
Abstract

Aims/hypothesis. Bone marrow cells contain at least
two distinct types of stem cells which are haemato-
poietic stem cells and mesenchymal stem cells. Both
cells have the ability to differentiate into a variety of
cell types derived from all three germ layers. Thus,
bone marrow stem cells could possibly be used to
generate new pancreatic beta cells for the treatment of
diabetes. In this study, we investigated the feasibility
of bone marrow-derived cells to differentiate into beta
cells in pancreas.
Methods. Using green fluorescent protein transgenic
mice as donors, the distribution of haematogenous
cells in the pancreas was studied after bone marrow
transplantation.
Results. In the pancreas of green fluorescent protein
chimeric mice, green fluorescent protein-positive cells

were found in the islets, but none of these cells ex-
pressed insulin. Previous data has suggested that tis-
sue injury can recruit haematopoietic stem cells or
their progeny to a non-haematopietic cell fate. There-
fore, low-dose streptozotocin (30 or 50 mg/kg on five
consecutive days) was injected into the mice 5 weeks
after bone marrow transplantation, but no green fluo-
rescent protein-positive cells expressing insulin were
seen in the islets or around the ducts of the pancreas.
Conclusions/interpretation. Our data suggests that
bone marrow-derived cells are a distinct cell popula-
tion from islet cells and that transdifferentiation from
bone marrow-derived cells to pancreatic beta cells is
rarely observed. [Diabetologia (2003) 46:1366–1374]
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four cell types: glucagon-producing alpha cells, so-
matostatin-producing delta cells, pancreatic polypep-
tide-producing PP cells, and insulin-producing beta
cells. An inadequate mass of functional pancreatic be-
ta cells is found in both Type 1 and Type 2 diabetes.
Thus, beta-cell replacement therapy is thought to be a
possible curative treatment for diabetes. In order to
make beta-cell replacement therapy more widely
available, since islet transplantation is currently the
only method of beta-cell replacement therapy, new
sources of beta cells need to be explored.

Each tissue or organ is believed to contain a small
sub-population of cells that is capable of self-renewal
and has the ability to give rise to each mature cell type
[1]. Thus, one of the most promising sources of beta
cells might be pancreatic stem cells. While several

The pancreas is composed of exocrine and endocrine
compartments. The endocrine compartment consists
of the islets of Langerhans, which contain clusters of



studies have shown the existence of pancreatic stem
cells [2, 3, 4, 5], these cells have not yet been isolated
from the pancreas in a pure form.

Cells derived from bone marrow have been used to
replace haematopoietic stem cells in the treatment of
various haematological malignancies. These cells in-
clude both haematopoietic stem cells and mesenchy-
mal stem cells, which can differentiate into various
types of cells derived from the mesenchyme [6]. Re-
cent studies using methods for tracking cell lineage
have allowed us to identify the differentiation of bone
marrow stem cells and mescenchymal stem cells into
specific cells residing in various tissues [7, 8, 9]. Iso-
lated haematopoietic stem cells might contribute to
the epithelium of multiple organs of endodermal and
ectodermal origin [10, 11, 12]. In contrast, mesenchy-
mal stem cells can have a wider range of fates includ-
ing transformation into endothelial, myogenic, hepat-
ic, and neural cells [13].

Several lines of evidence suggest that tissue injury
enhances the recruitment of haematopoietic stem cells,
mescenchymal stem cells, or their progeny towards a
non-haematopoietic fate [11, 14, 15, 16]. This might be
because migration of bone marrow stem cells through-
out the body essentially act as a back-up system to
augment each organ’s intrinsic regenerative capacity.

Streptozotocin (STZ) induces diabetes by specific
destruction of pancreatic beta cells. Multiple subdia-
betogenic doses of STZ provoke different changes in
the pancreas from a single injection of a diabetogenic
dose of STZ [17, 18, 19] and enable us to observe the
re-organization of pancreatic beta cells [20]. Thus,
multiple low doses of STZ are considered to create a
good model for observing regeneration after beta-cell-
specific injury. However, as far as we know, there has
been no detailed investigation of whether bone mar-
row stem cells can differentiate into pancreatic beta
cells after tissue injury.

Achieving the reconstitution of pancreatic beta
cells by use of bone marrow-derived cells suggests
that bone marrow cells are a feasible source for beta-
cell replacement therapy. To elucidate the potential of
bone marrow-derived cells for use as beta-cell re-
placement therapy, we established chimeric mice with
the bone marrow of transgenic mice constitutively ex-
pressing enhanced green fluorescent protein (EGFP)
[16, 21, 22, 23]. As we showed previously, the bone
marrow of these chimeric mice is almost completely
reconstituted with EGFP-positive cells 5 weeks after
transplantation [22]. These chimeric mice allow us to
track the progeny of transplanted bone marrow cells,
by using green fluorescence as a marker.

Materials and methods

Reagents. Among the primary antibodies, rabbit anti-Pdx1 an-
tibody was generated as described previously [24], while
mouse anti-nestin antibody was kindly provided by Dr. S.

Hockfield (Yale University, New Haven, Conn., USA). All
other antibodies used for this study were purchased from com-
mercial sources: guinea-pig (GP) anti-human insulin antibody
(Linco, St. Charles, Mo., USA), rabbit anti-glucagon antibody
(Dako, Carpinteria, Calif., USA), anti-CD45 antibody (Phar-
mingen, Franklin Lakes, N.J., USA), rabbit anti-Factor VIII re-
lated antigen/von Willebrand Factor (vWF) (Dako, Glostrup,
Denmark), rat anti-bromodeoxyuridine (BrdU)(OBT, Oxford,
UK), mouse anti-green fluorescent protein (GFP) antibody
(Sigma-Aldrich, St. Louis, Mo., USA), and mouse anti-E-cad-
herin antibody (BD Bioscience, Flanklin Lakes, N.J., USA).
All of the secondary antibodies came from commercial sourc-
es: biotinylated goat anti-rabbit IgG (Vector, Burlingame, Ca-
lif., USA), biotinylated goat anti-mouse IgG (Biomeda, Foster,
Calif., USA), biotinylated goat anti-rat IgG (Cedarlane, Ontario,
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Fig. 1. Distribution of GFP-positive cells in the pancreas. Fro-
zen pancreatic sections from GFP chimeric mice. Sections
from mice at 5 weeks after bone marrow transplantation were
observed by fluorescence microscopy without any staining
(upper panel) and after staining with anti-GFP antibody (middle
panel). A merged image is shown in the lower panel
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Canada), goat anti-GP IgG conjugated Texas-red (Cortex, San-
leandro, Calif., USA), and goat anti-mouse IgG conjugated
with Alexa 568 (Molecular Probes, Eugene, Ore., USA)

Animals and creation of GFP chimeric mice. Male C57BL/6
mice (18–20 g) were purchased from Japan SLC at 8 weeks of
age and maintained in the animal facility of Juntendo Universi-
ty School of Medicine. The animals were allowed free access
to a standard laboratory diet and water. GFP transgenic mice,
in which EGFP expression was under the control of the cyto-
megalovirus enhancer and the chicken β-actin promoter, were
generously provided by Dr. M. Okabe (Osaka University, Osaka,
Japan) [25]. Using these transgenic mice, we generated GFP

chimeric mice [16, 22], in brief, bone marrow transplantation
was carried out with 8-week-old C57BL/6,GFP mice as the do-
nors and 8-week-old C57BL/6 mice as the recipients. Donor
bone marrow cells were obtained from the femurs and tibias of
GFP mice after the injection of 5-fluorouracil (150 mg/kg) at
48 h before transplantation, and were injected into the tail
veins of irradiated (5 Gy×2) non-transgenic recipient mice. All
the experiments were conducted in accordance with the rules
and regulations of the animal committee of Juntendo Universi-
ty School of Medicine.

Induction of diabetes with STZ. At 5 weeks after transplanta-
tion, mice were injected intraperitoneally with a low dose of
STZ (30 mg/kg [20] or 50 mg/kg [26] body weight) dissolved
in citrate buffer (pH 4.5). Injections were given daily for five
consecutive days.

Glucose tolerance test. An intraperitoneal glucose tolerance test
(IPGTT) was carried out before STZ injection and at 3 and 5
weeks after STZ injection. After an overnight fast, mice were in-
jected intraperitoneally with glucose (1.0 g/kg body weight).
Blood samples were taken from the tail vein at 0, 30, 60, 120, and
180 min and the plasma glucose concentration was measured with
a Freestyle glucose meter (Kissei Corporation, Nagano, Japan).

Preparation of pancreatic sections and immunohistochemis-
try. Before and at 1, 3, and 5 weeks after STZ injection, mice

Fig. 2A–H. Expression of several markers by GFP-positive
cells in the pancreas. Immunohistochemical analysis was car-
ried out on cryostat sections (4 µm) from GFP chimeric mice.
Left, middle, right panels show GFP as green, each marker as
red, and the merged images, respectively. Sections were immu-
nostained with anti-CD45 antibody (A), anti-vWF antibody
(B), anti-insulin antibody (C), anti-glucagon antibody (D), an-
ti-E-cadherin antibody (E), anti-nestin antibody (F), and anti-
Pdx1 antibody (G, H). White arrows indicate cells expressing
both GFP and the respective marker
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were thoroughly perfused with PBS followed by 4% parafor-
maldehyde under pentobarbital sodium anesthesia. The pan-
creas was removed and fixed with 4% paraformaldehyde for
2 days at 4°C. After then, tissues were placed in 30% sucrose
in PBS for 1 day at 4°C and embedded in OCT compound for
2 days at 4°C. After being frozen on dry ice, the tissues were
stored at −80°C until examination. Cryostat sections (4 µm
thick) were cut at −20°C and dried on slides overnight at
room temperature. The sections were blocked with 10% goat
serum for 30 min at room temperature, and then incubated
with each primary antibody overnight at 4°C. The primary
antibodies were diluted to the following dilutions in 2% goat
serum: 1:104, for rabbit anti-Glucagon, GP anti-human insu-
lin and rabbit anti-Pdx1; 1:106, for mouse anti-Nestin and
rabbit anti-vWF; 1:105, for rat anti-mouse CD45; 1:4000, for
mouse anti-GFP; 1:2500, for mouse anti E-cadherin and
1:200 for rat anti-BrdU. After being washed with PBS three
times, the sections were incubated with the appropriate sec-
ondary antibodies for 30 min at room temperature. For detec-
tion of Glucagon, Pdx-1, Nestin, vWF, CD45, BrdU, the
streptavidin-biotin complex method was used, so biotinylated
goat anti-rabbit IgG (1:200), biotinylated goat anti-mouse
IgG (1:200), or biotinylated goat anti-rat IgG (1:200) was
used as the secondary antibody respectively. For the detection

of insulin, goat anti-GP IgG conjugated with Texas-Red
(1:200) was used as the secondary antibody. For the detection
of GFP and E-cadherin, goat anti-mouse IgG conjugated with
Alexa 568 (1:200) was used as the secondary antibody. Ex-
cept in the case of staining for insulin, GFP, and E-cadherin
after being washed twice with PBS, the sections were incu-
bated with streptavidin (1:200, conjugated Alexa 594, Molec-
ular Probes, Eugene, Ore., USA) for 30 min at room tempera-
ture. Fluorescence from these samples was observed using a
Zeiss Axioskop 2 plus microscope (Carl Zeiss, Jena, Germa-
ny), and digital images were captured using Axiovision 3.0
software. For the investigation of co-staining with GFP and
insulin, we examined 50 to 100 pancreatic sections that con-
tained tissue from the head to the tail and were selected from
six pancreata in each of the control and STZ-treated groups.
For the detection of other proteins, we examined 3 to 7 sec-
tions per protein from each of six mice.

BrdU experiments. To identify the proliferating cells in the
pancreas, injection of BrdU was carried out according to the
previous protocol [27, 28] with some modification. Briefly,
mice were injected intraperitoneally with BrdU (100 mg/kg:
Sigma-Aldrich, dissolved in 0.007 N NaOH in PBS) at 20, 16,
6, and 2 h before being killed. Cryostat sections for immuno-
histochemical analysis of BrdU underwent the following treat-
ment before incubation with the primary antibody: incubation
with 2 N HCl for 30 min at 37°C, incubation with 0.1 mol di-
sodium tetraborate for 10 min at room temperature, washing

Fig. 2E–H. Legend see page 1368
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with PBS, and rinsing in 50 mmol/l Tris-bufferred saline
(pH 7.6) twice for 5 min each.

After overnight incubation with the primary antibody at
4°C, the sections were incubated with biotinylated goat anti-rat
IgG (1:100) as the secondary antibody for 30 min at room tem-
perature. After washing three times with PBS, the sections
were incubated with streptavidin conjugated with horseradish
peroxidase (Dako, Carpenteria, Calif., USA) for 30 min at
room temperature. Positive reactions were visualized by incu-
bation with the peroxidase substrate solution containing 3,3′-
diaminobenzidine tetrahydrochloride after washing three times
with PBS, and the mean number of BrdU-positive cells per is-
let was calculated from 70 to 100 islets in each group.

Statistics. Differences between groups were analyzed using
Student’s t test with correction for different variance whenever
appropriate. A p value of less than 0.05 was considered statisti-
cally significant.

Results

Characterization of the fate of transplanted bone
marrow cells in the pancreas. To investigate the fate
of cells derived from bone marrow in the pancreas,
we killed the chimeric mice 5 weeks after bone mar-
row transplantation and stained pancreatic cells with
a variety of cell markers. We observed numerous
GFP-positive cells in the pancreas and several of the
GFP-positive cells were seen in the islets. In addi-
tion, the presence of GFP in almost all of the green
cells was confirmed by immunostaining using anti-
GFP antibody (Fig. 1). These results led us to at-
tempt to elucidate the nature of the cells derived
from bone marrow within islet. A few cells express-
ing GFP in islets also expressed the pan-haemato-
poietic marker CD45, but many other cells did not
(Fig. 2A). We could also find a few GFP-positive
cells expressing the endothelial cell-marker vWF
(Fig. 2B). These results suggested that cells derived
from the transplanted bone marrow had undergone
differentiation into haematopietic cells or endothelial
cells. However we found some GFP-positive cells
that did not express either of markers.

To explore the possibility of transdifferentiation
from bone marrow-derived cells into pancreatic endo-
crine cells, we investigated the expression of insulin
and glucagon in GFP-positive cells. We investigated
50 to 100 pancreatic sections from each of six mice
which were stained with insulin antibodies. We care-
fully selected sections from each pancreas that should
contain tissue from the pancreatic head to the pancreat-
ic tail. However, we could not find any insulin or glu-
cagon expression in GFP-positive cells (Fig. 2C,D).
Furthermore, we could not identify any GFP-positive
cells expressing E-cadherin, which is a marker of en-
dodermal epithelial cells (Fig. 2E). This suggested that
almost all of the GFP-positive cells in the islets might
be mesenchymal cells.

Previous studies have reported transdifferentiation
events between different types of somatic stem cells.

In the pancreas, no obvious stem cells have been iden-
tified so far. If the stem cells from transplanted bone
marrow underwent differentiation into islet stem cells,
it might be possible to observe GFP-positive cells ex-
pressing nestin within the islets. However, we could
not find any GFP-positive cells in islets that also ex-
pressed nestin (Fig. 2F).

Pdx1 is a transcription factor involved in pancreatic
development, its expression is mainly observed in
pancreatic beta cells and occasionally in exocrine cells
and duct cells in the adult pancreas. We could not find
any GFP-positive cells expressing Pdx1 in the islets in
agreement with the lack of GFP-positive cells ex-
pressing insulin (Fig. 2G). In contrast, there were a
few GFP-positive cells expressing Pdx1 outside the is-
lets (Fig. 2G,H). These findings suggested that stem
cells derived from transplanted bone marrow could
differentiate into pancreatic cells.

Fig. 3A, B. Changes of glucose tolerance and islet cell replica-
tion after 30 mg/kg of STZ for 5 days. (A) Results of the intra-
peritoneal glucose (1.0 g/kg) tolerance test in GFP chimeric
mice (C57Bl/6) before and 3 and 5 weeks after treatment with
STZ at 30 mg/kg intraperitoneally for 5 days (each group: n=5,
*p<0.05: stz 0 W vs stz 3 W). (B) The mean number of BrdU-
incorporating cells per islet after multiple injections of BrdU
was calculated before and 3 and 5 weeks after treatment with
STZ (each group: n=5, *p<0.05: stz 0 W vs stz 5 W). All data
are expressed as the means ±SEM
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The lineage of bone marrow-derived cells after de-
struction of pancreatic beta cells. The presence of a
few GFP-positive cells expressing Pdx1 suggested
that bone marrow-derived cells could differentiate
into pancreatic cells. However, the reason for not
finding any GFP-positive cells expressing insulin
might have been because differentiation of bone mar-
row-derived stem cells into beta-cells is too rare to
detect in normal mice. Therefore, we treated mice
with multiple low-dose injections of STZ to destroy
beta cells, and then observed the regeneration and
replication of these cells in the islets. Firstly, we gen-

erated chimeric mice and 5 weeks after bone marrow
transplantation, we injected 30 mg/kg of STZ daily
for 5 days. One day after the last injection, damaged
islets were identified by insulin staining of the pan-
creas (data not shown). Reflecting the destruction of
some islets, the glucose tolerance of these mice had
deteriorated 3 weeks after STZ treatment. However,
glucose tolerance almost recovered to normal by 5
weeks (Fig. 3A). In addition, we counted BrdU-posi-
tive cells in the islets of mice before and 3 and 5
weeks after STZ treatment (30 mg/kg). A gradual in-
crease in the number of BrdU-positive cells was seen
in the islets (Fig. 3B), also some of the BrdU-posi-
tive cells expressed insulin, while others did not,
suggesting that cell replication and/or regeneration
might be occurring. At 5 weeks after STZ treatment,
the accumulation of GFP-and CD45-positive cells in
the periductal area of the pancreas may reflect the
healing process after inflammation (Fig. 4A). Even
under these conditions, we could not find any GFP-
positive cells expressing insulin, glucagon, or nestin
in the islets and periductal areas(Fig. 4B,C,D). Fur-
ther, we found no obvious change in the number of

Fig. 4A–D. Distribution of GFP-positive cells and several
markers after STZ treatment at 30 mg/kg. Immunohistochemi-
cal analysis was carried out on cryostat sections (4 µm) from
the pancreas of mice treated with multiple doses of STZ at
30 mg/kg. Left, middle, and right panels show GFP as green,
each marker as red, and the merged image, respectively. These
sections were immunostained with anti-CD45 antibody (A),
anti-insulin antibody (B), anti-glucagon antibody (C), and anti-
nestin antibody (D)



1372 J. B. Choi et al.: Little evidence of transdifferentiation of bone marrow-derived cells into pancreatic beta cells

GFP-positive cells expressing Pdx1 outside the islets
(data not shown).

Next, we increased the dose of STZ to 50 mg/kg
for 5 days. After this treatment, we found the deterio-
ration of glucose tolerance from 3 to 5 weeks
(Fig. 5A). At 5 weeks after treatment, there was a de-
crease of insulin-positive cells in the islets (Fig. 5B)
and a some insulin staining surrounding ducts, sug-
gesting the occurrence of regeneration events from
periductal cells. However, we could not find any GFP-
positive cells expressing insulin in the islets or around
the ducts (Fig. 5B,C).

Discussion

In this study, we focused on the fate of transplanted
bone marrow cells in the pancreas. At 5 weeks after
bone marrow transplantation, we could not find any
cells derived from the bone marrow expressing insulin
despite intensive observation.

Several groups have already generated chimeric
mice or carried out transplantation using isolated hae-
matopoietic stem cells or mescenchymal stem cells
and have tried to identify the cells derived from bone
marrow in various tissues and found that bone mar-
row-derived stem cells differentiated into various tis-
sue specific cells [12, 13]. During the preparation of
this manuscript, another study showed that bone mar-
row-derived cells differentiated into insulin express-
ing cells [33]. This report showed that bone marrow
cells could differentiate into beta cells. Through a ge-
netic approach, the authors ruled out cell fusion as the
mechanism for EGFP-positive cells with islet-like
characteristics. If this is the case, why did we not find
transdifferentiation into pancreatic beta cells? A re-
cent report contradicted an earlier study [34] and sug-
gested that neural stem cells rarely transdifferentiated

Fig. 5A–C. Distribution of GFP-positive cells after STZ treat-
ment at 50 mg/kg. (A) Results of the intraperitoneal glucose
(1.0 g/kg) tolerance test in GFP chimeric mice (C57Bl/6) be-
fore and 3 and 5 weeks after treatment with STZ (50 mg/kg in-
jected intraperitoneally for 5 days). Data are expressed as the
means ± SEM (each group: n=5, *p<0.05: stz 0 W vs stz 3 W;
**p<0.05: stz 0 W vs stz 5 W). (B, C) Immunohistochemical
analysis of cryostat sections (4 µm) from the pancreas of mice
treated with multiple doses of STZ (50 mg/kg). The merged
images of GFP and Insulin-immunostaining are shown. A
white arrow indicates periductal cells expressing insulin



into blood cells [35]. Another study reported that a
single haematopoietic stem cell robustly reconstituted
peripheral blood leukocytes, but did not contribute ap-
preciably to non-haematopoietic tissues, including the
brain, kidney, gut, liver, and muscle. Furthermore,
they used parabolic mice to enable the massive trans-
fer of haematopoietic stem cells, but few transdiffer-
entiational events were observed [36]. We cannot
point out the solid reason for these conflicts. Only the
difference of experimental condition could explain the
conflicting results. Thus, in this paper, we would like
to emphasize that under the experimental condition
described here, we could not show the contribution of
bone marrow-derived cells to differentiate into islet
cells.

Previous studies have shown that tissue injury en-
hances the recruitment of haematopietic stem cells,
mescenchymal stem cells or their progeny to non-hae-
matopoietic fate [11, 14, 15, 16]. Intravenous injection
of adult bone marrow cells in FAH(-/-) mice, an ani-
mal model of tyrosinemia type I, rescued these ani-
mals and restored the biochemical functions of the liv-
er. In these mice, surprisingly, as few as 50 highly pu-
rified haematopoietic stem cells could be induced to
generate large colonies of functional hepatocytes [11].
In our study, using mice treated with low-dose STZ as
a model of selective pancreatic beta-cell injury, we ex-
plored the transformation of cells derived from the
bone marrow to insulin-positive cells. In the pancreas,
we observed an increase of cell proliferation in islet
cells and a few insulin-positive cells surrounding the
pancreatic ducts, but we could not find any insulin-ex-
pressing cells derived from bone marrow cells.

We used low-dose STZ as a tissue injury model.
However, several other models of pancreatic injury,
such as partial pancreatectomy [37] or cellophane
wrapping [38], have been established. Each model
might involve a different mechanism of regeneration
of the pancreas, so, we cannot deny the possibility that
transdifferentiation into pancreatic beta cells might be
observed in a different model of tissue injury.

In conclusion, with regard to beta-cell replacement
therapy for diabetes, our data suggests that bone mar-
row-derived stem cells cannot differentiate into beta
cells automatically. However, our data does not deny
the feasibility of bone marrow-derived cells as a host
cells for beta-cell replacement therapy. Recently sev-
eral lines of evidence have suggested that the expres-
sion of Pdx1 into various cells can provoke differenti-
ation into cells similar to pancreatic beta-cells [39, 40,
41, 42], so introducing a beta-cell differentiation fac-
tor like Pdx1 into bone marrow-derived stem cells
seems to be worth investigating.
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