15. Liman ER (2003) Regulation by voltage and adenine nucleotides of a Ca2+-activated cation channel from hamster vomeronasal sensory neurons. J Physiol 548:777–787

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Partridge LD, Swandulla D (1987) Single Ca-activated cation channels in bursting neurons of Helix. Pflugers Arch 410:627–631

    CAS  PubMed  Google Scholar 

  17. Demion M, Bois P, Launay P, Guinamard R (2007) TRPM4, a Ca2+-activated nonselective cation channel in mouse sino-atrial node cells. Cardiovasc Res 73:531–538

    CAS  PubMed  Google Scholar 

  18. Colquhoun D, Neher E, Reuter H, Stevens CF (1981) Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 294:752–754

    CAS  PubMed  Google Scholar 

  19. Guinamard R, Chatelier A, Demion M, Potreau D, Patri S, Rahmati M, Bois P (2004) Functional characterization of a Ca(2+)-activated non-selective cation channel in human atrial cardiomyocytes. J Physiol 558:75–83

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem 278:30813–30820

    CAS  PubMed  Google Scholar 

  21. Pérez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5:1169–1176

    PubMed  Google Scholar 

  22. Nilius B, Owsianik G, Voets T, Peters JA (2007) Transient receptor potential cation channels in disease. Physiol Rev 87:165–217

    CAS  PubMed  Google Scholar 

  23. Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    CAS  PubMed  Google Scholar 

  24. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    PubMed Central  CAS  PubMed  Google Scholar 

  25. Kraft R, Harteneck C (2005) The mammalian melastatin-related transient receptor potential cation channels: an overview. Pflugers Arch 451:204–211

    CAS  PubMed  Google Scholar 

  26. Xu XZ, Moebius F, Gill DL, Montell C (2001) Regulation of melastatin, a TRP-related protein, through interaction with a cytoplasmic isoform. Proc Natl Acad Sci USA 98:10692–10697

    PubMed Central  CAS  PubMed  Google Scholar 

  27. Murakami M, Xu F, Miyoshi I, Sato E, Ono K, Iijima T (2003) Identification and characterization of the murine TRPM4 channel. Biochem Biophys Res Commun 307: 522–528

    CAS  PubMed  Google Scholar 

  28. Prawitt D, Enklaar T, Klemm G, Gärtner B, Spangenberg C, Winterpacht A, Higgins M, Pelletier J, Zabel B (2000) Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum Mol Genet 9:203–216

    CAS  PubMed  Google Scholar 

  29. Fujiwara Y, Minor DL Jr (2008) X-ray crystal structure of a TRPM assembly domain reveals an antiparallel four-stranded coiled-coil. J Mol Biol 383:854–870

    PubMed Central  CAS  PubMed  Google Scholar 

  30. Chubanov V, Waldegger S, Mederos y Schnitzler M, Vitzthum H, Sassen MC, Seyberth HW, Konrad M, Gudermann T (2004) Disruption of TRPM6/TRPM7 complex formation by a mutation in the TRPM6 gene causes hypomagnesemia with secondary hypocalcemia. Proc Natl Acad Sci USA 101:2894–2899

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37:267–278

    CAS  PubMed  Google Scholar 

  32. Yarishkin OV, Hwang EM, Park JY, Kang D, Han J, Hong SG (2008) Endogenous TRPM4-like channel in Chinese hamster ovary (CHO) cells. Biochem Biophys Res Commun 369:712–717

    CAS  PubMed  Google Scholar 

  33. Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100:15166–15171

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol 13:1153–1158

    CAS  PubMed  Google Scholar 

  35. Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci USA 100:15160–15165

    PubMed Central  CAS  PubMed  Google Scholar 

  36. Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T (2005) The selectivity filter of the cation channel TRPM4. J Biol Chem 280:22899–22906

    CAS  PubMed  Google Scholar 

  37. Mederos y Schnitzler M, Wäring J, Gudermann T, Chubanov V (2008) Evolutionary determinants of divergent calcium selectivity of TRPM channels. FASEB J 22: 1540–1551

    CAS  PubMed  Google Scholar 

  38. Du J, Xie J, Yue L (2009) Intracellular calcium activates TRPM2 and its alternative spliced isoforms. Proc Natl Acad Sci USA 106:7239–7244

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX (2005) Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280:6423–6433

    CAS  PubMed  Google Scholar 

  40. Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4,5-bisphosphate rescues TRPM4 channels from desensitization. J Biol Chem 280:39185–39192

    CAS  PubMed  Google Scholar 

  41. Nilius B, Prenen J, Janssens A, Voets T, Droogmans G (2004) Decavanadate modulates gating of TRPM4 cation channels. J Physiol 560:753–765

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438:1022–1025

    CAS  PubMed  Google Scholar 

  43. Nilius B, Prenen J, Voets T, Droogmans G (2004) Intracellular nucleotides and polyamines inhibit the Ca2+-activated cation channel TRPM4b. Pflugers Arch 448:70–75

    CAS  PubMed  Google Scholar 

  44. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448:204–208

    CAS  PubMed  Google Scholar 

  45. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416:52–58

    CAS  PubMed  Google Scholar 

  46. Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    CAS  PubMed  Google Scholar 

  47. Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to “hot” chili peppers. Cell 108:421–430

    CAS  PubMed  Google Scholar 

  48. Rohacs T, Nilius B (2007) Regulation of transient receptor potential (TRP) channels by phosphoinositides. Pflugers Arch 455:157–168

    CAS  PubMed  Google Scholar 

  49. Nilius B, Mahieu F, Prenen J, Janssens A, Owsianik G, Vennekens R, Voets T (2006) The Ca2+-activated cation channel TRPM4 is regulated by phosphatidylinositol 4,5-biphosphate. EMBO J 25:467–478

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Liu D, Zhang Z, Liman ER (2005) Extracellular acid block and acid-enhanced inactivation of the Ca2+-activated cation channel TRPM5 involve residues in the S3-S4 and S5-S6 extracellular domains. J Biol Chem 280:20691–20699

    CAS  PubMed  Google Scholar 

  51. Chraïbi A, Guinamard R, Teulon J (1995) Effects of internal pH on the nonselective cation channel from the mouse collecting tubule. J Membr Biol 148:83–90

    PubMed  Google Scholar 

  52. Greenwood IA, Large WA (1995) Comparison of the effects of fenamates on Ca-activated chloride and potassium currents in rabbit portal vein smooth muscle cells. Br J Pharmacol 116:2939–2948

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Jin NG, Kim JK, Yang DK, Cho SJ, Kim JM, Koh EJ, Jung HC, So I, Kim KW (2003) Fundamental role of ClC-3 in volume-sensitive Cl channel function and cell volume regulation in AGS cells. Am J Physiol Gastrointest Liver Physiol 285:G938–G948

    CAS  PubMed  Google Scholar 

  54. Lambert S, Oberwinkler J (2005) Characterization of a proton-activated, outwardly rectifying anion channel. J Physiol 567:191–213

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Albert AP, Pucovsky V, Prestwich SA, Large WA (2006) TRPC3 properties of a native constitutively active Ca2+-permeable cation channel in rabbit ear artery myocytes. J Physiol 571:361–369

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MH, Lee KP, So I, Kim KW (2003) TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol 284:G604–G616

    CAS  PubMed  Google Scholar 

  57. Hill K, Benham CD, McNulty S, Randall AD (2004) Flufenamic acid is a pH-dependent antagonist of TRPM2 channels. Neuropharmacology 47:450–460

    CAS  PubMed  Google Scholar 

  58. Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res 88:325–332

    CAS  PubMed  Google Scholar 

  59. Hu H, Tian J, Zhu Y, Wang C, Xiao R, Herz JM, Wood JD, Zhu MX (2010) Activation of TRPA1 channels by fenamate nonsteroidal anti-inflammatory drugs. Pflugers Arch 459: 579–592

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Mott DD, Washburn MS, Zhang S, Dingledine RJ (2003) Subunit-dependent modulation of kainate receptors by extracellular protons and polyamines. J Neurosci 23:1179–1188

    CAS  PubMed  Google Scholar 

  61. Washburn MS, Dingledine R (1996) Block of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by polyamines and polyamine toxins. J Pharmacol Exp Ther 278:669–678

    CAS  PubMed  Google Scholar 

  62. Jin L, Miyazaki M, Mizuno S, Takigawa M, Hirose T, Nishimura K, Toida T, Williams K, Kashiwagi K, Igarashi K (2008) The pore region of N-methyl-D-aspartate receptors differentially influences stimulation and block by spermine. J Pharmacol Exp Ther 327: 68–77

    CAS  PubMed  Google Scholar 

  63. Kurata HT, Diraviyam K, Marton LJ, Nichols CG (2008) Blocker protection by short spermine analogs: refined mapping of the spermine binding site in a Kir channel. Biophys J 95:3827–3839

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Kerschbaum HH, Kozak JA, Cahalan MD (2003) Polyvalent cations as permeant probes of MIC and TRPM7 pores. Biophys J 84:2293–2305

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Talavera K, Yasumatsu K, Yoshida R, Margolskee RF, Voets T, Ninomiya Y, Nilius B (2008) The taste transduction channel TRPM5 is a locus for bitter–sweet taste interactions. FASEB J 22:1343–1355

    CAS  PubMed  Google Scholar 

  66. White NJ (2007) Cardiotoxicity of antimalarial drugs. Lancet Infect Dis 7:549–558

    CAS  PubMed  Google Scholar 

  67. Takezawa R, Cheng H, Beck A, Ishikawa J, Launay P, Kubota H, Kinet JP, Fleig A, Yamada T, Penner R (2006) A pyrazole derivative potently inhibits lymphocyte Ca2+ influx and cytokine production by facilitating transient receptor potential melastatin 4 channel activity. Mol Pharmacol 69:1413–1420

    CAS  PubMed  Google Scholar 

  68. Zitt C, Strauss B, Schwarz EC, Spaeth N, Rast G, Hatzelmann A, Hoth M (2004) Potent inhibition of Ca2+ release-activated Ca2+ channels and T-lymphocyte activation by the pyrazole derivative BTP2. J Biol Chem 279:12427–12437

    CAS  PubMed  Google Scholar 

  69. He LP, Hewavitharana T, Soboloff J, Spassova MA, Gill DL (2005) A functional link between store-operated and TRPC channels revealed by the 3,5-bis(trifluoromethyl)pyrazole derivative, BTP2. J Biol Chem 280:10997–11006

    CAS  PubMed  Google Scholar 

  70. Frelet A, Klein M (2006) Insight in eukaryotic ABC transporter function by mutation analysis. FEBS Lett 580:1064–1084

    CAS  PubMed  Google Scholar 

  71. Schultz BD, DeRoos AD, Venglarik CJ, Singh AK, Frizzell RA, Bridges RJ (1996) Glibenclamide blockade of CFTR chloride channels. Am J Physiol 271:L192–L200

    CAS  PubMed  Google Scholar 

  72. Guinamard R, Chraïbi A, Teulon J (1995) A small-conductance Cl channel in the mouse thick ascending limb that is activated by ATP and protein kinase A. J Physiol 485:97–112

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Demion M, Guinamard R, El Chemaly A, Rahmati M, Bois P (2006) An outwardly rectifying chloride channel in human atrial cardiomyocytes. J Cardiovasc Electrophysiol 17:60–68

    PubMed  Google Scholar 

  74. Marivingt-Mounir C, Norez C, Dérand R, Bulteau-Pignoux L, Nguyen-Huy D, Viossat B, Morgant G, Becq F, Vierfond JM, Mettey Y, Synthesis SAR (2004) crystal structure, and biological evaluation of benzoquinoliziniums as activators of wild-type and mutant cystic fibrosis transmembrane conductance regulator channels. J Med Chem 47: 962–972

    CAS  PubMed  Google Scholar 

  75. Grand T, Demion M, Norez C, Mettey Y, Launay P, Becq F, Bois P, Guinamard R (2008) 9-phenanthrol inhibits human TRPM4 but not TRPM5 cationic channels. Br J Pharmacol 153:1697-1705

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Fliegert R, Glassmeier G, Schmid F, Cornils K, Genisyuerek S, Harneit A, Schwarz JR, Guse AH (2007) Modulation of Ca2+ entry and plasma membrane potential by human TRPM4b. FEBS J 274:704–713

    CAS  PubMed  Google Scholar 

  77. McClenaghan NH (2007) Physiological regulation of the pancreatic {beta}-cell: functional insights for understanding and therapy of diabetes. Exp Physiol 92:481–496

    CAS  PubMed  Google Scholar 

  78. Marigo V, Courville K, Hsu WH, Feng JM, Cheng H (2009) TRPM4 impacts on Ca2+ signals during agonist-induced insulin secretion in pancreatic beta-cells. Mol Cell Endocrinol 299:194–203

    CAS  PubMed  Google Scholar 

  79. Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson PR, Rorsman P (2008) Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion. Diabetes 57:1618–1628

    CAS  PubMed  Google Scholar 

  80. Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF, Kokrashvili Z, Gilon P, Nilius B, Schuit FC, Vennekens R (2010) Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5–/– mice. Proc Natl Acad Sci USA 107:5208–5213

    Google Scholar 

  81. Bayliss W (1902) On the local reactions of the arterial wall to changes of internal pressure. J Physiol 28:220–231

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Voets T, Nilius B (2009) TRPCs, GPCRs and the Bayliss effect. EMBO J 28:4–5

    PubMed Central  CAS  PubMed  Google Scholar 

  83. Earley S, Waldron BJ, Brayden JE (2004) Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95: 922–929

    CAS  PubMed  Google Scholar 

  84. Earley S, Straub SV, Brayden J, Protein Kinase C (2007) Regulates vascular myogenic tone through activation of TRPM4. Am J Physiol Heart Circ Physiol 292:2613–2622

    Google Scholar 

  85. Morita H, Honda A, Inoue R, Ito Y, Abe K, Nelson MT, Brayden JE (2007) Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. J Pharmacol Sci 103:417–426

    CAS  PubMed  Google Scholar 

  86. Welsh DG, Morielli AD, Nelson MT, Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90:248–250

    CAS  PubMed  Google Scholar 

  87. Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO J 27:3092–3103

    CAS  PubMed  Google Scholar 

  88. Quintana A, Griesemer D, Schwarz EC, Hoth M (2005) Calcium-dependent activation of T-lymphocytes. Pflugers Arch 450:1–12

    CAS  PubMed  Google Scholar 

  89. Luik RM, Lewis RS (2007) New insights into the molecular mechanisms of store-operated Ca2+ signaling in T cells. Trends Mol Med 13:103–107

    CAS  PubMed  Google Scholar 

  90. Barbet G, Demion M, Moura IC, Serafini N, Léger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P (2008) The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol 9:1148–1156

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP (2004) TRPM4 regulates calcium oscillations after T cell activation. Science 306:1374–1377

    CAS  PubMed  Google Scholar 

  92. Metz M, Grimbaldeston MA, Nakae S, Piliponsky AM, Tsai M, Galli SJ (2007) Mast cells in the promotion and limitation of chronic inflammation. Immunol Rev 217: 304–328

    CAS  PubMed  Google Scholar 

  93. Di Capite J, Parekh AB (2009) CRAC channels and Ca2+ signaling in mast cells. Immunol Rev 231:45–58

    CAS  PubMed  Google Scholar 

  94. Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8:312–320

    CAS  PubMed  Google Scholar 

  95. Shimizu T, Owsianik G, Freichel M, Flockerzi V, Nilius B, Vennekens R (2009) TRPM4 regulates migration of mast cells in mice. Cell Calcium 45:226–232

    CAS  PubMed  Google Scholar 

  96. Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Ramirez JM, Viemari JC (2005) Determinants of inspiratory activity. Respir Physiol Neurobiol 147:145–157

    CAS  PubMed  Google Scholar 

  98. Del Negro CA, Morgado-Valle C, Hayes JA, Mackay DD, Pace RW, Crowder EA, Feldman JL (2005) Sodium and calcium current-mediated pacemaker neurons and respiratory rhythm generation. J Neurosci 25:446–453

    PubMed  Google Scholar 

  99. Crowder EA, Saha MS, Pace RW, Zhang H, Prestwich GD, Del Negro CA (2007) Phosphatidylinositol 4,5-bisphosphate regulates inspiratory burst activity in the neonatal mouse preBötzinger complex. J Physiol 582:1047–1058

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Pace RW, Mackay DD, Feldman JL, Del Negro CA (2007) Inspiratory bursts in the preBötzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J Physiol 582:113–125

    PubMed Central  CAS  PubMed  Google Scholar 

  101. Pace RW, Del Negro CA (2008) AMPA and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitro. Eur J Neurosci 28:2434–2442

    PubMed  Google Scholar 

  102. Mironov SL (2008) Metabotropic glutamate receptors activate dendritic calcium waves and TRPM channels which drive rhythmic respiratory patterns in mice. J Physiol 586:2277–2291

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Zhainazarov AB (2003) Ca2+-activated nonselective cation channels in rat neonatal atrial myocytes. J Membr Biol 193:91–98

    CAS  PubMed  Google Scholar 

  104. Guinamard R, Rahmati M, Lenfant J, Bois P (2002) Characterization of a Ca2+-activated nonselective cation channel during dedifferentiation of cultured rat ventricular cardiomyocytes. J Memb Biol 188:127–135

    CAS  Google Scholar 

  105. Guinamard R, Demion M, Magaud C, Potreau D, Bois P (2006) Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 48:587–594

    CAS  PubMed  Google Scholar 

  106. Swynghedauw B (1999) Molecular mechanisms of myocardial remodeling. Physiol Rev 79:215–262

    CAS  PubMed  Google Scholar 

  107. Farès N, Bois P, Lenfant J, Potreau D (1998) Characterization of a hyperpolarization-activated current in dedifferentiated adult rat ventricular cells in primary culture. J Physiol 506:73–82

    PubMed Central  PubMed  Google Scholar 

  108. Guinamard R, Bois P (2007) Involvement of transient receptor potential proteins in cardiac hypertrophy. Biochim Biophys Acta 1772:885–894

    CAS  PubMed  Google Scholar 

  109. Ruocco C, Cerbai E, Failli P, Giotti A, Mugelli A (1996) Calcium-dependent electrophysiological alterations in hypertrophied rat cardiomyocytes. Biochem Biophys Res Commun 229:425–429

    CAS  PubMed  Google Scholar 

  110. Yan GX, Rials SJ, Wu Y, Liu T, Xu X, Marinchak RA, Kowey PR (2001) Ventricular hypertrophy amplifies transmural repolarization dispersion and induces early afterdepolarization. Am J Physiol Heart Circ Physiol 281:H1968–H1975

    CAS  PubMed  Google Scholar 

  111. Kruse M, Schulze-Bahr E, Corfield V, Beckmann A, Stallmeyer B, Kurtbay G, Ohmert I, Schulze-Bahr E, Brink P, Pongs O (2009) Impaired endocytosis of the ion channel TRPM4 is associated with human progressive familial heart block type I. J Clin Invest 119:2737–2744

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Irvine LA, Jafri MS, Winslow RL (1999) Cardiac sodium channel Markov model with temperature dependence and recovery from inactivation. Biophys J 76:1868–1885

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Raman IM, Bean BP (2001) Inactivation and recovery of sodium currents in cerebellar Purkinje neurons: evidence for two mechanisms. Biophys J 80:729–737

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Liman ER (2007) TRPM5 and taste transduction. Handb Exp Pharmacol 179:287–298

    CAS  PubMed  Google Scholar 

  115. Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301

    CAS  PubMed  Google Scholar 

  116. Riera CE, Vogel H, Simon SA, Damak S, le Coutre J (2009) Sensory attributes of complex tasting divalent salts are mediated by TRPM5 and TRPV1 channels. J Neurosci 29:2654–2662

    CAS  PubMed  Google Scholar 

  117. Tizzano M, Gulbransen BD, Vandenbeuch A, Clapp TR, Herman JP, Sibhatu HM, Churchill ME, Silver WL, Kinnamon SC, Finger TE (2010) Nasal chemosensory cells use bitter taste signaling to detect irritants and bacterial signals. Proc Natl Acad Sci USA 107: 3210–3215

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Hoon MA, Adler E, Lindemeier J, Battey JF, Ryba NJ, Zuker CS (1999) Putative mammalian taste receptors: a class of taste-specific GPCRs with distinct topographic selectivity. Cell 96:541–551

    CAS  PubMed  Google Scholar 

  119. Zhang Z, Zhao Z, Margolskee R, Liman E (2007) The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 27:5777–5786

    CAS  PubMed  Google Scholar 

  120. Staaf S, Franck MC, Marmigère F, Mattsson JP, Ernfors P (2010) Dynamic expression of the TRPM subgroup of ion channels in developing mouse sensory neurons. Gene Expr Patterns 10:65–74

    CAS  PubMed  Google Scholar 

  121. Bezençon C, Fürholz A, Raymond F, Mansourian R, Métairon S, Le Coutre J, Damak S (2008) Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J Comp Neurol 509:514–525

    PubMed  Google Scholar 

  122. Kokrashvili Z, Rodriguez D, Yevshayeva V, Zhou H, Margolskee RF, Mosinger B (2009) Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5. Gastroenterology 137:598–606

    PubMed Central  PubMed  Google Scholar 

  123. Gerzanich V, Woo SK, Vennekens R, Tsymbalyuk O, Ivanova S, Ivanov A, Geng Z, Chen Z, Nilius B, Flockerzi V, Freichel M, Simard JM (2009) De novo expression of Trpm4 initiates secondary hemorrhage in spinal cord injury. Nat Med 15:185–191

    PubMed Central  CAS  PubMed  Google Scholar 

  124. Simard JM, Chen M, Tarasov KV, Bhatta S, Ivanova S, Melnitchenko L, Tsymbalyuk N, West GA, Gerzanich V (2006) Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 12:433–440

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Park JY, Hwang EM, Yarishkin O, Seo JH, Kim E, Yoo J, Yi GS, Kim DG, Park N, Ha CM, La JH, Kang D, Han J, Oh U, Hong SG (2008) TRPM4b channel suppresses store-operated Ca2+ entry by a novel protein–protein interaction with the TRPC3 channel. Biochem Biophys Res Commun 368:677–683

    CAS  PubMed  Google Scholar 

Download references

Aknowledgments

We thank Simon Patrick for constructive comments on the manuscript. Christophe Simard is a recipient of a fellowship from the French Ministère de l’Enseignement et de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Guinamard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Guinamard, R., Sallé, L., Simard, C. (2011). The Non-selective Monovalent Cationic Channels TRPM4 and TRPM5. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_8

Download citation

Publish with us

Policies and ethics

  NODES
chat 2
INTERN 3