Classification of Security Properties*

(Part I: Information Flow)

Riccardo Focardi' and Roberto Gorrieri?

! Dipartimento di Informatica, Universita Ca’'Foscari di Venezia
focardi@dsi.unive.it
2 Dipartimento di Scienze dell’informazione, Universita di Bologna
gorrieri@cs.unibo.it

Abstract. In the recent years, many formalizations of security proper-
ties have been proposed, most of which are based on different underlying
models and are consequently difficult to compare. A classification of se-
curity properties is thus of interest for understanding the relationships
among different definitions and for evaluating the relative merits. In this
paper, many non-interference-like properties proposed for computer secu-
rity are classified and compared in a unifying framework. The resulting
taxonomy is evaluated through some case studies of access control in
computer systems. The approach has been mechanized, resulting in the
tool CoSeC. Various extensions (e.g., the application to cryptographic
protocol analysis) and open problems are discussed.

This paper mainly follows [21] and covers the first part of the course
“Classification of Security Properties” given by Roberto Gorrieri and
Riccardo Focardi at FOSAD’00 school.

1 Introduction

The wide spread of distributed systems, where resources and data are shared
among users located almost everywhere in the world, has enormously increased
the interest in security issues. In this context, it is likely that a user gets some
(possibly) malicious programs from an untrusted source on the net and executes
them inside its own system with unpredictable results. Moreover, it could be
the case that a system completely secure inside, results to be insecure when
performing critical activities such as electronic commerce or home banking, due
to a “weak” mechanism for remote connections. It is important to precisely de-
fine security properties in order to have formal statements of the correctness of
a security mechanism. As a consequence, in the recent years there have been
a number of proposals of formal definitions of security properties (see, for in-
stance, [1,2,8,11,12,17,21,30,44,45,51,53,59,60]).

* This work has been partially supported by MURST projects TOSCA, “Certificazione
automatica di programmi mediante interpretazione astratta” and “Interpretazione
astratta, type systems e analisi control-flow”, and also partially supported by Mi-
crosoft Research Europe.

R. Focardi and R. Gorrieri (Eds.): FOSAD 2000, LNCS 2171, pp. 331-396, 2001.
© Springer-Verlag Berlin Heidelberg 2001

332 Riccardo Focardi and Roberto Gorrieri

In this paper we deal with a particular class of security properties, called
information flow properties, which aim at controlling the way information may
flow among different entities. They have been first proposed as a means to ensure
confidentiality, in particular to verify if access control policies are sufficient to
guarantee the secrecy of (possibly classified) information. Indeed, although access
control is a well studied technique for system security, it is not trivial to find an
access control policy which guarantees that no information leak is possible. One
of the main problems is to limit, and possibly to avoid, damages produced by
malicious programs, called Trojan Horses, which try to leak secret information.

For example, consider a classic Discretionary Access Control security (DAC
for short), where every subject (i.e., an active agent such as a user), decides
the access properties of its objects (i.e., passive agents such as files). The file
management in Unix is a classic example of DAC. Indeed it allows users to decide
the access rights on their files. This flexibility may facilitate security leakages.
As an example, if a user A executes a Trojan Horse program, this can directly
modify the access properties of A’s objects making, e.g., all A’s data visible to
every other user. In this respect, we can say that the DAC approach gives no
guarantees against “internal” attacks.

A different approach to this problem is the Mandatory Access Control (MAC
for short), where some access rules are imposed by the system. Even if we have
executed a Trojan Horse program, its action will be limited since it is not allowed
to change MAC rules. An example of MAC is Multilevel Security [5]: every object
is bound to a security level, and so is every subject; information can flow from
a certain object to a certain subject only if the level of the subject is greater
than the level of the object. So a Trojan Horse, which operates at a certain level,
has in principle no way to downgrade information, and its action is restricted to
that level. This policy can be implemented through two access rules: No Read
Up (a subject cannot read data from an upper level object) and No Write Down
(a subject cannot write data in a lower level object).

However, even if we adopt the less flexible MAC approach, this could be
insufficient to stop the action of a Trojan Horse. Indeed, it could be possible
to transmit information indirectly using system side effects. For example, if two
levels — ‘high’ and ‘low’ — share some finite storage resource (e.g., a hard disk),
it may be possible to transmit data from level ‘high’ to level ‘low’ by exploiting
the ‘resource full” error message. For a high level transmitter, it is sufficient to
alternatively fill or empty the resource in order to transmit a ‘1’ or a ‘0’ datum.
Simultaneously, the low level receiver tries to write on the resource, decoding
every error message as a ‘1’ and every successful write as a ‘0’. It is clear that such
indirect transmissions, called covert channels, do not violate the two multilevel
access rules (see Figure 1). Therefore it is often necessary to integrate a MAC
discipline with a covert channel analysis (see, e.g., [63]).

The existence of covert channels has led to the more general approach of
information flow security, mentioned above. The idea is to try to directly control
the whole flow of information, rather than the accesses of subjects to objects [36].
By imposing some information flow rules, it is possible to indifferently control

Classification of Security Properties 333

Write
—_————=
% Level n+k
\ Read
Covert Read-down Write-up

1
|
Channel :
|

Write
% Level n
-

Read

Fig. 1. Information flows in multilevel security

direct and indirect leakages, as, in this perspective, they both become “unwanted
information flows”.

In the literature, there are many different security definitions reminis-
cent of the information flow idea, each based on some system model (see,
e.g., [36,64,41,48,49,62,7]). In [24] we have compared and classified them, lead-
ing to our proposed notion of Bisimulation Non Deducibility on Compositions
(BNDC, for short). We will present BNDC' starting by the idea of Non Inter-
ference [36]. Through a running example and a comparison with other existing
approaches, we will try to convince the reader that such a property can effectively
detect unwanted information flows in systems, both direct and indirect.

We now describe the topics of the next sections. Section 2 presents the Secu-
rity Process Algebra (SPA, for short) language. All the properties we will present
and apply to the analysis of systems and protocols are based on such a language.
SPA is an extension of CCS [50] — a language proposed to specify concurrent
systems. The basic building blocks are the atomic activities, simply called ac-
tions; unlike CCS, in SPA actions belong to two different levels of confidentiality,
thus allowing the specification of multilevel (actually, two-level) systems. As for
CCS, the model used to describe the operational semantics of SPA is the labelled
transition system model [43], where the states are the terms of the algebra. In or-
der to express that certain states are indistinguishable for an external observer,
semantic equivalences over terms/states are defined such that two terms are ob-
servationally indistinguishable iff they are equivalent. As explained below, the
information flow security properties we introduce are all based on these notions
of observable behaviours.

Section 3 is about such properties, that capture the existence of information
flows among groups of users. We will see that these properties are all of the
following algebraic form. Let E be an SPA process term, let X be a security

334 Riccardo Focardi and Roberto Gorrieri

property, let &~ be a semantic equivalence among process terms and let Cx and
Dx be two SPA contexts' for property X. Then, we can say:

E is X-secure if and only if Cx[E] = Dx|E].

where the contexts Cx and Dx are such that only (part of) the low behaviour
of E becomes observable; hence, the behavioural equivalence compares these,
possibly different, low behaviours of E.

A first obvious consequence is that the security properties become paramet-
ric w.r.t. the chosen notion of equivalence: if an equivalence =2 is finer than
=9 then each security property based on = is satisfied by a subset of the pro-
cesses satisfying the corresponding security property based on =a5. A second,
less obvious consequence is that such information flow properties are not safety
properties, i.e. properties that can be specified as sets of acceptable behaviours.
Indeed, by defining a property of this form for E as an equivalence problem
— Cx[E] = Dx[E] — on suitable contexts, we are actually stating that if some
behaviour can occur, then it must be the case that also some other related be-
haviour must be possible; such a property cannot be expressed simply as a set
of acceptable behaviour.

We analyze which kinds of flows are detectable by the various properties
through the running example of an access monitor. In particular, we try to show
that certain properties are not appropriate to deal with some kinds of information
flows and so it is necessary to strengthen them by choosing a finer equivalence
notion or, if this is not enough, by following a different approach.

In Section 4 we present a tool called Compositional Security Checker (CoSeC,
for short) which can be used to check automatically (finite state) SPA specifi-
cations against some information flow security properties. We exploit the alge-
braic definition style. Indeed, checking the X-security of E is reduced to the
“standard” problem of checking semantic equivalence between two terms having
E as a sub-term. The CoSeC tool has the same modular architecture as Con-
currency Workbench (CW for short) [14], from which some modules have been
imported, and others modified. The tool is equipped with a parser, which trans-
forms an SPA specification into a parse-tree; then, for the parsed specification
CoSeC builds the labelled transition system following the operational rules de-
fined in Plotkin’ SOS style [54]. When a user wants to check if an SPA process E
is X-secure, CoSeC first provides operational semantic descriptions to the terms
Cx[F] and Dx[E] in the form of two LTSs; then verifies the semantic equivalence
of Cx[FE] and Dx|[FE] using their LTS representations. An interesting feature of
CoSeC is the exploitation of the compositionality of some security properties in
order to avoid, in some cases, the exponential state explosion due to the parallel
composition operator.

1 An SPA context G is an SPA term “with a hole”. E.g., G|—] = F + —. The insertion
of E in the context G, written as G[E], has the effect of filling the hole with E. In
the example, G[E] = F + E. Subscript X simply means that Cx and Dx are two
particular contexts for property X, i.e., it is used to give a name to contexts for
property X.

Classification of Security Properties 335

Finally, in Section 5 we give some concluding remarks and discuss some open
problems.

2 SPA and Value-Passing

In this Section we present the language that will be used to specify and analyze
security properties over concurrent systems. We first present the “pure” version
of the language. Then we show how to extend it with value-passing. Finally, we
present an example of value-passing agent specification. It will be our running
example for the next sections.

2.1 The Language

The Security Process Algebra (SPA for short) [24,20] is a slight extension of
Milner’s CCS [50], where the set of visible actions is partitioned into high level
actions and low level ones in order to specify multilevel systems. 2

SPA syntax is based on the same elements as CCS. In order to obtain a par-
tition of the visible actions into two levels, we consider two sets Acty and Acty,
of high and low level actions which are closed with respect to function ~ (i.e.,
Acty = Acty, Act;, = Actr); moreover they form a covering of £ and they
are disjoint (i.e., Acty U Acty, = L, Actyg N Acty, = (). Let Act be the set
Actp U Actr, U {7}, where 7T is a special unobservable, internal action. The syn-
tax of SPA agents (or processes) is defined as follows:

E:=0| pwE | E+E | EIE| E\L | E[f] | Z

where p ranges over Act, L C L and f : Act — Act is such that f(a) =
f(a), f(1) = 7. Moreover, for every constant Z there must be the corresponding

definition: Z & FE, and F must be guarded on constants. This means that the
recursive substitution of all the non prefixed (i.e., not appearing in a context
u.E') constants in E' with their definitions terminates after a finite number of
steps. In other words, there exists a term obtainable by constant substitutions
from E where all the possible initial actions are explicitly represented (through

the prefix operator u.E). For instance, agent A ' B with B A is not guarded
on constants. On the contrary, if B is defined as a.A, then B is guarded on
constants. This condition will be useful when we will do automatic checks over
SPA terms. As a matter of fact, it basically avoids infinite constant substitution
loops.

Intuitively, we have that 0 is the empty process, which cannot do any action;
u.E can do an action p and then behaves like E; E; + E5 can alternatively

2 Actually, only two-level systems can be specified; note that this is not a real limita-
tion because it is always possible to deal with the multilevel case by grouping — in
several ways — the various levels in two clusters.

336 Riccardo Focardi and Roberto Gorrieri

choose ? to behave like E; or Fs ; By | E5 is the parallel composition of Fy and Es,
where the executions of the two systems are interleaved, possibly synchronized
on complementary input/output actions, producing an internal 7; E\\ L can
execute all the actions F is able to do, provided that they do not belong to L;
if E can execute action u, then E[f] performs f(u).

The only other difference from CCS is the restriction operator \\ ; as we said
above, F'\\ L can execute all the actions E is able to do, provided that they do
not belong to L. In CCS the corresponding operator \ requires that the actions
do not belong to L U L. We will show in a moment that it is easy to define the
standard restriction operator of CCS using this new restriction. The reason why
we introduce this slight modification is that it is necessary to define an additional
input restriction operator which will be useful in characterizing some security
properties in an algebraic style. After that we will have no further use for the
\\ operator. We define the CCS restriction and the input restriction operators
as follows:

def

E\LY E\LUL
def

E\;LEY EN\LNT

E\ L is the CCS restriction operator, while £ \; L requires that the actions of
E do not belong to LN I

For the definition of security properties we also need the hiding operator of
CSP [39] which can be defined as a relabelling as follows:

def _JxifzglL
B/L* Blpr) where fufo) = { T2]
E/L turns all the actions in L into internal 7’s.
Let &€ be the set of SPA agents, ranged over by E and F'. Let £(E) denote the

sort of E, i.e., the set of the (possibly executable) actions occurring syntactically

in E. The sets of high level agents and low level ones are defined as £y Lef {F €

E|LE) C Acty U{7}} and &, ef {E €& | L(E) C Acty, U{7}}, respectively.

From a security point of view, processes in £y and in &, are secure by isolation,
as all the actions they perform are bound to one particular level (high or low,
respectively). More interesting is the case of processes in Eg U &y, C &, ie., of
those processes that execute both high level and low level actions, allowing for
communications between the two levels, hence possibly introducing unwanted
information flows.

2.2 Operational Semantics and Equivalences

The operational semantics of SPA is the LTs (&£, Act, —), where the states are the
terms of the algebra and the transition relation —C £ x Act x £ is defined as for

3 For notational convenience, we use sometimes the Y operator (indexed on a set) to
represent a general n-ary (or even infinitary) sum operator.

Classification of Security Properties 337

Table 1. The operational rules for SPA

Prefix _
wE L E
E 5 E, E, Y% E)
Sum
Ei+E, L E, E+E5%E,
B LB By 5 B Ey S E| E, 2 Ej
Parallel
Er|E2 5 BBy Ei|Es % Ei|E} E1|By 5 Ei|Fy
ELE
Restriction ——— ifpuélL
E\L% E'"\L
Relabelli B
elabelling _
EBlf) " B[]
E i E/ def
Constant — fA=F
AL FE

CCS by structural induction as the least relation generated by the axioms and
inference rules reported in Table 1. The operational semantics for an agent E is
the subpart of the SPA LTS reachable from the initial state E. We denote with
Ers the set of all the SPA agents with a finite LTS as operational semantics.
Table 2 shows some simple examples of SPA terms with their corresponding LTSs.
Now we introduce the idea of observable behaviour: two systems should have
the same semantics if and only if they cannot be distinguished by an external
observer. To obtain this we define an equivalence relation over states/terms of
the SPA LTS, equating two processes when they are indistinguishable. In this
way the semantics of a term becomes an equivalence class of terms.

It is possible to define various equivalences of this kind, according to the
different assumptions on the power of observers. We recall three of them. The
first one is the classic definition of trace equivalence, according to which two
agents are equivalent if they have the same execution traces. The second one
discriminates agents also according to the nondeterministic structure of their
LTss. This equivalence is based on the concept of bisimulation [50]. The last one,
introduced for the CSP language [39], is able to observe which actions are not
executable after a certain trace (failure sets), thus detecting possible deadlocks.

Since we want to focus only on observable actions, we need a transition
relation which does not take care of internal 7 moves. This can be defined as
follows:

Definition 1. The expression E == E' is a shorthand for E()*Ey < Bo(5)*
E', where (5)* denotes a (possibly empty) sequence of T labelled transitions. Let

338 Riccardo Focardi and Roberto Gorrieri

Table 2. Some simple SPA terms

def

Prefix: FE1=al a

Y

Sum: Fs = a.0+ b.c.0

p Y\
Parallel: Es def a.0|a.0 —T>

Restriction: By < B \ {a} T

Relabelling: Es EC O [b/d,c/e]

Yy=ai...a, € LT be a sequence of actions; then E =L E' if and only if there

exist E1,Eo,...,Ep_1 € € such that E =% E; =% ... 25! B, 25 F/,
For the empty sequence () we have that E Y B stands for BE(Z)*E'. We say

that E' is reachable from E when 3y : E == E' and we write E = E'. [|

Trace Equivalence We define trace equivalence as follows:

Definition 2. For any E € £ the set T(E) of traces associated with E is defined

as follows: T(E) = {y € £* | 3E' : E =% E'}. E and F are trace equivalent
(notation E ~p F) if and only if T(E) = T(F). [|

Classification of Security Properties 339

Fig. 2. Systems not observationally equivalent

Observational Equivalence Bisimulation is based on an idea of mutual step-
by-step simulation, i.e., when F executes a certain action moving to E’, F' must
be able to simulate this single step by executing the same action and moving to
an agent F which is again bisimilar to E’ (this is because it must be able to
simulate every successive step of E’), and vice-versa.

A weak bisimulation is a bisimulation which does not care about internal
T actions. So, when F simulates an action of F, it can also execute some T
actions before or after that action.

In the following, F =% E’ stands for E =% E’ if y € £, and for E (5)* E’
if 4 =7 (note that (—+)* means “zero or more 7 labelled transitions” while ==
requires at least one 7 labelled transition).

Definition 3. A relation R C £ x £ is a weak bisimulation if (E,F) € R
implies, for all p € Act,

— whenever E 5 E’, then there exists F' € & such that F L F' and
(E',F'") € R;

— conversely, whenever F L F', then there exists E' € € such that E == E'
and (E',F') € R.

Two SPA agents E,F € £ are observationally equivalent, notation E ~p F, if
there exists a weak bisimulation containing the pair (E, F).]

In [50] it is proved that ~p is an equivalence relation. Moreover, it is easy to
see that ¥ ~p F implies F ~p F'; indeed, if £ ~p F then F must be able to
simulate every sequence of visible actions executed by F, i.e., every trace of E;
since the simulation corresponds to the execution of the actions interleaved with
some 7’s, then every trace of E is also a trace for F. Symmetrically, £ must be
able to simulate every sequence of F'. So E ~p F.

In Figure 2 there is an example of two trace-equivalent systems which are not
observationally equivalent. In fact both F and F' can execute the three traces a,
ab and ac. However, it is not possible for F to simulate step-by-step process F'. In
particular, F' executes a and moves to a state where it can execute both b and c.
Process F can simulate this first step of F' but, after this, it cannot simulate F’
anymore since it is in a state where it can execute only b or c.

340 Riccardo Focardi and Roberto Gorrieri

E’ F’
b b

Fig. 3. Observational equivalence detects deadlocks

This ability of observing the branching structures of systems makes ~p able

to detect potential deadlocks. If we consider E’ o E\{c} and F’ def F\{c} (see
Figure 3) we have that E’ and F” are still trace equivalent but not observationally
equivalent. Indeed, system E’ can reach a deadlock state after the execution of
action a. On the other hand, F’ is not able to simulate this move since after a
it can always execute b.

We conclude this section about bisimulation by introducing the notion of
weak bisimulation up to ~p. It will be very useful when proving that two agents
are observation equivalent. Indeed, we see that in order to ensure P ~p @ it is
sufficient that (P, Q) is in some weak bisimulation up to ~p.

Definition 4. A relation S C ExE is a weak bisimulation up to ~p if (E, F) €S
implies, for all p € Act,

— whenever E =& E’, then there exists F' € & such that F L P oand
E’ ~pB S ~B F’,‘

— conversely, whenever F =% F', then there exists E' € £ such that E =% E’
and E’ ~B S ~pB F'.

where ~p S =g is the composition of binary relations, so that B’ ~p S ~pg F’
means that for some E” and F" we have E' ~p E", (E",F") e S, F' ~p F".
|

In [50] it is proven the following result:
Proposition 1. If S is a bisimulation up to ~p then S Cxp.

Hence, to prove P ~p @, we only have to find a bisimulation up to ~p which
contains (P, Q). This is one of the proof techniques we will often adopt in the
following.

Failure/Testing Equivalence The failure semantics [9], introduced for the
CSP language, is a refinement of the trace semantics where it is possible to
observe which actions are not executable after a certain trace. In particular,
a system is characterized by the so-called failures set, i.e., a set of pairs (s, X)

Classification of Security Properties 341

where s is a trace and X is a set of actions. For each pair (s, X), the system must
be able, by executing trace s, to reach a state where every action in X cannot
be executed.? For instance, consider again agents £ and F’ of Figure 3. As we
said above, E’ can stop after the execution of a and, consequently, E’ can refuse
to execute action b after the execution of a. So E’ has the pair (a,{b}) in its
failure set. System F” is always able to execute b after the execution of a. So F”
does not have (a, {b}) in the failure set, hence it is not failure equivalent to E’.
We deduce that also failure semantics is able to detect deadlocks. Moreover, also
systems F and F' of Figure 2 are not failure equivalent.

A different characterization of failure equivalence (called testing equivalence)
has been given in [52]. It is based on the idea of tests. We can see a test T as
any SPA process which can execute a particular success action w € L. A test T
is applied to a system F using the parallel composition operator |. A test T may
be satisfied by system E if and only if system (E|T) \ £ can execute w. Note
that in system (E|T) \ £ we force the synchronization of F with test T

Definition 5. E may T if and only if (E|T)\ £ == (E'|T")\ L [

A maximal computation of (E|T)\ £ is a sequence (E|T)\ £ = ETy - ETy -
.= ET, 5 ... which can be finite or infinite; if it is finite the last term must

have no outgoing transitions. A test T' must be satisfied by E if and only if every

maximal computation of (E|T) \ £ contains a state ET; which can execute w.

Definition 6. E must T if and only if for all mazimal computations of ETy =
(BE|T)\ £,3i such that ET; % ET] |

Now we can define testing equivalence as follows:

Definition 7. Two systems E and F are testing equivalent, E =t F', if and
only if

i) EmayT < F may T
1) E mustT < F mustT

for every test T'. [|

It is easy to see that the first condition holds if and only if F ~p F. In fact,
if F may satisfy T, then E is able to execute the trace which moves T to the
state where it can execute w. ® It is not difficult to see that the second condition
corresponds to failure equivalence. The basic idea is that if E fails to execute
a certain action a after a trace -y, we can detect this with a test 7" which executes
the complementary actions of v followed by a, and then executes w. In fact, for
that T" we have that E must T.

4 Indeed, there is a condition on the traces s in pairs (s, X). It is required that during
any execution of s no infinite internal computation sequences are possible. We will
analyze this aspect more in detail in the following.

5 We could have more than one trace or more than one w. However if a system may
satisfy a test T, then it may satisfy also a test T with only one w and only one trace
to it. 7" corresponds to one of the traces executed by the system in order to satisfy
the test T

342 Riccardo Focardi and Roberto Gorrieri

Fig. 5. Systems observationally equivalent but not testing equivalent

We have seen that both ~p and ~.s; are stronger than ~p, since they
basically observe something of the branching structure of the LTSs. However we
have said nothing about the relation between these two equivalences. The reason
is that they are incomparable, i.e., no one of them implies the other. Indeed,
we have that ~p is in most cases more sensitive than .5 to the branching
structure of the agents. We can see this in the simple example of Figure 4. It
shows that ~p does not permit to “shift” the non-deterministic choice even if
the first actions executed after the branch are exactly the same (b, in this case).

On the other hand =5 is more discriminating with respect to divergent
behaviour, i.e., infinite sequences of internal 7 actions. Indeed, a divergence may
“ruin” a test by generating unexpected maximal computations. As an exam-
ple, see Figure 5 where the divergence after a in process B’ determines that
B’ must a.b.w.0 while A’ must a.b.w.0. This happens because, after the execu-
tion of a, the process could diverge never reaching the w success action. This
aspect will be analyzed more in detail in the next chapters, when we will try to
use ~eq in the specification of security properties.

We conclude this section presenting a class of finite state agents. This will be
useful in the automatic verification of security properties. This class of agents

Classification of Security Properties 343

consists of the so-called nets of automata:

=0 | up|ptr| 2
E:=p | E[E | ENL | E\rL | E/L | E[f]

where for every constant Z there must be the corresponding definition Z ef D
(with p guarded on constants). It is easy to prove that every agent of this form
is finite state. However, this condition is not necessary, in the sense that other
agents not belonging to the class of nets of automata are finite state as well. For

instance, consider B ©00+D \ {i} with D of 1.(0.0| D). It can execute only an
action a and then it stops, so it is clearly finite state. However note that it does
not conform to the syntax of nets of automata since there is a parallel operator
underneath a sum.

2.3 Value-Passing SPA

In this section we briefly present a value-passing extension of “pure” SPA (VSPA,
for short). All the examples contained in this paper will use this value passing
calculus, because it leads to more readable specifications than those written
in pure SPA. Here we present a very simple example of a value-passing agent
showing how it can be translated into a pure SPA agent. Then we define the
VSPA syntax and we sketch the semantics by translating a generic VSPA agent
into its corresponding SPA agent.
As an example, consider the following buffer cell [50]:

C ¥ in(z).C'(x)

C'(z) ¥ out(z).C

where x is a variable that can assume values in N (we usually write z € IN).
C reads a natural number n through action in and stores it in variable z. Then
this value is passed to agent C’ which can give n as output through action out
moving again to C. So C represents a buffer which may hold a single data item.
If we assume that in is a low level action and out a high level action, then C' is
a system exhibiting a legitimate direct information flow from low to high. On the
contrary, if in is high and out is low, then C'is an insecure system, downgrading
information from high to low.

Now we show how C' can be translated into an SPA agent. The parametrized
constant C” becomes a family of constants C! one for each value v € N. Similarly
out(x) becomes a family out, of prefixes. So the single definition for C’ becomes
the following family of definitions:

c) Y out,.c (veN)

v

Now consider the prefix in(x). To reflect the fact that it can accept any in-
put value, binding variable x, we translate it into) .. So the definition

344 Riccardo Focardi and Roberto Gorrieri

becomes:

def .
C= E in,.Cl
veEN

VSPA is very similar to the value-passing CCS introduced in [50]. The main
difference is that in VSPA we can have more than one parameter for actions and
parameters are multi-sorted.

The syntax of VSPA agents is defined as follows:

E:=0 | a(xy,...,xn).E | aler,...,en).E | T.F | E+FE | E|E |
| ENL | B\L | /L | Bl | Aleh-.éh) |
| if b then F | if b then FE else F

where the variables z1,...,z,, the value expressions e1,...,e, and e},... e,
must be consistent with the arity of the action a and constant A, respectively
(the arity specifies the sorts of the parameters), and b is a boolean expression.
The arity of actions and constants is given by function ari. This function returns
a tuple of sets (called Sorts) that represent the ranges of the parameters for the
specific action or constant considered. For example, ari(a) = (S1,...,S,) means

that action a has n parameters with ranges Si, ..., S,, respectively.

It is also necessary to define constants as follows: A(xy,...,zm) ' B where
FE is a VSPA agent which may contain no free variables except x1, ..., Z,, which
must be distinct. As in [50] the semantics of the value-passing calculus is given
as a translation into the pure calculus. The translations rests upon the idea that
a single label a of VSPA, with n parameters with sorts Si....S,, becomes the
set of labels {ay,. o, : v; € S;,Vi € [1,n]} in SPA. We consider only agents
without free variables because if an agent has a free variable then it becomes a
family of agents, one for each value of the variable. The translation can be given
recursively on the structure of agents. Note that, since we have no free variable
all the value and boolean expressions can be calculated; we will write b and € for
the value obtained by evaluating a boolean expression b and a value expression e
respectively.

We will use the notation E{a/b} to represent agent F with all the occurrences
of b substituted by a. We will also use £T to denote the set of VSPA agents.
For each agent E € &' without free variables, its translation [E] is given in
Table 3 where ari(a) = Sy...Sp: L = {lu,...0, : | € L,ari(l) = Sy...Sp,v; €
Si, Vi € [1,n]} is the set of the translations of actions in L and f(lvl,...,vn) =

F(Duy,....0, 1s the translation of relabelling function f. Furthermore, the single

definition A(z1,...,Tm) ' B with ari(A) = Sy ...Sn, is translated to the set

of equations:
{As,. ..o, = [E{v1/21,. ., 0m/Tm }]; v € SiVi € [1,m]}

Note that we do not partition the set of actions into two levels; we directly
refer to the partition in the pure calculus. In this way it is possible for a certain

Classification of Security Properties

Table 3. Translation of VSPA to SPA

345

EceEt [E]l€€&
0 0
a(ml, cey l’n)E Eie[l,n],vigsi avl,.“,vnﬂE{vl/mh e U’ﬂ/x”}ﬂ
a(ei,...,en).E Qe,..., EZ[[EH
T E T.[E]
B+ Es [E£:] + [E2]
Eq1|E> [E1]|[E]
E\L [E1\T
E\rL [E1\: L
E/L [E]/L
E[f] [E](f]
Aer,...,en) As.. &
. { [E] if b= True
if b then F
otherwise

action in VSPA to correspond, in the translation, to actions at different levels in
SPA. This can be useful if we want a parameter representing the level of a certain
action. As an example consider an action access_r(l,) with [€ {high, low} and
€ [1,n], representing a read request from a user at level [to an object x; we
can assign the high level to the actions with [= high and the low level to the
others in this way: access.r(high,z) € Acty and access_r(low,z) € Acty, for all
x €[l,n].°
A VSPA agent is finite state if its corresponding SPA agent is so. Hence,
in general, a necessary condition is that every variable can assume values over
a finite set only.

2.4 The Access Monitor

Here we give a more complex example of a VSPA agent specification. It is an
access monitor which handles read and write requests on two binary variables
enforcing the multilevel security policy. We will analyse and modify this example
in the next sections in order to assess the merits of the various information flow
properties that we will propose.

Ezample 1. Consider the system in Table 4 where x,y, 2,1l € {0,1}, L= {r,w}
and Vi € {0,1} we have r(1,4), w(1,4), accessr(1,7), val(1,7), val(1l,err),

5 Note that access_r(high,) stands for access rpigh,q, with 2 € [1,n]. Indeed, for the
sake of readability, we often write c¢(v) instead of its translation c,.

346 Riccardo Focardi and Roberto Gorrieri

Table 4. The Access_Monitor_1 System

Access_Monitor 1 % (Monitor | Object(1,0) | Object(0,0)) \ L
Monitor access_r(l,x).

(if z <[then
r(z,y).val(l,y). Monitor

else
val(l, err).Monitor)

+

accessw(l, x).write(l, z).

(if > [then
w(x, z). Monitor

else

Monitor)

Object(x,y) ef 7(x,y).Object(z,y) + w(z, z).Object(x, z)

access-w(1,1), write(1,7) € Acty and all the other actions are low level ones.
Note that in Access_Monitor_1 every variable can assume values over a finite
set only. When we translate it into SPA, we obtain a net of automata, hence
Access_Monitor_1 is a finite state agent

Figure 6 represents process Access_Monitor_1 that handles read and write
requests from high and low level users on two binary objects: a high level variable
and a low level one. It achieves no read up and no write down access control
rules allowing a high level user to read from both objects and write only on the
high one; conversely, a low level user is allowed to write on both objects and read
only from the low one. Users interact with the monitor through the following
access actions: access.r(l,), access.w(l, x), write(l, z) where [is the user level
(I =0 low, I =1 high), z is the object (x = 0 low, = 1 high) and z is the
binary value to be written.

As an example, consider access_r(0,1) which represents a low level user
(I = 0) read request from the high level object (z = 1), and access_w(1,0)
followed by write(1,0) which represents a high level user (I = 1) write request
of value 0 (z = 0) on the low object (z = 0). Read results are returned to
users through the output actions val(l,y). This can be also an error in case of
a read-up request. Note that if a high level user tries to write on the low object
— through access_w(1,0) followed by write(1, z) — such a request is not executed
and no error message is returned.

In order to understand how the system works, let us consider the following
transitions sequence representing the writing of value 1 in the low level object,

Classification of Security Properties 347

access_r(1,x)
r(Ly) access_w(1,x) I];Iighl
. write(1,z) eve
Object(1,y) w(l,z) Users
val(1,y)
Monitor
0,y) access_r(0,x)
. access_w(0,x) Low
ObJeCt(O,y) w(0,z) T Level
write(0,z
Users
val(0,y)

Fig. 6. The Access Monitor for Example 1

performed by the low level user:

(Monitor | Object(1,0) | Object(0,0)) \ L

access(0,0) (write(0, z).w(0, z).Monitor | Object(1,0) | Object(0,0))\ L
Wit (0, 1) Monitor | Object(1,0) | Object(0,0)) \ L

— (Monitor | Object(1,0) | Object(0,1)) \ L

The trace corresponding to this sequence of transitions is
access_w(0,0).write(0, 1)

and so we can write:

(Monitor | Object(1,0) | Object(0,0)) \ L

access_w(0,0).write(0,1)
— (

Monitor | Object(1,0) | Object(0,1)) \ L

Note that, after the execution of the trace, the low level object contains value 1.

Access_Monitor_1 is a value passing specification of an access monitor. Its
translation into CoSeC syntax for pure SPA is reported in Table 12 of Section 4.4.
As an example, here we provide the translation of Object(x,y) into the pure
calculus by means of the following four constant definitions:

Objectyg def To0-Objectoy + wop.Objectoy + wo1.Objectyy
Objector def To1.-Objector + wop.Objectoy + wo1.0Objectyy
Objectyg def T10.0bject1g + wi9.Object oy + wy1.0bject1y
Objectyy def 711.0bject11 + wip.Object1y + wy1.0Object1y

Note that we have, for every possible value of the pair (x,y), one different process
Objectyy,. [|

348 Riccardo Focardi and Roberto Gorrieri

3 Information Flow Properties

In this Section we present some Information Flow properties. The common in-
tuition behind all these properties is strictly related to the classic notion of Non
Interference (NI, for short) [36], i.e., the low level users should not be able to
deduce anything about high level users’ activity.

As already mentioned earlier in this chapter, processes in £y or £f, are secure
by isolation, as they are confined to work in one single confidentiality level. The
really interesting processes are those built with both high level and low level
actions, as they may show unwanted information flows.

In the first three sections we present properties based on different equivalence
notions. We start with the weakest and most intuitive one: trace equivalence.
Then, we see that it is necessary to move to finer equivalence notions in order
to detect possible high level deadlocks that can compromise the security of the
system. For this reason, in the second section we base our security properties
on failure and testing equivalences [9,52], which have been designed specifically
to detect deadlocks. However, we discover that the failure/testing setting is not
ideal for our purposes because of the way it deals with (potential) divergences.
This leads us, in the third section, to prefer to base our security properties on the
notion of weak bisimulation. In the fourth section we show that deadlocks due
to high level activity are indeed dangerous and cannot be ignored. In section 3.5
we compare our security properties with other proposals in the literature which
are also based on Process Algebras.

Part of the material contained in this section has been published in [24], [26],

21, [23], [22], [18].

3.1 Properties Based on Trace Equivalence

We start with Non-deterministic Non Interference (NNI, for short) [24,20],
which is a natural generalization to non-deterministic systems of NI (assum-
ing two user groups only). The basic idea of NI is that the high level does not
interfere with the low level if the effects of high level inputs are not visible by a
low level user. This idea can be rephrased on the LTS model as follows. We con-
sider every trace 7y of the system containing high level inputs. Then, we look if
there exists another trace 7" with the same subsequence of low level actions and
without high inputs. A low level user, which can only observe low level actions,
is not able to distinguish v and +’. As both v and " are legal traces, we can
conclude that the possible execution of the high level inputs in v has no effect
on the low level view of the system.

As for NI, we can define this property by using some functions which manip-
ulates sequences of actions. In particular, it is sufficient to consider the function
low : £L* — Act} which takes a trace 7 and removes all the high level actions
from it, i.e., returns the low level subsequence of 7. Moreover we use the func-
tion highinput : L* — (Actg NI)* which extracts from a trace the subsequence
composed of all the high level inputs.

Classification of Security Properties 349

Definition 8. (NNI: Non-deterministic Non Interference)
E € NNI if and only if Vy € T(E),36 € T(E) such that
(1) low(y) = low(9)

(73) highinput(d) = ()

where () denotes the empty sequence. [|
This may be expressed algebraically as:
Proposition 2. E € NNI <= (E \; Acty)/Acty = E/Acty.

PROOF. (=) It is enough to show that if E is NNI then T(E/Acty) C T((E\;
Actpr)/Actir), because the opposite inclusion simply derives from T (E\jActy) C
T(E). Let v € T(E/Acty); then, by definition of / operator, 37" € T(E) such
that low(y') = «. Since E € NNI then 36 € T(E) such that low(y’) = low(9)
and highinput(d) = (). Hence 6 € T(E \; Acty) and &' = low(d) € T((E \1
Actp)/Acty). Since v = low(y") = low(d) = ¢, then v = ¢ and thus v €

T((E \[ACtH)/ACtH).
(<) Let v € T(E). Then 36 € T(E \1 Actg) such that low(y) = low(d). Since
d € T(E\1 Acty) then highinput(§) = () and § € T(E). |

As a matter of fact, in E/Acty all the high level actions are hidden, hence
giving the low level view of the system; E \; Acty instead prevents traces from
containing high level inputs. So, if the two terms are equivalent, then for every
trace with high level inputs we can find another trace without such actions but
with the same subsequence of low level actions.

In the following we will consider this algebraic characterization as the defi-
nition of NNI. Indeed, all the other properties we present below in this section
are defined using this compact algebraic style. An interesting advantage of this
style is that it reduces the check of a security property to the “standard” and
well studied problem of checking the semantic equivalence of two LTSs.

It is possible to prove that Access_Monitor_1 of Example 1 is NNI. In fact,
the next example shows that NNI is able to detect whether the multilevel access
control rules are implemented correctly in the monitor.

Example 2. Consider the modified monitor ” in Table 5 which does not control
write accesses: Now it is possible for a high level user to write in the low level
object (action access-w(1,0) followed by write(1, z)) so the system is not secure.
We have that NNI is able to detect this kind of direct flow. Access_Monitor_2
can execute the following trace:

v = access_w(1,0).write(1,1).access_r(0,0).val (0, 1)

In v we have two accesses to the monitor: first a high level user modifies the value
of the low object writing down value 1, and then the low user reads value 1 from
the object. If we purge 7 of high level actions, we obtain the sequence

7 = access_r(0,0).val(0,1)

" In the following, if an agent is not specified (e.g. Object(x,y)) we mean that it has
not been modified with respect to the previous versions of the Access Monitor.

350 Riccardo Focardi and Roberto Gorrieri

Table 5. The Access_Monitor_2 System

Access_Monitor2 (Monitor_2 | Object(1,0) | Object(0,0)) \ L
Monitor 2 % accessr(l,x).
(if x <1 then
r(z,y).val(l,y). Monitor 2
else
val(l, err).Monitor_2)
+

access-w(l, z).write(l, z).w(x, z).Monitor 2

representing the reading by a low level user of value 1 from the low object. This
trace is not a legal trace for Access_Monitor_2 since the low object is initialized
to value 0. Moreover, it is not possible to obtain a trace for Access_Monitor_2
by adding to ~ only high level outputs, because all the high level outputs in
Access_Monitor_2 are prefixed by high level inputs. Hence +' is not even a trace
for (Access_Monitor 2 \1 Acty)/Acty. In other words, it is not possible to find
a trace v" of Access_Monitor_2 with the same low level actions of v and without
high level inputs.

Since 7' is a trace for agent Access_Monitor_2/Acty but it is not a trace for
agent (Access_-Monitor 2 \1 Acty)/Actm, we conclude that Access_Monitor_2
is not NNI. [|

The example above shows that NNI reveals if something is wrong in the access
policy we are implementing. Indeed, it is quite intuitive that if some access rule
is missing then there will be a particular execution where some classified infor-
mation is disclosed to low level users (otherwise such a rule would be useless).
This will certainly modify the low level view of the system making it not NNI
for sure.

However, the next example shows that NNI is not adequate to deal with
synchronous communications and, consequently, it is too weak for SPA agents.

Example 3. Consider Access_Monitor_1, and suppose that we want to add a high
level output signal which informs high level users about write operations of low
level users in the high level object. This could be useful to know the integrity
of high level information. We obtain the VSPA agent of Table 6 with the new
written_up action and where Vi € {0, 1}, written_up(i) € Actpy.

It is possible to prove that Access_Monitor_3 is NNI. However, consider the
following trace of Access_Monitor_3:

v = access_w(0,1).write(0,0).written_up(0).access w(0, 1).write(0,0)

Classification of Security Properties 351

Table 6. The Access_Monitor_3 System

Access_Monitor_3 %< (Monitor_3 | Object(1,0) | Object(0,0)) \ L
Monitor_3 < accessr(l,).
(if x < then
r(x,y).val(l,y).Monitor_3
else
val(l, err).Monitor_3)
+
access-w(l, xz).write(l, z).
(if x =1 then
w(z,z).Monitor_3
else
if x > [then
W(x, z). written_up(z). Monitor_3
else
Monitor_3)

where a low level user writes two times value 0 into the high level object. If
we purge «y of high level actions (i.e. of written_up) we obtain the following
sequence:

v = access_w(0,1).write(0,0).access w(0, 1).write(0,0)

that cannot be a trace for Access_Monitor_3, because after every low level write
operation there must be an action written_up.

So, if a low level user succeeds in executing the two write requests, then
(s)he will know that some high level user has “accepted” the high level output
written_up (because of synchronous communications). In other words, a high
level user can interfere with a low level one accepting or not the high level
output written_up. NNI is not able to detect this, because it verifies only the
high level input interferences over low level actions. In fact, since v is a trace
of Access_Monitor_3, then +' is a trace for both Access_Monitor_3/Acty and
(Access_Monitor 3 \1 Acty)/Acty. [|

The example above shows that synchronous communications induce a symmetry
over inputs and outputs. For this reason, we define a symmetric form of NNI. It
requires that, for every trace 7, the sequence +/, obtained from ~y by deleting all
the high level actions, is still a trace. This property is called Strong NNI (SNNI
for short).

352 Riccardo Focardi and Roberto Gorrieri

Definition 9. F € SNNI < E/Acty ~7p E\ Acty. [|

We have that Access_Monitor_3 is not SNNI since v is a trace for the agent
Access_Monitor_3/Acty and 7' is not a trace for Access_-Monitor -3 \ Acty.
The reason why the name “Strong NNI” has been chosen is a consequence of
the following result:

Proposition 3. SNNI C NNI.

Proor. If E € SNNI then E/ACtH ~T E\ACtH. Since T(E\ACtH) - T((E \[
Actg)/Acty) and T((E \r Actg)/Acty) € T(E/Actg) then E € NNI. The
inclusion is strict because E = h.l.0 is NNI but not SNNI. [|

It is thus possible to prove that Access_Monitor_1 of Example 1 is also SNNI.

SNNI seems to be quite satisfactory in a trace equivalence setting. Unfor-
tunately, in the following example, we will see that trace equivalence — as the
basic equivalence for security properties — is too weak; in particular, it is not
able to detect deadlocks due to high level activities, that influence the security
of a system.

Ezxample 4. Suppose we have a high level action h_stop which explicitly stops
the monitor. Obviously, in such a case there is a possible deadlock caused by
a high level activity. In particular, consider the system in Table 7 where h_stop €

Table 7. The Access_Monitor_4 System

Access_Monitor_4 % (Monitor_4 | Object(1,0) | Object(0,0)) \ L
Monitor_4 % access-r(l,x).
(if <! then
r(x,y).val(l,y). Monitor 4
else
val(l, err).Monitor_4)
+
access-w(l, z).write(l, z).
(if x > I then
w(x, z).Monitor_4
else
Monitor_4)
+
h_stop.0

Acty. Tt is possible to prove that it is SNNI. This is because trace equivalence

Classification of Security Properties 353

is not able to detect deadlocks and h_stop does not modify the low traces of
the system. It could seem that a deadlock caused by a high level activity is
not really interfering with any low level users, since a low level user, trying
to make an access to the monitor, is not able to conclude that the monitor is
blocked. However such a user can obviously deduce that the system is not blocked
every time it accepts some access requests or gives some outputs. In the case of
Access_Monitor_4, a low level user will never be able to conclude that h_stop
has been executed; nonetheless, at every interaction with the system, the user
will know that Access_M onitor_4 is not blocked and so that h_stop has not been
executed yet. In section 3.4 we will show how the subtle information flow caused
by a potential deadlock can be exploited in order to construct an information
channel from high level to low level. []

In order to detect this kind of flows, it is necessary to use some notion of equiva-
lence which is able to detect deadlocks. Note that by simply changing the equiv-
alence notion in the definition of SNNI we obtain a security property which
inherits all the observation power of the new equivalence notion. So, for detect-
ing deadlocks, one obvious possibility could be the failure/testing setting [9,52],
that has been designed for this purpose.

3.2 Detecting High Level Deadlocks through Failure/Testing
Equivalences

Consider the version of SNNI based on testing equivalence:
Definition 10. (testing SNNI) E € TSNNI <= E/Acty ~iest B\ Acty []

We have that Access_-Monitor 4 ¢ TSNNI. In fact it is sufficient to consider

the test T < access(0,0).w.0 which is able to detect the deadlock introduced
by action h_stop. In particular, we have that:

Access_Monitor 4\ Acty must T

Access_Monitor 4/ Acty must T

Intuitively, when we hide h_stop in Access_Monitor_4/Acty we obtain an inter-
nal transition to a deadlock state. If the system moves to that state before the
execution of accessr(0,0) the test will not be satisfied.

So, it seems that TSNNI is exactly the deadlock-sensitive extension of SNNI
we were looking for. However, in the following we want to show that for systems
with some high level loops or with 7 loops, TSNNI is not interesting and is not
able to detect security flaws. This is caused by the way testing equivalence deals
with divergences (infinite sequences of 7 actions). In fact, it is possible to prove
that if E is divergent, then the (failure) condition (i) of &%+ is verified if and
only if also F' is divergent. In the failure setting, when we have a divergent state
we can observe the behaviour of a process only before reaching that state. All
the actions after a divergence cannot be observed. In section 2.2, we have seen

that A’ % 4.5.0 is not testing equivalent to B’ f 0. B" with B” % 7.B" +b.0.

354 Riccardo Focardi and Roberto Gorrieri

Fig. 7. Divergence makes A and B non testing equivalent

The only difference between A" and B’ is the divergence after the execution of a
in B’ (see Figure 7).

Now, consider a system E with some high level loops and without divergences.
When we hide high level actions in TSNNI with operation FE/Acty, we obtain
some 7 loops and so E/Acty is divergent. As we said above, this will be failure
equivalent to E'\ Acty only if E'\ Acty is divergent as well. However since E is
without divergences, F \ Acty cannot have divergences too. We conclude that
this kind of systems cannot be TSNNI no matter what the interactions between
high and low level actions are. Note that every recursive high level system (with
no low level actions and so secure by definition) is of this kind. All the access
monitors we have seen so far have this feature as well.

Moreover we have an even worse situation if we consider a divergent pro-
cess D, as also D\ Acty and D/Acty are divergent. So for these two processes
(1) is verified. This means that for divergent processes ~%t.s+ becomes equal to
~7. Hence TSNNI becomes equal to SNNI and, in general, all the properties
based on testing equivalence become equal to the corresponding ones based on
trace equivalence. Now, we present an example of a divergent T'SNNI process
which, nonetheless, contains some high level deadlocks.

Ezample 5. Consider again agent Access_Monitor_4. We want to add a backup
feature which is able to make a copy of the values stored in objects periodically.
Obviously, there should be also a recovery procedure, but we do not model this
in order to simplify as much as possible the example. We have a first process
which represents the backup timer and sends periodically a signal in order to
obtain a backup. It is an abstraction of a clock, since in SPA it is not possible
to handle time directly.

Backup_timer def backup. Backup_timer

Then we slightly modify the Monitor process by inserting two actions which
suspend its execution until the backup is finished.

Monitor_B def o

the same as in Access_Monitor_4

+ start_backup.end_backup.M onitor

Classification of Security Properties 355

The backup process is enabled by the timer, then it stops the monitor, reads
the values of variables, stores them into two additional objects (Object(2,y) and
Object(3,y)) and resumes the monitor:

Backup def backup.

start_backup.
r(0,y).r(1, 2).
w(2,y).w(3,z2).
end_backup.
Backup

The access monitor with backup is given by the following system:

Access_Monitor_B % (Monitor_B | Backup_timer | Backup | Object(0,0) |
| Object(1,0) | Object(2,0) | Object(3,0)) \ L

where L = {r, w, start_backup, end_backup, backup}. As a result, the backup pro-
cedure of the system is something internal, i.e., an external user can see nothing
of the backup task. This makes the system divergent. In fact, if the variable val-
ues are unchanged, then the backup procedure is a 7 loop that moves the system
to the same state where it started the backup. For weak bisimulation this is not
a problem and we can analyze this new system as well. In particular, we can
check with the CoSeC tool (presented in Section 4) that Access_Monitor_B is
observationally equivalent to Access_Monitor_4. This is enough to prove (The-
orem 5) that every security analysis made on Access_Monitor_4 is valid also for
Access_Monitor_B. In particular, Access_Monitor_B is not secure because of
the potential high level deadlock we have explicitly added in Access_Monitor_4.

On the other hand, if we try to analyze this system with some testing equiv-
alence based property, we have an inaccurate result. Indeed Access_Monitor_B,
differently from Access_Monitor_4, is TSNNI. This happens because process
Access_Monitor_B is divergent and so processes Access_Monitor_B/Acty and
(Access_-Monitor_B|II) \ Acty (VII € Eg) are divergent as well. Thus they are
failure equivalent and, since Access_Monitor_B is SNNI they are also trace (and
so testing) equivalent. [|

There is also an interesting, practical difference between bisimulation and fail-
ure/testing. On the one hand, it is possible to check bisimulation (observational
equivalence) in polynomial time [42]. On the other hand, we have that the prob-
lem of establishing language equivalence of nondeterministic finite automata is
reducible in polynomial time to the problem of checking any of the testing,
failure, and trace equivalences. Such a problem has been proved to be PSPACE-
complete [61]. The consequence is that all these problems are PSPACE-complete
as well.

Moreover it is interesting to observe that failure/testing equivalences are
not known to be decidable on infinite state systems. On the other hand, there

356 Riccardo Focardi and Roberto Gorrieri

are some interesting results on the decidability of weak bisimulation over some
classes of infinite state systems, e.g. totally normed Basic Process Algebras
(BPA) [38].% For instance it is possible to define a BPA agent representing an
unbounded queue.

All these arguments have convinced us to adopt bisimulation and observa-
tional equivalence as the default semantic equivalence for our properties.

In the next section we move to weak bisimulation and observational equiv-
alence. As we have seen, these notions are able to detect deadlocks as well.
Moreover they give a fair interpretation of divergence, i.e., they assume that
a 7 loop will be executed an arbitrary, yet finite, number of times. In this way
they can observe system behaviour also after divergences.

3.3 Properties Based on Observational Equivalence

We introduce the bisimulation-based security properties BNNI and BSNNI, by
substituting ~p for ~¢ in their SPA-based definitions.

Definition 11. (Bisimulation NNI, SNNI)

(Z) FE € BNNI <— E/ACtH ~pB (E \[ACtH)/ACtH
(i1) E € BSNNI < E/Acty ~p E\ Acty |

As expected, it can be proved that each of these new properties is properly finer
than its corresponding trace-based one.

Proposition 4. The following hold:

(i) BNNI C NNI,
i) BSNNI C SNNI
(i) ,

PROOF. It immediately follows from the fact that £ ~p F implies ' ~p F. The
inclusions are proper because £ = 7.1.0 + 7.h.[.0 is such that £ € NNI, SNNI
and £ ¢ BNNI, BSNNI. |

Consider again Access_Monitor_4 containing the h_stop event. It is neither
BSNNI nor BNNI, as observational equivalence is able to detect deadlocks. In
particular, Access_Monitor_4/Acty can move to 0 through an internal action
7, while Access_Monitor 4\ Acty is not able to reach (in zero or more 7 steps)
a state equivalent to 0.

Now we want to show that BSNNI and BNNI are still not able to detect some
potential deadlocks due to high level activities. This will induce us to propose an-
other property based on a different intuition. Let us consider Access_Monitor_1.
We can prove that such a system is BSNNI as well as BNNI. However, the fol-
lowing two dangerous situations are possible: (i) a high level user makes a read

8 BPA [6] are basically the transition systems associated with Greibach normal form
(GNF) context-free grammars in which only left-most derivations are permitted. In
order to obtain an LTS an action is associated with every rule.

Classification of Security Properties 357

H

4‘ > Low level

JL

Fig. 8. BNDC intuition

User

request without accepting the corresponding output from the monitor (remem-
ber that communications in SPA are synchronous) and (ii) a high level user
makes a write request and does not send the value to be written. In both cases
we have a deadlock due to a high level activity that BNNI and BSNNI are not
able to reveal. To solve this problem, we are going to present a stronger prop-
erty, called Bisimulation-based Non Deducibility on Compositions (BNDC', for
short). It is simply based on the idea of checking the system against all high
level potential interactions. A system F is BNDC' if for every high level process
IT a low level user cannot distinguish E from (E|II) \ Actg. In other words,
a system E is BNDC' if what a low level user sees of the system is not modified
by composing any high level process IT to E (see Figure 8).

Definition 12. E is BNDC iff VII € €y, E/Acty ~p (E | II) \ Actp. |

Example 6. We want to show that Access_Monitor_1 is not BNDC. Consider
IT = accessr(1,1).0. System (Access_-Monitor_1 | II) \ Acty will be blocked
immediately after the execution of the read request by II, moving to the following
deadlock state:

((val(1,0).Monitor | Object(0,0) | Object(1,0)) \ L | 0)\ Acty

This happens because II executes a read request and does not wait for the
corresponding return value (action val). We conclude that IT can interfere with
low level users. Since there are no possible deadlocks in Access_Monitor_1/Acty,
we find out that (Access_Monitor 1|IT)\ Acty %5 Access_Monitor_1/Acty and
so Access_Monitor_1 is not BNDC.

Moreover, there is another potential source of deadlock when a high level user
makes a write request and does not send the value to be written. In particular, the

358 Riccardo Focardi and Roberto Gorrieri

val(ly)

access_r(1,1) ardx o
rQ.y) access_w(1.1.2) m | High '
Object(0,y) | w2 access_r(1,0) Interf(1) ===""""21 Level |
access_w(1,0,2) PUtdY) 1 Users :
Monitor 5| 7

access_r(0, 1) — Y ar0x "
ra.y) access_w(0,1,2) . Low
— a_w(0,x.2), !
Object(1,y) | w(,2) access_r(0,0) Interf(0) =———="' Level :
access_w(0,0,2) put(0.y) 1\ Users |

) N

Fig.9. The BNDC Access_Monitor_5

high level user IT" = Gecessw(1,0).0 will block system (Access_Monitor_1|I1")\
Acty immediately after the execution of the write request by IT’, moving the
system to the following deadlock state:

(((write(1,0).w(1,0). Monitor + write(1,1).w(1,1).Monitor) | Object(0,0) |
| Object(1,0))\ L | 0)\ Acty

Again, we have (Access_Monitor 1|I1")\ Acty #p Access_Monitor_1/Acty. In
order to obtain a BND(C' access monitor, we modify the monitor by adding an
interface for each level which temporarily stores the output value of the moni-
tor (passing it later to the users and thus making communication asynchronous)
and that guarantees mutual exclusion within the same level; moreover, we use an
atomic action for write request and value sending. Note that, because of the in-
terface, actions access_r, access_w and val become a_r, a_w and put, respectively.
The resulting system is reported in Table 8 (see also Figure 9).

In such a system we have that k € {0,1,err}, L = {r, w}, N = {val,
access_r, access-w} and a-r(1l,x), a-w(l,z), put(l,y) € Acty Yo € {0,1} and
Yy € {0, 1, err}, while the same actions with 0 as first parameter belong to Acty,.
It is possible to verify that Access_-Monitor_5 is BNDC' using the automatically
checkable property we are going to present. Table 9 summarizes the properties
satisfied by the different versions of the access monitor. [|

The next theorem shows that the bisimulation-based properties are related in
a different way with respect to the corresponding ones. Indeed, we have that
BNDC is stronger than BNNI and BSNNI. Moreover BSNNI ¢ BNNI while
for trace equivalence we had that SNNI C NNI. BSNNI

Theorem 1.

(i) BNNIZ BSNNI and BSNNI ¢ BNNI.
(i) BNDC' C BSNNIN BNNI.

Classification of Security Properties 359

Table 8. The Access_Monitor_5 System

Access_Monitor 5 % (AM | Interf)\ N

AM ' (Monitor 5 | Object(1,0) | Object(0,0)) \ L

Monitor 5 access_r(l,x).
(if z <1 then
r(z,y).val(l,y).Monitor_5
else
val(l, err). Monitor 5)
+
accessw(l, x, z).
(if > [then
w(x, z).Monitor_5
else
Monitor_5)

Interf % Interf(0) | Inter f(1)

Interf(l) ef a_r(l,z).accessr(l, z).val(l, k).put(l, k).Inter f(1)

+

a-w(l,z,z).access—w(l, z, z).Inter f(1)

PROOF. (i) Let us consider the following agent E = [.h.l.h.1.0 + [.1.1.0 + 1.1.0;
we have that E € BNNI and F ¢ BSNNI. Let us now consider the agent
F = 1.h.0l.h.1.0 4+ 1.1.1.0 + 1.0; we have that F € BSNNI and F ¢ BNNI.

(#4) To show that BNDC C BSNNI, consider II" = 0 (the empty process).
Then, by BNDC' definition, we have that E/Acty ~p (E | 0) \ Acty and so
E/ACtH ~B E \ ACtH.

To show that BNDC' C BNNI, consider 11" = 37, ., ~;4.I1" (the process
which accepts all the high inputs) then, by BNDC definition, we have that
E/Acty ~p (E | II")\ Act . Now it is sufficient to note that (E | IT")\ Acty ~p
(E \[ACtH)/ACtH.

In order to show that the inclusion is strict we need a system which is both
BSNNI and BNNI, and which is not BNDC'. Such a system is E = [.h.l.h.l.0 +
[.1.1.041.0. It is easy to see that it is BSNNI and BNNI. Moreover if we consider
II"" = h.0 we obtain that (E | II")\ Actg ~p [.1.0+1.1.1.0+1.0%p E.]

We need another simple result before we can draw a diagram of the relations
among all the properties we have seen up to now.

Proposition 5. BNNI SNNI.

360 Riccardo Focardi and Roberto Gorrieri

Fig. 10. The inclusion diagram for bisimulation-based properties

PROOF. It is sufficient to consider agent F = h.[.0 which is BNNI but not SNNI.
|

Figure 10 summarizes the relations among the bisimulation-based properties
presented so far.

It is now interesting to study the trace equivalence version of BNDC' called
NDC'. Indeed it could improve the SNNI property which is still our better pro-
posal for the trace equivalence setting (no detection of deadlocks). Surprisingly,
we find out that such property is exactly equal to SNNI.

Theorem 2. NDC = SNNI.

ProoOF. We first prove that if £ € NDC then E € SNNI. By hypothesis,
E/Acty =1 (FE|0)\ Actgy for the specific IT = 0. Since (F|0)\ Acty ~1 E\ Acty
then we have E/Acty ~7 E \ Acty.

Now we want to prove that if £ € SNNI then E € NDC. By hypothesis,
E/Acty ~7 E\ Acty. Since T(E \ Acty) C T((E|II) \ Acty) then we have
T(E/Acty) C T((E|II)\ Actg). Observe also that the reverse inclusion holds,

in fact, if F and IT synchronize on a certain high action, then E/Acty can always
“hide” it. Hence E/Acty ~7 ((E|IT)\ H)/Acty. [|

Table 9. Properties satisfied by the different versions of the access monitor

|Ver.|Description |NNI|SNN[|BNNI|BSNN[|BNDC|
1 |Multilevel rules X X X X
2 |Without write control
3 |With high signal for integrity X
4 |With explicit high level deadlock| X X
5 |With buffers and atomic write X X X X X

Classification of Security Properties 361

This, in a sense, confirms that the intuition behind SNNI (and so NI) is good
at least in a trace equivalence model. Indeed, in such a model the fact that we
check the system against every high level process is useless. It is sufficient to
statically check if the hiding of high level actions corresponds to the restric-
tion of such actions. This points out a critical point: BNDC' is difficult to use in
practice, because of the universal quantification on high level processes. It would
be desirable to have an alternative formulation of BNDC which avoids univer-
sal quantification, exploiting local information only as for the trace-equivalence
case; even if Martinelli has shown that BNDC' is decidable over finite state pro-
cesses [17], a solution to this problem is still to be found. In the same work,
Martinelli also shows a negative fact regarding the verification of BNDC': it is
not compositional, i.e., if two systems are BNDC' their composition may be not
so. This does not permit us to reduce the BNDC-security of a big system to the
BNDC(C-security of its simpler subsystems and forces us to always prove BNDC
over the whole system.

For these reasons, here we propose a sufficient condition for BNDC', namely
the SBSNNI property, which exploits local information only and moreover is
compositional (i.e., if two systems are SBSNNI their composition is SBSNNI
t00).

Definition 13. (SBSNNI: Strong BSNNI)
A system E € SBSNNI if and only if for all E' reachable from E we have
E' € BSNNI. [|

SBSNNI is easily verifiable, as BSNNT is so; moreover, we can use it in order to
check that a system is BNDC' because of the following result.

Proposition 6. SBSNNI C BNDC

PROOF. Let E be a system and I a high level process. Let R be a relation
defined as follows: (E' \ Acty,(E' | II') \ Acty) € R, for all E', II' such that
E = E' and II = II'. We want to prove that if F is SBSNNI then R is
a weak bisimulation up to ~p (see [50]). There is only one non trivial case:

(E" | I') \ Acty = (E" | II") \ Acty. As there exists h € Acty such that

N E", then E'/Acty = E"/Acty. By hypothesis, E' € BSNNI hence we
have E'/Acty ~p E'\ Acty and so there exists an agent E’” such that E’\

Acty == E"'\ Acty and E"'\ Acty ~p E"/Acty. By hypothesis, E” € BSNNI
hence we also have that E” /Acty ~p E"\ Acty and so E"'\ Acty ~p E"\ Acty.
Since (E” \ Acty, (E” | ")\ Acty) € R and E" \ Acty ~p E" \ Acty then
R is a bisimulation up to ~p.

Now we have that E\ Acty ~p (E | II) \ Acty for all IT € Ey. Since
E € BSNNI, then E/Acty ~p E\ Acty. Therefore E/Acty ~p (E | IT)\ Acty.
This means that £ € BNDC.

The inclusion is strict because agent £ = [.h.[.0 + (.0 + [.1.0 is BNDC' but
not SBSNNI. [|

The next theorem states that SBSNNI is compositional, i.e., preserved by the
parallel and the restriction operators. This is useful in the automatic check of this

362 Riccardo Focardi and Roberto Gorrieri

property because it allows to check it directly on the subsystems thus reducing
the exponential explosion of the states due to all possible interleavings of parallel
systems. We will study this in details in the next section. Similar results of
compositionality hold for NNI and SNNT [24].

Theorem 3. The following hold:

(i) E,F € SBSNNI = (E|F) € SBSNNI
(ii) E € SBSNNI,L C L = E\ L € SBSNNI

PrOOF. We need the following:

Lemma 1. (E|F)/Acty =~p E/Acty|F/Acty.

PrOOF. Consider the following relation: ((E'|F")/Acty, E'/Acty|F' [Acty) € R
if and only if £ = E’ and F = F’. It is easy to prove that R is a bisimula-
tion. Indeed the only non trivial case is the synchronization (E'|F")/Acty
(E"|F")/Acty which is simulated by E'/Actg|F'/Acty =% E" JActy|F" [Acty.

|

Now we can prove the Theorem.

(i) Consider the relation ((E'|F’') \ Acty, E' \ Acty|F' \ Acty) € R for all
E’, F’ such that F = E’ and F = F’. If we prove that R is a weak bisimulation
up to ~p then, by hypothesis and Lemma 1, we obtain the thesis. We consider
the only non trivial case: (E'|F’") \ Acty — (E"|F")\ Acty with E’ L
and F' % F". Since E'/Acty = E"/Acty and, by hypothesis, E' € BSNNI,
we have that 3E” such that E'\ Acty == E" \ Acty and E"/Acty ~p
E""\ Acty; finally, by hypothesis, E” € BSNNI, hence we obtain B\ Acty ~p
E" \ Acty. Repeating the same procedure for F’ we have AE"') F"" such that
E'\ Actg|F'\ Acty == E""\ Acty|F""\ Acty ~p E"\ Acty|F" \ Acty. Since
((E"|F")\ Actg, E" \ Actg| F" \ Acty) € R, then R is a bisimulation up to
~B.

(77) Consider the following relation ((E'/Acty) \ L, (E"\ L)/Acty) € R, for
all £/ such that E = E’ and for all L C L. If we prove that R is a bisimulation
up to ~p then, by applying hypothesis and observing that (E’ \ L) \ Acty ~p
(E'\ Actg)\ L, we obtain the thesis. The only non trivial case is (E’/Actg)\ L =
(E"/Actg) \ L with E L E” and h € Acty. By hypothesis, E' € BSNNI
hence we have that (E'/Acty) \ L ~p (E'\ Acty) \ L and so IE" such that
(B'\ Actg)\L == (E""\ Acty)\ L ~p (E" /Acty)\ L and (E""\ Acty)\ L ~p
(E"/Actg)\ L. Obviously, we also have that (E'\ L)\ Actg == (E""\ L)\ Actg

and so (E'\L)/Acty == (E"'\L)/Acty. We briefly summarize the proof: we had
the synchronization (E'/Actg)\ L = (E"/Acty) \ L and we proved that there
exists E" such that (E’\ L)/Acty == (E""\ L)/Acty and (E" [Acty) \ L ~p
(E" [Acty) \ L. Since ((E"/Acty) \ L,(E" \ L)/Acty) € R then R is a weak
bisimulation up to ~p. []

Classification of Security Properties 363

It is worthwhile noticing that SBSNNI was not the first sufficient condition
proposed for BNDC. In [24] we introduced a property stronger than SBSNNI,
but nevertheless quite intuitive, called Strong BNDC (SBNDC'). This property
just requires that before and after every high step, the system appears to be
the same, from a low level perspective. More formally we have the following
definition.

Definition 14. (SBNDC: Strong BNDC)
A system E € SBNDC' if and only if VE' reachable from E and VE" such that

E g for h € Acty, then E'\ Acty ~p E" \ Acty

We now prove that SBNDC' is strictly stronger than SBSNNI. To this purpose,
we need the following Lemma

Lemma 2. F € BNDC < E\ Acty =p (E|II)\ Acty for all II € Ex.
PRrROOF. It follows immediately from Theorem 1.(¢i) and Definition 12. [|

Proposition 7. SBNDC C SBSNNI.

PROOF. Let E be a system and IT a high level process. Let R be a relation defined
as follows: (E'\ Acty, (E' | II')\ Acty) € R, for all E', IT" such that E = E’ and
IT = II'. We want to prove that if E'is SBNDC then R is a bisimulation up to ~g
(see [50]). There is only one interesting case: (E' | IT")\ Acty = (E" | II")\ Act .
As there exists h € Acty such that £’ LA E"” then E"\ Acty ~p E'\ Acty;
since (E"\ Acty, (E" | II")\ Acty) € R, then (E" | II")\ Acty~p E'\ Acty. So
E'\ Actg =p (E' | IT) \ Acty (i.e., E' € BNDC), for all E’ reachable from E.
As BNDC is stronger than BSNNI (Theorem 1.(i7)), we obtain the thesis. The
inclusion is strict because agent £ = 7.1.0 + [.1.0 4+ h.l.0 is SBSNNI but not
SBNDC. [|

As for SBSNNI, we have a compositionality theorem:
Theorem 4. The following hold:

(i) E,F € SBNDC = (E|F) € SBNDC,
(ii) E € SBNDC = E\ S € SBNDC, if S C L.
(iii) E,F € SBNDC = (E||F) € SBNDC

PROOF. (i) It must be proved that VE',F' : E = E',F = F' VE" F" . (E' |
F’) 2, (E" | F"") with h € Acty, the following holds: (E' | ')\ Act), ~p (E” \
F")\ Actp. Let R be the relation defined as follows: ((E | F)\ Actg, (B |
F')\ Acty) € RYE,E',F,F' such that B = E,E = E',F = F,F = F’
and E \ Acty ~p E \ Acty, F \ Actp, ~p F \ Acty. It can be easily proved
that R is a weak bisimulation (under the hypothebls E,F € SBNDC); there
is only one interesting case: (E | F) \ Actg — (E" | F") \ Acty. Thus we
have that E \ Acty ~p E"\ Actyr and F\ Acty ~p F" \ Acty and so ((E" |
F"Y\ Acty, (E' | ')\ Acty) € R.

364 Riccardo Focardi and Roberto Gorrieri

NDC = SNNI

BNDC

SBSNNI

Fig.11. The inclusion diagram for trace-based and bisimulation-based proper-
ties

(#4) Observe that (E'\S)\Acty ~p (E"\S)\Acty if and only if (E"\ Acty)\S ~p
(E"\ Acty) \ S. As ~p is a congruence for restriction [50] the thesis follows
trivially.

(#i7) Trivial from (¢) and (ii). [|

Figure 11 summarizes the relations among all the trace-based and bisimulation-
based properties we have presented.

We end this section with a remark. In the automatic verification of properties,
it can be very useful to work on a reduced system, i.e., a system equivalent to
the original one, but with a smaller number of states. In fact, the tool we will
present in the next section provides a procedure that minimizes the number of
states, thus reducing a lot the time spent in the verification. In order to see if this
proof strategy can be used also in our case, we need to prove that if a system F
is BNDC, then any other observation equivalent system F' is BNDC too. Indeed,
the theorem below shows that this is the case, also for all the other security
properties we have discussed in this section.

Theorem 5. If E ~p F, then E € X & F € X, where X can be NNI, SNNI,
NDC, BNNI, BSNNI, BNDC, SBSNNI, SBNDC.

PROOF. It derives from the definition of the security properties, observing that
trace and bisimulation equivalences are congruences with respect to _\ L and _|_
operators of CCS [50]. It is possible to prove that they are also congruence with
with respect to _\; L and _/L operators of SPA. For trace equivalence the proof
is trivial. In the following we prove the closure of weak bisimulation equivalence

Classification of Security Properties 365

block(0) check(0)
unblock(0) AM(O)
input(x) ot o check(1) il
unblock(1) AM(1)
block(2)
check(2)
unblock(2) AM(Z)
clear_write
. send_write
e Ch_write(0)
clear_start send_start
Ch_start(0) -

Fig.12. The Channel process, a one-bit channel obtained by three processes
with high level deadlocks

w.r.t. \7 L and leave to the reader the other similar case of /L. Let E ~p F;
we want to prove that £ \; L =g F \; L. Consider a bisimulation R such that
(E,F) € R; then define the relation P as follows: (E' \; L, F’ \; L) € P if and
only if (E', F') € R. P is a bisimulation too, in fact if £/ \; L % E” \; L then
p & LN and E' % E”. So 3F” such that F/ =% F”; since u ¢ L N1 then
F'\; L =% F”\; L (and vice versa for F' \; L % F"\; L).

3.4 Building Channels by Exploiting Deadlocks

In Example 6 we have seen that Access Monitor 1 is not BNDC because of
potential high level deadlocks. We said that a deadlock due to high level activ-
ity is visible from low level users, hence it gives some information about high
level actions, and cannot be allowed. However, one could doubt that a high level
deadlock is really dangerous and, in particular, that it can be exploited to trans-
mit information from high to low. We demonstrate that it is indeed the case by
simply showing that it is possible to build a 1-bit channel from high to low level
using systems which contain high level deadlocks. In particular we obtain a 1-bit
channel with some initial noise (before the beginning of the transmission), using
three processes with high level deadlocks composed with other secure systems.
Of the two high level deadlocks of process Access Monitor 1 we only exploit
the one due to write requests. So the following method can be applied also to sys-
tems with only one high level deadlock. Process C'hannel is reported in Table 10
where n € {0,1,2}, z,y € {0,1}; {block, unblock, up write, up start, input,

366 Riccardo Focardi and Roberto Gorrieri

Table 10. The Channel process which exploits deadlocks

Channel < (Ch_write(0) | Chostart(0) | AM(0) | AM(1) | AM(2) |
| R[T)\N
AM (n) ef Access_Monitor_1[check(n)/access_r(0,0),
block(n)/access-w(1,1),

unblock(n) /write(1,0)] \ {access_r, access_w,write,val}

Ch_write(x) ef send_write.Ch_write(1)

+

clear write.Ch_write(0)
+

if £ =1 then

up_write.Ch_write(0)
Ch_start(0) ef Ch_write(0)[send_start /send_write, up_start /up_write,

clear_start/clear write]

R def send_write.R

+
check(2).send_start.
(check(0) utpat(0).R
+
check(1).outpui(1).R)
ef block(2).clear _write.up_write.block(0).block(1).T1

T

71 % clear _start.unblock(2).up_start.block(2).clear -write.

input(y).unblock(y).up-write.block(y).T'1

clear_write, clear_start} C Acty; N = {check, block, unblock, send_write,
up_write, clear_write, send_start, up_start, clear_start}.

Channel (see Figure 12) is the composition of three instances of Access
Monitor (AM(0),AM (1) and AM(2)), two channels from low to high level
(Ch_write(0) and Ch_start(0)), a transmitter and a receiver (7" and R). In par-
ticular AM (n) is an instance of Access_Monitor_1 where we call check(n) the
reading request of low level users in low object, it is used to check if AM (n) is in
a deadlock state; block(n) is a writing request by a high level user, it is used to
block AM (n); finally unblock(n) is a write action and is used to unblock AM (n)
which was previously blocked with block(n). Ch_write(x) moves to Ch_write(1)
every time a send.write is executed by the receiver. Ch_write(1) can give to
T the up_write signal; it also ignores all the send_write signals. Moreover, when

Classification of Security Properties 367

noise

| | non noisy
= (random - fransmission
I output) I
I I
Input | i
| |
I
output L LT 1L [I O B
I I
I I
start of start of
process transmission
Channel

Fig. 13. Noise in Channel and C

clear_write is executed by the transmitter this resets the process to Ch_write(0).
So if R executes send_write and after this, T" executes clear_write and up_write,
then T will be blocked. C'h_start(0) is equal to Ch_write(0) with appropriate
action relabeling.

R and T use the monitor AM(2) for synchronization and AM(0), AM(1)
for transmission. In particular T" blocks AM(2) and then it waits for a write
enable signal (up_write). Afterward it blocks also monitors AM (0) and AM (1)
moving to T'1 which is the writing loop; T'1 unblocks monitor AM (2)—which is
the signal for R to start receiving the bit—and waits for a start writing signal
(up_start). Then it blocks AM(2) again, reads the high level value y, unblocks
monitor AM (y) (transmitting the value y) and waits for a write enable signal.
When it receives such a signal, it blocks again monitor AM (y) and moves to T'1
in order to transmit another bit.

R can always send a writing enable signal moving again to R. Moreover it
can check if AM(2) is blocked. If such a monitor is not blocked (by T') it sends
a start writing signal and checks if AM (0) and AM (1) are blocked. If it discovers
that AM (t), with ¢ = 0 or ¢ = 1, is not blocked, then it gives as output output(t).
Finally it moves again to R in order to receive the next bit.

Note that if R executes check(2) before T has blocked monitor AM (2) then
R will give a non-deterministic output output(z). In fact T and R will synchro-
nize and start transmitting the 1-bit messages as soon as T will execute block(2)
blocking AM (2). So we have some random output before the beginning of the
transmission. It is possible to automatically check that

Channel ~g C
where

cE e
+7.(
7.(T.output(0).C" + T.output(1).C")
+ 7.(output(0).C' + T.output(0).C")

368 Riccardo Focardi and Roberto Gorrieri

+ 7.(output(1).C' + T.output(1).C")
)
' ¥ input(z) output(z).C"

This automatic check can be done using the CoSeC tool we will present in the
next section.

C can move to a 1-bit channel C’ or can give some non-deterministic output
(initial noise before the synchronization between T and R). Note that after
moving to C’ (the channel is ready to transmit) it will behave as a perfect 1-bit
channel (see Figure 13).

3.5 Comparison with Related Work

The use of process algebras to formalize information flow security properties
is not new. In [57] it is possible to find a definition of Non Interference given
on CSP [39]. Tt looks like SNNI with some side conditions on acceptable low
level actions. This definition is recalled in [4], where a comparison with another
information flow property is reported.

More recent results based on the CSP model are contained in [56], where the
authors introduce some information flow security properties based on the notion
of deterministic views and show how to automatically verify them using the CSP
model checker FDR [55].

The most interesting property is lazy security (L-Sec) which, however, re-
quires the absence of non-determinism in the low view of the system (i.e., when
hiding high actions through interleaving) and for this reason we think it could
be too restrictive in a concurrent environment. For example, all the low non-
deterministic systems — such as £ = 1.l; + I.I3 — are considered not secure. In
this section we compare those properties with ours using a failure-equivalence
version of BNDC', called FNDC' (see also [18] for more details). The main re-
sult is that BNDC restricted to the class of low-deterministic and non-divergent
processes is equal to L-Sec.

Here we give a definition of failure equivalence which does not correspond
completely to the original one [39]. Indeed, it does not consider possible diver-
gences but this is not a problem since our comparison will focus on the class of
non-divergent processes. We prefer this definition because it is very simple and
is implied by ~p.

We need some simple additional notations. We write E 72 to indicate that
3E’ such that E = E’ and E 71‘; with K C £ stands for Vu € K, E 7";

Definition 15. If v € T(E) and if, after executing v, E can refuse all the ac-
tions in set X C L, then we say that the pair (v, X) is a failure of the process E.
Formally we have that:

failures(E) def {(v,X)C L*x P(L) | IE" such that

24 / /X
E= FE and E' %}

Classification of Security Properties 369

When failures(E) = failures(F) we write E ~p F (failure equivalence). [|

We identify a process E with its failure set. So if (v, X) € failures(E) we write
(v,X) € E. Note that v € T(E) if and only if (v,0) € E. So F ~p F implies
~rp F.
We also have that F ~p F implies F ~p F"

Proposition 8. E ~p F implies F ~p F.
PRrOOF. Consider E ~p F and (v,X) € E. We want to prove that (v, X) € F.

Since (v, X) € E we have that 3E’ such that E == E’ and E’ 7)‘; By definition
of ~p we know that since F == FE’ then F == F’ and E' ~p F’ (it is sufficient
to simulate every step of the execution E == E’). Suppose by contradiction that
I € X such that F' =% F”. Then, by definition of ~p and since E' ~p F’,

X
we obtain that E’ =% E” but this is not possible since E’ %. We obtain that

X
F’' % and so (v, X) € F. The symmetric case can be done for every (v, X) € F
which must belong also to E. [|

Lazy Security We now report the lazy security property [56] and we show
that it can only deal with low-deterministic processes, i.e., processes which have
a deterministic behaviour with respect to low level actions. Here we do not
consider the eager security property (introduced in [50] to deal with output
actions) since it supposes that high level actions happen instantaneously while
in SPA, which has synchronous communications, both input and output actions
can be delayed by users. We start with a formal definition of determinism.

Definition 16. E is deterministic (E € Det) if and only if whenever vya €
traces(E) then (v,{a}) € E. [

So a process is deterministic if after every trace v it cannot both accept and refuse
a certain action a. We give another characterization for determinism. A system E
is deterministic if and only if whenever it can move to two different processes E’
and E” executing a certain trace 7, such processes are failure equivalent.

Proposition 9. E € Det if and only if for all v € traces(E) we have that
E =L E', E =5 E” implies E' ~p E".

PROOF. (=) Let E € Det, E == E', E =% E” and (§,K) € E'. We want
to prove that (§,K) € E”. Since E == E’, we have that (y6,K) € E. By
E € Det we obtain that Va € K,~vda is not a trace for E. We also have that ¢
is a trace for E”; in fact, if E” can execute only a prefix of ¢, i.e. B/ == E"
with 6 = abf, we have that E can execute trace yab (through E’) and can
refuse b after yo (through E”) contradicting the determinism hypothesis. Now,
since Ya € K,~vda & traces(E), we also have that Va € K, da ¢ traces(E") and
so (0,K) € E".

(«=) Trivial. [|

370 Riccardo Focardi and Roberto Gorrieri

Corollary 1. If E == E' and E € Det then E' € Det.

PRrROOF. We have to prove that E’ 2 B and B/ == E™ implies E" ~p E".

Consider E 2% E” and E 2% E" then by E € Det we have that E” ~p E".
|

In the following we denote with E|||F the interleaving without communica-
tion between agents E and F. It can be expressed in SPA as (E[A/L(F)] |
F[B/L(F)))L(E)/A,L(F)/B] where A,BC L;,ANB =0 and A/L(FE) is a bi-
jective function which maps all the actions executable by E into actions of A,
with £L(F)/A as inverse (the same holds for B/L(F) and L(F)/B). This ex-
pression means that the actions in £ and F are first relabelled using the two
disjoint sets A and B, then interleaved (no communication is possible) and finally
renamed to their original labels.

Recall that a process is divergent if it can execute an infinite sequence of

internal actions 7. As an example consider the agent A of A+ b.0 which can
execute an arbitrary number of 7 actions. We define Nondiv as the set of all the
non-divergent processes.

We can now present the lazy security property [56]. This property implies
that the obscuring of high level actions by interleaving does not introduce any

non-determinism. The obscuring of high level actions of process E by interleaving

is obtained considering process E|||RUN g where RUN g def Y oneacty WRUNg.

In such a process an outside observer is not able to tell if a certain high level
action comes from E or from RUN g.

L-Sec also requires that E|||RUN g is non-divergent. ? This is equivalent to
requiring that E is non-divergent, because RUN p is non-divergent and the |||
operator does not allow synchronizations (which could generate new 7 actions).

Definition 17. E € L-Sec < E|||RUN g € Det N Nondiv. |

In the following we want to show that L-Sec can only analyze systems which are
low-deterministic, i.e., where after any low level trace v no low level action [can
be both accepted and refused. The low-determinism requirement is not strictly
necessary to avoid information flows from high to low level. So, in some cases,

L-Sec is too strong. As an example consider the following non-deterministic

system without high level actions: E 10+ 1070. Tt is obviously secure but

it is not low-deterministic and so it is not L-Sec. Formally we have that:
Definition 18. E is low-deterministic (E € Lowdet) iff E \ Acty € Det. ®
The following holds:

Theorem 6. L-Sec C Lowdet.

9 Note that in [56] the non-divergence requirement is inside the deterministic one. This
is because the authors use the failure-divergence semantics [10]. In this work we use
the failure equivalence which does not deal with divergences. So, in order to obtain
exactly the L-Sec property, we require the non-divergence condition explicitly.

Classification of Security Properties 371

| FSNNT
BSNNI
‘fNDC | !
|
| BNDC !
|
7777777 T
! | SFSNNI

Fig. 14. Failure based and bisimulation based properties

PROOF. Let E € L-Sec. Consider a trace ya of E \ Acty and suppose that
(v,{a}) € E\ Acty. So there exists E’ such that F\ Acty == E’\ Acty and such

that E’ \ Acty #. Since RUN g cannot execute the low level action a then we

have that E'|||RUN g ;5 and so (v, {a}) € E|||[RUN i because E|||RUN g ==
E'|||RUN g. Since va is a trace for E\ Acty then it is also a trace for E|||RUN g
and we obtain that E|||RUN g is not deterministic, contradicting the hypothesis.
So (v,{a}) ¢ E\ Acty and E € Lowdet. |

Failure Non Deducibility on Compositions Now we define the failure based
security properties by simply substituting ~p with ~p in all the bisimulation
based properties previously defined.

Definition 19. (Failure based properties)

(i) E€ FNDC & E/Acty =p (E | II)\ Acty, for all IT € Ey;

(ii) E € FSNNI & E/Acty ~p E\ Acty;

211 S & such that E = we have S . [|
E € SFSNNI < VE' h that 3y : E s E h E' € FSNNI

Since bisimulation equivalence is stronger than failure equivalence, it can be
proved that each of these new property is weaker then its corresponding bisim-
ulation based one. E.g. BNDC' C FNDC'. Moreover we prove that some of the
inclusion results we have for bisimulation based properties can be extended also
to these new properties.

Theorem 7. SFSNNI C FNDC C FSNNI.

PROOF. (SFSNNI C FNDC) Let E be a SFSNNI process. We have to prove
that (E|II)\ Acty ~p E/Acty for every high level process II.

We first prove that (v, K) € (E|II) \ Acty implies (v, K) € E/Acty. Consider
(v,K) € (E|IT)\ Acty, then 3E',IT" such that (E|IT)\ Acty == (E'|IT') \

372 Riccardo Focardi and Roberto Gorrieri

K K
Acty #. Hence E'\ Acty # because traces(E'\ Acty) C traces((E'| ")\ Acty).

Now, since E € SFSNNI then E’\ Acty =~ E'[Acty; hence E'/Acty 71‘; Note
that E/Acty == E'/Acty, hence (v, K) € E/Acty.

We now prove that (v, K) € E/Acty implies (v, K) € (E|II) \ Actg. Consider
(v,K) € E/Acty. By hypothesis we have that (v, K) € E\ Acty and so IF’

K K
such that B\ Acty == E'\ Acty #. Since E €SFSNNI then E'/Acty #.

Hence we also have that (E'|IT) \ Acty 72 because traces((E'|IT) \ Actp) C
traces(E'/Actgr). Since we have that E \ Acty == E'\ Acty then (E|II) \
Acty =% (E'|IT) \ Acty and so (v, K) € (E|II) \ Actg.

The inclusion is strict because agent def [.h.1.04+1.0+1.1.0 is FNDC but not
SFSNNI.

(FNDC C FSNNI) 1t is sufficient to consider I = 0. We have that (F|0) \
Actpg ~p E\ Acty and so, since (E|0) \ Acty ~p E/Acty we have E/Acty ~p
E \ ACtH.

The inclusion is strict because agent F/ def L.h.I.R.1.04+1.04+1.1.1.0is FSNNI but
not FNDC. [|

Figure 14 summarizes the inclusions among the presented security properties.
It can be drawn using the previous inclusion results and the following remarks:
BNDC ¢ SFSNNI, in fact agent [.h.l.0+ 1.0+ 1.1.0 is BNDC but not SFSNNI;
we also have that BSNNI ¢ FNDC because of agent h.l.h'.1.0 + [.1.0; finally
SFSNNI ¢ BSNNI because of agent h.l.(I'.0+1".0) + 1.I'.0 + 1.I".0.

The next theorem shows that under the low-determinism assumption the
properties SFSNNI and FNDC collapse into the same one. We need the following
Lemma.

Lemma 3. If E,E € Det, E =2 E', E =% E' and E ~p E then E' ~p E'.

ProoF. We prove that if (J, K) € £ then (J,K) € E'. Let (6,K) € E'. Then
(76, K) € E and by E ~p E we obtain that (76, K) € E. So 3E”, E" such that

B =L pr =% p 75, hence (4, K) ENE”. Since E € Det then by Proposition 9
and hypothesis we have that E” ~r F’ and so (6, K) € E’. We can prove in the
same way that if (6, K) € E then (§,K) € E'. So E' ~p E' [

Theorem 8. FNDC N Lowdet C SFSNNI.

PRrROOF. Since FNDC C FSNNI and E € FNDC, we have that E \ Acty ~p
E/Acty. By E € Lowdet we obtain E/Acty € Det. Now consider E =% E'.
We have to prove that E'/Acty ~r E'\ Acty. Let II' be the high level process
which executes exactly the complement of the high level projection of ~, i.e.
the complement of the subsequence of v composed by all the high level actions

in . If 4/ is the low level projection of v we have that (E|II") \ Acty é
(E'|0) \ Acty ~p E'\ Acty. Since E == E’ then E/Acty == E'/Acty. By

hypothesis we have that (E|IT") \ Acty ~pr E/Acty. Since E/Acty € Det then,
by Lemma 3, we have that E'/Acty ~p (E’|0) \ Actyg =~p E'\ Acty. [|

Classification of Security Properties 373

Corollary 2. FNDC N Lowdet = SFSNNI N Lowdet.
ProoOF. Trivial by Theorems 8 and 7. []

Comparison We now show that under the low-determinism and the non-
divergence assumption the BNDC' property is equal to L-Sec. We start proving
this result for FNDC.

Theorem 9. L-Sec C SFSNNI.

PROOF. Let E € L-Sec. Then we have to prove that if £ =% E’ then E’\
Actg ~p E'[/Acty. We first prove that if (6, K) € E’'/Acty then (0,K) €
E'\ Acty. Consider (§,K) € E’'/Acty. Then we have that IE” such that
K
E'/Acty == E"/Acty .
Now we want to prove that ¢ is a trace also for E'\ Acty. Let 6 = 6102 ...0,

and consider the execution E'/Acty N E{/Acty S N LN E"/Acty. Sup-
pose that ¢; is the first action in 6 that E’\ Acty is not able to execute. In other
words we have that

) d;
B\ Actg =% B\ Acty =2 .. 522 B\ Acty £

This means that in order to execute 52, process E!_, /Acty executes some hidden
high level actions h;y ... hg. So E!_, P g0
tions with RUN g we obtain that E|||RUN g

E!. If we execute such high level ac-

01...0i—1h1... .
1ot Re pr 1 RUN . Since

&4
E! |\ Actg # and §; € Acty, then we obtain that (y01...0;—1h1... ", {d:}) €
E|||RUN . Moreover, if we execute actions hj ...h; with E/_; we have that
E|||RUN g 751...51'%1...%51' El||RUNg and so v01...0,—1h1 ... hid; is a trace
for E|||RUN g. This means that E|||RUN g € Det hence E ¢ L-Sec. We obtain
a contradiction, so no ¢; can be refused by E’\ Acty and ¢ is a trace for such

process. So we have that F' \ Acty = g \ Actp.

Now we want to prove that (§, K) € E'\ Acty. Let E'\ Acty =2 g \ Acty
and suppose that E" \ Acty can execute a certain action a € K N Acty, (the
actions in K N Acty cannot be executed by such process) then ~yda is a trace for
E|||RUN . Now consider the sequence §’ obtained by adding to § all the high

level action executed by E’ in order to reach E” in the transition E'/Acty =2

E"[Acty; i.e. E' == E”. Then we will have that E'|[|[RUN jy == E"|||RUN g
K a

and since E" /Acty # then E”|||RUN g # and so (¢, {a}) € E|||RUN . Now

if vda is a trace for E|||RUN g then also v¢'a is, and so, again, we obtain that

E|||RUN g ¢ Det and E ¢ L-Sec. Hence E" \ Acty ;5 for every a € K and so
((5 K) € E/\ACtH
Now we prove that if (0, K) € E’\ Acty then (§,K) € E’/ActH Suppose

(60, K) € E'\ Acty. Then we have that IE” such that E'\ Acty =2 E"\ Acty 7$

374 Riccardo Focardi and Roberto Gorrieri

BNDC

SBSNNI

,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 15. Relations among properties

Hence also E'/Acty N E"/Acty. Suppose that B /Acty can execute a certain
a € K N Acty, then consider ¢’ obtained by adding to § all the high level actions

executed by E’ before a in the transition E'/Acty N E"/Acty == E""|Actg,
i.e., such that §’a is a trace for E’. We have that v¢'a is a trace for E|||RUN g.
Now, (d,{a}) € E'\ Acty with a € Acty and so (6,{a}) € E’|||RUN i which
implies that (§',{a}) € F'|||RUNg and finally (yd’,{a}) € E|||RUNg. This

contradict the fact that E € L-Sec and so E" /Acty #,Va € K. Hence (0, K) €
E//ACtH. |

Theorem 10. SFSNNI N Lowdet N Nondiv C L-Sec.

PrOOF. Let E € SFSNNI N Lowdet N Nondiv and ~ya be a trace for process
E|||RUN . We want to prove that (v,{a}) ¢ E|||RUNg. It trivially holds if
a € Acty because in such a case it can always be executed by RUN . So let

a € Acty,. Suppose E|||RUN g == E'|||RUN g 7(Z> and consider the sequence v
obtained removing all the high level actions from «y. Then FE / Acty :> E'/Act H
and by hypothesis E’/ActH ~p E'\ Acty. Since E'|||RUN g 7é> then E'\ Act gy 7é>

and so E'/Acty 7é> and (v',{a}) € E/Acty. Since E € SFSNNI we obtain
that (7/,{a}) € E\ Acty. Now ~a is a trace for E||RUN g and so 7'a must
be a trace for E/Acty this means that 7'a is also a trace for E \ Acty. Since
E € Lowdet then E'\ Acty is deterministic. However we found that v'a is a trace
for B\ Acty and (7', {a}) € E'\ Acty obtaining a contradiction. So E'|||RUN g
cannot refuse a and (v,{a}) € E|||RUN . Hence E|||RUNy € Det and since
E € Nondiv we also have that E|||RUN g € Nondiv |

Classification of Security Properties 375

Corollary 3. SFSNNIN Lowdet N Nondiv = L-Sec.

PRrROOF. By Theorems 6 and 9 and by Definition 17 we find that L-Sec C SFSNNI
N Lowdet N Nondiv. Finally by Theorem 10 we obtain the thesis. [|

Note that by Corollary 2 we also have that FNDC N Lowdet N Nondiv = L-Sec.
Now we show that this result also holds for SBSNNI and BNDC'. We first prove
that for deterministic processes ~pr becomes equal to ~pg.

Proposition 10. £ € Det, E ~p F — FE ~p F.

PrROOF. If E € Det and E ~r I we also have that I' € Det. Now it is sufficient
to consider the relation R C £ x & defined as follows: (E', E”) € R if and only

if 3y: E =% E', E == E". It is easy to show that R is a weak bisimulation. m
Finally, the following holds.

Theorem 11. BNDC N Lowdet N Nondiv = SBSNNI N Lowdet N Nondiv =
L-Sec.

PROOF. (SBSNNINLowdetNNondiv = L-Sec). We have that SBSNNIN LowdetN
Nondiv C SESNNI N Lowdet N Nondiv because SBSNNI C SEFSNNI. So by
Theorem 10 SBSNNI N Lowdet N Nondiv C L-Sec.

Now we prove that L-Sec C SBSNNI N Lowdet N Nondiv. If E € L-Sec then
by Corollary 3 we have that F € SFSNNI N Lowdet N Nondiv. So VE' such
that 3y : E == E’ we have E'\ Acty ~p E'/Acty with E\ Acty € Det. In
particular we also have that E \ Acty ~p E/Acty and since E \ Acty € Det,

we obtain that E/Acty € Det. Note that E/Acty == E'/Acty where 7/ is
the sequence obtained removing all the high level actions from ~. Hence, by
Corollary 1, E'/Acty € Det. Finally, by Proposition 10 we obtain that E’\
ACtH ~pB E//ACtH.

(BNDCN Lowdet N Nondiv = SBSNNIN Lowdet N Nondiv) Trivial by SBSNNI C
BNDC C FNDC and since SBSNNI N Lowdet N Nondiv = L-Sec = FNDC N
Lowdet N Nondiwv.]

Figure 15 summarizes the relations among various properties and conditions. We
have shown that BNDC and SBSNNI are equal to L-Sec when dealing with low-
deterministic and non-divergent processes. In the next section we will introduce
the CoSeC tool which is able to automatically check the SBSNNI property over
finite state agents. This implies that for low-deterministic, non-divergent and
finite-state processes it is possible to use the CoSeC in order to verify also the
L-Sec property. In [56] it is shown how to use the FDR tool [55] to check the
L-Sec property. It would be interesting to compare the performance of FDR and
CoSeC for the verification of such a property.

We also want to point out that SBSNNI N Lowdet can extend in a fair
manner the L-Sec property to divergent processes. L-Sec assumes that processes
cannot diverge. The semantics used by authors to define L-Sec is the failure-
divergence one [10]. Failure-divergence semantics gives a so-called catastrophic
interpretation of divergences, since in the presence of divergences a process may

376 Riccardo Focardi and Roberto Gorrieri

NNIIT=NDCIT

|
Its-Correct. :
I

Its
FC /[lts !
RES

Fig. 16. The inclusion diagram for trace-based security properties

show any behaviour. We have already seen this problem when we used testing
equivalence for the definition of our properties. On the other hand bisimulation
gives a fair interpretation of divergences by assuming that an infinite loop of
internal actions will be taken a finite number of times, i.e., soon or later we
will exit from the loop. This is useful, for example, if we want to model a fair
communication media, where a 7-loop represents the unbounded but finite losses
of messages. The property SBSNNI N Lowdet can be seen as an extension of
L-Sec which gives a fair interpretation of divergences.

A good reference about modelling NI in CSP can be found in this volume [58].
In such a paper, a new notion based on power bisimulation is also proposed. We
intend to compare it with our bisimulation-based properties with the aim making
our classification as much complete as possible.

3.6 Other Security Properties

In [24] we have compared our properties with a number of existing proposal. Here
we just report the diagram (Figure 16) of the relations among such properties and
we give the bibliographic references to them. In particular, TNDI derives from
Non Deducibility on Inputs [62], Its-Correctability comes from Correctability [11],
1ts-FC is Forward-Correctability [11], 1ts-RES is a version of Restrictiveness [18].

Classification of Security Properties 377

‘ SECURITY CHECKER ‘

INPUT OUTPUT

P E L
A r Q
R 1 v E
S 1 N

Concurrent system t C Value of security

. E \% .
expressed in SPA R s A E predicate on agents

Fig. 17. Structure of the CoSeC

Moreover NNIIT is NNI where we require that systems are input total. This
means that in every state the system must be able to accept every possible
input by the environment. The aim of this (quite restrictive) condition is to
prevent users from deducing anything about the state of the system, even if
they observe the inputs the system accepts. All the properties included in NNIIT
requires this condition over input actions. NDCIT is NDC' with input totality.
Finally NDCy and NDCyIT are parametric versions of NDC' where the high
level user can exploit only the actions in sets H and M to communicate with
the system. Table 11 reports all the needed counterexamples which differentiate
the properties. For more details, please refer to [24].

4 The Compositional Security Checker

In this Section we briefly describe the CoSeC structure and architecture. Before
giving this description, we want to informally justify why the theory developed so
far should be equipped with a tool. First of all, we need a tool to practically check
the examples; even for small problems, the state space grows quite beyond our
human ability to manage it. A tool is also useful to help intuition on what flaws
these security properties really capture; only through the tool we can analyze
easily a large number of examples, and refine our understanding of the security
properties and of the tractability of validating them. Finally, a tool gives an idea
of which kind of verification techniques engineers should become acquainted
with in the future to certify their products (e.g., security protocols). As we will
show in the next sections, the CoSeC tool has been obtained by modifying the
Concurrency Workbench [14]. Part of the material contained in this Section has
been published in [26,32,25].

4.1 Input-Output and Architecture

The inputs of CoSeC are concurrent systems expressed as SPA agents. The
outputs are answers to questions like: “does this system satisfy that specific
security property ?”. The structure of CoSeC is described in Figure 17. In detail,
the tool is able:

378 Riccardo Focardi and Roberto Gorrieri

Table 11. The inclusion table for trace-based security properties

NNI SNI\]I)I\(IJI TNDI | 1ts-RES | Its-cor. | 1ts-FC | NDCq BI?DNéII’l; NDCuIT

NNI| = 8 2 2 2 2 9 10 10
SI\INDNCI C = 2 2 2 2 - 10 10
TNDI| C 1 = 3 3 3 9 10 10
Its-RES| C 1 - = - - 9 C C
Its-cor.| C 1 - 6 = 6 9 - -
Its-FC| C 1 C 5 C = 9 C C
NDCu| 7 7 7 7 7 7 = 10 10
el [0 P P P I O R
NDCuIT| 4 4 4 4 4 4 3 4 =

Let T'[x,y] be the table element contained in row x and column y. If T'[z,y] € {=, C}
then Tz, yly. If T[z,y] = n then the agent n below is in x and is not in y. In the
following Ily represents the Input-Total empty agent: Ilo = >, ; i.11o.

1) Z=3,c;iZ+hZ and Z' =%, ,i.2" + 1o

2) hl0+1.0+1.0

3) Z=3c;i-Z+ h.(Ilo + .IIo))

4) Z =3c;i-Z + h(Io + I.11o) with h ¢ M UM

5) Z=3c;i-Z+ 110 + h.Io)

6) Z=3c;i-Z+h2' +n.2" and Z' = Ilo + h.Z' + 1.I]y and

z" :Ziel\{h}i.Z”+h.Hg+f.Hg

7) h.l.0 with h ¢ HU H

8) h.l.0

9) Z=3 ;i Z+hZ and Z' =Y, ,i.Z' + 1.0y withhe HUH
10) 0

Classification of Security Properties 379

Layer 1

INTERFACE

COMMAND INTERPRETER

PARSER ‘ ‘ ENVIRONM.

BASIC SEMANTIC DEFINITIONS

Layer 2
DETERMINISTIC GRAPHS SEMANTIC
OBSERVATION GRAPHS TRANSFORM.
EQUIVALENCE Layserc3
BASI
MINIMIZER BASIC s

Fig. 18. CoSeC architecture

— to parse SPA agents, saving them in suitable environments as parse trees;

— to give a semantics to these parse trees, building the corresponding rooted
labelled transition systems (RLTS for short); this phase terminates only if the
SPA term generates a finite LTS.

— to check if an agent satisfies a certain security property; the routine im-
plemented for this purpose verifies the equivalence of two particular agents
modeled as RLTS. In this way, future changes to the language will not com-
promise the validity of the core of the tool.

The CoSeC has the same general architecture of the CW [14]. In its implementa-
tion we have decided to exploit the characteristic of versatility and extensibility
of CW. In particular CoSeC maintains the strongly modular architecture of CW.

Figure 18 shows the architecture of CoSeC. The modules of the system have
been partitioned in three main layers: interface layer, semantic layer, analysis
layer. In the interface layer we have the command interpreter. It allows us to
define the agents and the set of high level actions; it also allows to invoke the
security predicates and the utility functions on the behaviour of an agent. Then
we have a parser which recognizes the SPA syntax of agents and stores them
as parse trees in appropriate environments. The partition of the set of visible
actions in the sets of high and low level actions has been obtained by defining the
set of high level actions; by default, all the other possible actions are considered
at low level. Then we have defined a function that, according to the operational

380 Riccardo Focardi and Roberto Gorrieri

semantic rule of SPA, provides all possible transitions for an agent. This function
allows the construction of the LTS associated with an agent.

In the semantic layer, CoSeC uses two transformation routines to translate
LTSs into deterministic and observation graphs '° respectively. Since they both
refer to processes modeled as LTSs, they have been imported from CW in CoSeC
without any modification.

In the analysis layer, CoSeC uses a routine of equivalence and one of mini-
mization that belong to the analysis layer of CW. These are a slight modifica-
tion of the algorithm by Kanellakis and Smolka [412] which finds a bisimulation
between the roots of two finite state LTSs by partitioning their states. It is inter-
esting to note that a simple modification of this algorithm can be used to obtain
the minimization of a finite state LTS.

4.2 Checking the Information Flow Properties

Here we describe in details how the verification of Information Flow Properties
proceeds. As we said before, we have properties which are in the following form:

E is X-secure if and only if Cx[E] =~ Dx|[FE].

We have seen for SNNI that Cx[—] = — \ Acty and Dx[—] = —/Acty. Hence,
checking the X-security of F is reduced to the “standard” problem of checking
semantic equivalence between two terms having E as a sub-term.

In the following we briefly explain how the system works in evaluating se-
curity predicates NNI, SNNI, NDC, BNNI, BSNNI, SBSNNI, and we discuss
about their computational complexity. CoSeC computes the value of these pred-
icates over finite state agents (i.e. agents possessing a finite state LTS), based on
the definitions given in Section 3 that we report below in CoSeC syntax (for ease
of parsing, in CoSeC the hiding and input restriction operators are represented
by ! and ?, respectively.):

E € NNI & E'Acty ~7 (E?Acty)!Acty
E € SNNI = NDC & E'Acty =7 E \ Acty
E € BNNI & ElActy ~p (E?Acty)!Acty
E € BSNNI & ElActy ~p E\ Acty
E € SBSNNI < E' € BSNNI, VE' reachable from E

As for CW, the inner computation of the CoSeC follows three main phases.

Phase a) (the same for all predicates) CoSeC builds the RLTSs of the two agents
of which it wants to compute the equivalence. For example in the case of NNI,
CoSeC computes the transition graph for (E?Acty)!Acty and E'Acty. In

10" An observation graphs [14] is obtained by obscuring the precise amount of internal
computation. In particular the edges of the LTS are modified in order to reflect the
~» relation defined as: n ~» n’ iff n = n’ and n ~»> n’ iff n == n'.

Classification of Security Properties 381

this phase we do not have any particular problem with complexity, except
for the intrinsic exponential explosion in the number of states of the RLTS
due to parallel composition.

Phase b) (This is split into two depending on the semantics requested by the
security predicate)

b1l: (for predicates NNI, SNNI, NDC) The two RLTSs obtained in Phase
a) are transformed into deterministic graphs following the classic subset
construction (see e.g. [10]). This algorithm has exponential complex-
ity since it is theoretically possible, in the deterministic graph, to have
a node for every subset of nodes in the original graph. However, expe-
rience shows that very often the number of obtained nodes is less than
the number of nodes of the beginning graph because of the collapsing of
the 7_transitions.

b2: (for predicates BNNI and BSNNI) The two RLTSs obtained in Phase
a) are transformed into observation graphs using the classic algorithms
for the product of two relations and the reflexive transitive closure of
a relation. This transformation has a O(n?) complexity, in which n is
the number of nodes in the original graph.

Phase c) (For all predicates) The general equivalence algorithm [12] is applied
to the graphs obtained in Phase b). Time and space complexities of this
algorithm are O(k % [) and O(k 4 [) respectively, where [is the number of
nodes and k is the number of edges in the two graphs. This is not a limiting
factor in the computation of the observational and trace equivalences. In
particular, for observational equivalence, in most cases 80% of computation
time is due to the routine for reflexive transitive closure of Phase b).

Since SBSNNI is verified by testing BSNNI over all the n states of the original
graph, the resulting complexity will be n times the BSNNI complexity.

It is interesting to observe that the exponential explosion of the number
of nodes of the transition graphs (Phase a), due to the operator of parallel
composition, influences negatively the following phases, but it cannot be avoided
because of its intrinsic nature. A solution to this problem for the predicates NNI,
SNNI, NDC' and SBSNNI could be based on the exploitation of compositional
properties (see Section 4.5 for more details).

4.3 A Sample Session

The style used in specifying SPA agents in CoSeC is the same used for CCS
agents in CW. For example the command line !

Command: bi A h./l'h.A+'h/l.A

' Here we use the typewriter style for CoSeC messages (such as the prompt
“Command:”); the bold style for CoSeC commands and the italic style for the re-
maining text (such as agents and sets) inserted by users.

382 Riccardo Focardi and Roberto Gorrieri

defines the agent A © Th. A+ hIA. Asin CW the first letter of agents must
be a capital letter and output actions have to be prefixed by ’.

We assumed that the set of visible actions £ is partitioned in two complete
subsets Acty and Actr of high and low level actions respectively. With the
command:

Command: acth h x

we specify that Acty = {h,’ h,x, x}. In this way we obtain that h,”h,z, x are
considered as high level actions and any other action as low level one.
Now, we can check whether agent A is NNI secure:

Command: nni A
true

CoSeC tells us that A is NNI secure. Now we can check if agent A is SNNI secure
too:

Command: snni A
false

So A is NNI secure but is not SNNI secure. If we want to know why such
a system is not SNNI we can use the debugging version of the SNNI:

Command: d_snni A

false

Agent A!ActH

can perform action sequence ’1
which agent A\ActH

cannot

The tool shows a (low level) trace which distinguishes processes A/Acty and
A\ Acty. The trace is [which can be executed only by the first one. This can
be useful to understand why a process is not secure. Finally the command quit
causes an exit to the shell.

4.4 An Example: Checking the Access Monitor

In this Section we use CoSeC to automatically check all the versions of the
access monitor discussed in Example 6. Since CoSeC works on SPA agents we
have to translate all the VSPA specifications into SPA. Consider once more
Access_Monitor_1. Table 12 reports the translation of Access_Monitor_1 spec-
ification into the CoSeC syntax for SPA. ' It has been used a new command
basi which binds a set of actions to an identifier. Moreover, the \ character at
the end of a line does not represent the restriction operator, but is the special

12 Tn the translation, we use values {I, h} in place of {0,1} for the levels of users and
objects in order to make the SPA specification clearer. As an example access_r(1,0)
becomes access_r_hl.

Classification of Security Properties 383

Table 12. Translation of Access_Monitor_1 to CoSeC syntax for SPA

bi Access_Monitor_1
(Monitor | Object_10 | Object_h0)"L

bi Monitor
access_r_hh. (rh0.’val_hO.Monitor + rhl.’val_hl.Monitor) + \
access_r_lh.’val_l_err.Monitor + \
access_r_hl.(rl0.’val_hO.Monitor + rll.’val_hl.Monitor) + \
access_r_11.(r10.’val_10.Monitor + rll.’val_l1.Monitor) + \
access_w_hh. (write_hO.’whO.Monitor + write_hl.’whl.Monitor) + \
access_w_lh. (write_10.’whO.Monitor + write_1l1.’whl.Monitor) + \
access_w_hl. (write_hO.Monitor + write_hl.Monitor) + \
access_w_11. (write_10.’wl0.Monitor + write_1l1.’wll.Monitor)

bi Object_hO
’rh0.0bject_hO + whO.Object_hO + whl.Object_hl

bi Object_hil
’rh1l.0bject_hl + whO.Object_hO + whl.Object_hl

bi Object_10
’rl0.0bject_10 + wl0.0bject_10 + wll.Object_11

bi Object_11
’rll.0bject_11 + wl0.0Object_10 + wll.Object_11

basi L
rh0 rhl rl0 rll1 whO whl wl0 wll

cth
rhO rhl whO whl access_r_hh access_r_hl val_hO val_hl val_h_err \
access_w_hh access_w_hl write_hO write_hl

a

character that permits to break in more lines the description of long agents and
long action lists.

We can write to a file the contents of Table 12 and load it, in CoSeC, with
command if <filename>. Now we can check that Access_Monitor_1 satisfies all
the security properties except SBSNNI using the following command lines:

Command: bnni Access_Monitor_1

true

Command: bsnni Access_Monitor_1

true

Command: sbsnni Access_Monitor_1

false: (‘val_hl.Monitor | Object11 | Object.hl)\L

Note that when CoSeC fails to verify SBSNNI on a process E, it gives as output
an agent E’ which is reachable from F and is not BSNNI.
So we have found that

Access_Monitor_1 € BSNNI, BNNI

384 Riccardo Focardi and Roberto Gorrieri

but
Access_Monitor_1 ¢ SBSNNT

Since we have that SBSNNI ¢ BNDC C BSNNI, BNNI, we cannot conclude
whether Access_Monitor_1 is BNDC or not. However, using the output state £’
of the SBSNNI verification, it is easy to find a high level process II which can
block the monitor. Indeed, in the state given as output by SBSNNI, the monitor
is waiting for the high level action 'val_h1; so, if we find a process IT which moves
the system to such a state and does not execute the val_ hl action, we will have
a high level process able to block the monitor. It is sufficient to consider IT =
'accessr_hh.0. Agent (Access_Monitor_1|IT)\ Act g will be blocked immediately
after the execution of the read request by II, moving to the following deadlock
state:
(('val hO.Monitor | Object 10 | Object h0) \ L | 0) \ Acty

(this state differs from the one given as output by SBSNNI only for the values
stored in objects). It is possible to verify that Access_Monitor_1 ¢ BNDC by
checking that (Access_Monitor_1|IT)\ Acty %#p Access_Monitor_1/Acty using
the following command:

Command: bi Pi ’access_r_hh.0
Command: eq

Agent: (Access_Monitor_1| Pi) \ acth
Agent: Access_Monitor_1 ! acth
false

As we said in Example 6, such a deadlock is caused by synchronous communi-
cations in SPA. Moreover, using the CoSeC output again, we can find out that
also the high level process II' = 'access_w_hl.0 can block Access_Monitor_1,
because it executes a write request and does not send the corresponding value.
Hence, in Example 6 we proposed the modified system Access_Monitor_5 with
an interface for each level and atomic actions for write request and value sending.
We finally check that this version of the monitor is SBSNNI, hence BNDC' too:

Command: sbsnni Access_Monitor_5
true

4.5 State Explosion and Compositionality

In this section we show how the parallel composition operator can increase ex-
ponentially the number of states of the system, and then how it can slow down
the execution speed of security predicate verification. This is basically caused by
the fact that we have all the possible interleaving of the actions executed by the
parallel processes. In order to avoid this we exploit some results related to the
compositionality of the proposed security properties. For some of the properties
we have that if two systems are “secure” also their parallel composition is secure.
So, the tool has a special feature that decomposes systems in their parallel com-
ponents and then checks the properties over that components. If both of them

Classification of Security Properties 385

Table 13. Number of states and time spent on a SPARC station 5

agent| B D | B|D|B |B|D|D|B
state number 3 3 27 81
time spent||<1 sec.|<1 sec.|~11 sec.|~270 sec.

are secure the tool will conclude that also the whole system is secure. Otherwise
the check will be performed over the whole system. We prove that this method is
correct and that it terminates. Moreover we show some modular versions of the
Monitor that can be verified very efficiently with this compositional technique.

We start with a very simple example. Let us define in CoSeC the two agents B,
D and the set Acty of high level actions:

Command: bi B y.a.b.B + a.b.B
Command: bi D ’‘a./b.(x.D + D)
Command: acth = y

Let us check now if B and D are SBSNNI secure:

Command: sbsnni B
true
Command: sbsnni D
true

We have seen that SBSNNI is a compositional property, so the two agents
B|D|B and B|D|D|B must also be SBSNNI secure. Hence the verification of
these two agents could be reduced to the verification of their two basic compo-
nents B and D only. The time spent in verifying SBSNNI directly on B|D|B
and B|D|D|B is very long. Using the size command of CoSeC, which computes
the number of states of an agent, we can fill in Table 13, which points out the
exponential increase of the number of states and the consequent increase of the
computation time for verification of SBSNNI.

CoSeC is able to exploit the compositionality of security properties through
an algorithmic scheme we are going to present. For a certain compositional

property P this scheme also requires the following condition: if Z ©Eand E
is P-secure then also Z is P-secure. This condition is satisfied by all the above
presented properties because of Theorem 5.

Definition 20. (Compositional Algorithm) Let P C £ be a set of SPA agents
such that

- E,FFeP=E|F'€P
—FeP LCL=—FE\LeP

—EePZz¥E—zcp

and let Ap be a decision algorithm which checks if a certain agent E € Epg
belongs to P; in other words, Ap(E) = true if E € P, Ap(E) = false otherwise.
Then we can define a compositional algorithm Al (E) in the following way:

386 Riccardo Focardi and Roberto Gorrieri

1) if E is of the form E'\ L, then compute Ap(E'); if Ab(E') = true then
return true, else return the result of Ap(E);

2) if E is of the form Ei|Es, then compute Ap(E1) and A'p(Es); if A'p(E1) =
AW (E2) = true then return true, else return the result of Ap(E);

3) if E is a constant Z with Z def E’, then return the result of A'(E');

4) if E is not in any of the three forms above, then return Ap(E). [|

The compositional algorithm A% (E) works as the given algorithm Ap(FE) when
the outermost operator of F is neither the restriction operator, nor the parallel
one, nor a constant definition. Otherwise, it applies componentwise to the ar-
guments of the outermost operator; if the property does not hold for them, we
cannot conclude that the whole system is not secure, and we need to check it
with the given algorithm.

Note that the compositional algorithm exploits the assumption that prop-
erty P is closed with respect to restriction and uses this in step 1. This could
seem of little practical use, as the dimension of the state space for, let say, F is
often bigger than that of E'\ L. However, parallel composition is often used in
the form (A|B) \ L in order to force some synchronizations, and so if we want
to check P over A and B separately, we must be granted that P is preserved by
both parallel and restriction operators.

To obtain the result for A’ (F), we essentially apply — in a syntax-driven
way — the four rules above recursively, obtaining a proof tree having (the value
of) AB(F) as the root and the various (values of) Ap(E)’s on the leaves for
the subterms E of F' on which the induction cannot be applied anymore. The
following theorem justifies the correctness of the compositional algorithm, by
proving that the evaluation strategy terminates and gives the same result as the
given algorithm Ap(F).

Theorem 12. Let F € Epg. If the agent E’ occurring in step 1 belongs to
Ers each time the algorithm A’y executes that step, then Ap(F) terminates
and Ap(F) = ARp(F).

PRrROOF. First we want to prove that, in computing A’ (F), if the evaluation of
the given algorithm Ap is required on an agent F, then E belongs to £pg. The
proof is by induction on the proof tree for the evaluation of A%(F'). The base
case is when F' can be evaluated by step 4; as — by hypothesis — agent F' is finite
state, the thesis follows trivially. Instead, if F' is of the form E’\ L, then — by
the premise of this theorem — E' € Epg, and the inductive hypothesis can be
applied. In step 2, as F' = E1|F2, we have that Ey, Fs € Epg, and the inductive
hypothesis can be applied to prove the thesis. Similarly for step 3, as constant Z
is finite state if and only if the defining agent E’ is so. So, when the algorithm
executes Ap(E) in steps 1, 2, 3 or 4, it always terminates because E € Epg.

To complete the proof concerning termination of the compositional algorithm,
we still have to prove that the inductive evaluation, in steps 1, 2 and 3, cannot
loop; in other words, that the proof tree for A%»(F') is finite. While it is obvious
for cases 1 and 2 (no term can be a proper subterm of itself in a finite term), the
thesis follows in case 3 because of the constant guardedness condition over SPA

Classification of Security Properties 387

agents. It guarantees that the recursive substitution of non prefixed constants
with their definitions terminates. Hence the computation of A’ (F') ends.

To prove that the result of the compositional algorithm A’ is consistent with
the one obtained by the given algorithm Ap, we observe that the four rules above
guarantee this, using compositionality properties for steps 1 and 2. [|

The theorem above requires that — in evaluating A5 (E) — if E is in the form
E’\ L, then E' must be finite state. In fact, if we consider a finite state system
E\ L such that E ¢ Epg, then Ap(E \ L) terminates while A’-(E \ L) possibly
do not, because it tries to compute Ap(E) on the non-finite state agent E. The
premise of the theorem above trivially holds for agents in the class of nets of
automata.

The CoSeC command c_sbsnni checks the SBSNNI property exploiting com-
positionality. Let us now compare the compositional algorithm w.r.t. the normal
one, starting from Access_Monitor_5. The normal verification of the SBSNNI
property on such a system requires a lot of time (about 16 minutes ' on a SUN5
workstation) because of the above mentioned exponential state explosion due to
parallel composition. We could hope to get a better result using the composi-
tional algorithm. Table 14 reports the output of the compositional verification of
Access_Monitor_5 where the symbols [\] and [|] represent steps 1 and 2 of the
algorithm, respectively. This table shows that the algorithm fails in the verifica-
tion of SBSNNI over AM and then succeeds in checking the system as a whole.'*
Hence, in this case, the compositional technique cannot help reducing the exe-
cution time. However, we can modify AM in order to obtain a SBSNNI system
by making (only!) high level communications asynchronous. This can be done
adding a high level buffer between the monitor and the interface. The resulting
system is reported in Table 15 where j € {0, 1, err,empty}, L = {r,w,val(1,y)},
N = {res, access_r, access_w} and res(l,y) € Acty,Vy € {0,1,err,empty},
while the same actions with 0 as first parameter belong to Actr. Note that we
have modified the interface so that it is now able to wait until the high buffer is
filled by the monitor.

Using the compositional algorithm, system Access_M onitor_6 can be checked
very efficiently; the verification of SBSNNI takes about 90 seconds (see Ta-
ble 16). We can also check that Access_Monitor 5 ~p Access_Monitor_6; so,
as expected, the introduction of the buffer does not modify the behaviour of the
monitor. This verification requires about 2 minutes. Note that, by Theorem 5,
we can conclude that also Access_Monitor_5 is SBSNNI, even if a direct check
takes (as we said) about 16 minutes.

Access_Monitor_6 represents an example of successful application of the
compositional checking; nonetheless, this does not mean that we cannot do bet-

13 This value and all the following are obtained exploiting also the state minimization
feature of the tool.

' The reason why it fails on AM is because AM is essentially Access_Monitor_1 with
atomic write operations; hence, it is not SBSNNI because of the possible high level
deadlock of Example 6 caused by synchronous communications. The interface was
indeed introduced in order to make communications asynchronous.

388 Riccardo Focardi and Roberto Gorrieri

Table 14. Verification of SBSNNI on Access_Monitor_5 with the compositional
algorithm

Command: c_sbsnni Access_Monitor_5
[\] Verifying AM | Interf
[1] Verifying AM
[\] Verifying Monitor_5 | Object_10 | Object_hO
[1] Verifying Monitor_5
[I] Failed!
[\] Failed!
Verifying directly (Monitor_5 | Object_10 | Object_hO)\L
[I] Failed!
[\] Failed!
Verifying directly (AM | Interf)\K
true

Table 15. The Access_Monitor_6

Access_Monitor 6 % (AM 6 | Interf 6)\ N

def

AM_6 = ((Monitor_5 | Object(1,0) | Object(0,0)
| hBuf(empty)) \ L)[res(0,y)/val(0,y)]
1 7e3(1, §).hBuf (empty) + val(1, k).hBuf (k)

def

= Interf_6(0) | Interf_6(1)
ef a-r(l,x).accessr(l, z). Inter f _6_reply(l)
+
a-w(l, x, z).accessw(l, z, z).Inter f_6(1)
Inter f_6_reply(l) def res(l,y).
(if y = empty then
Inter f_6_reply(l)
else

put(l,y).Interf_6(1))

hBuf(j)
Interf_6

Interf_6(1)

Classification of Security Properties 389

Table 16. Verification of SBSNNI on Access_Monitor_6 exploiting composi-
tionality

Command: c_sbsnni Access_Monitor_6
[\] Verifying AM_6 | Interf_6
[1] Verifying AM_6
[1] Verifying Interf_6
[I] Verifying Interf_6_1
[1] Verifying Interf_6_0
true

access_r(1,1)
access_w(1,1,2)
access_r(1,0)

access_w(1,0,2)

hBuf(y) a w(0x2)! Low
Object(1,y) | w(1.z | Monitor_7(1)| vai,y) — resQy) Intert_6(0) O i?”el
f), \ sers
access_r(0,1
access_ w(0,1,Z
access_r(0,0
access_w(0,0,z

Fig. 19. The Modular Access_Monitor_7

ter. Indeed, such a system is not defined in a very modular way and we hope
that a more modular definition will lead to a more efficient compositional ver-
ification. In fact, suppose we want to add other objects to Access_M onitor_6;
in such a case, the size of AM _6 will increase exponentially with respect to the
number of added objects. Now we present a rather modular version of the ac-
cess monitor. The basic idea of this new version (Figure 19) is that every object
has a “private” monitor which implements the access functions for such (single)
object. To make this, we have decomposed process Monitor_5 into two different
processes, one for each object; then we have composed such processes to their re-
spective objects together with a high level buffer obtaining the SBSNNI-secure
Modh and Modl agents. In particular, Monitor_7(z) handles the accesses to
object & (z = 0low, x = 1 high). As in Access_Monitor_6, we have an interface
which guarantees the exclusive use of the monitor within the same level and is

ar@®xy 777

ar(x)y 77T

val(l,y) hBuf(y) res(1,y) m: High :
Object(O,y) Monitor_7(0) val(0,y) ‘ res(0,y) Interf_6(1) m i Level
' [YY) v Users

390 Riccardo Focardi and Roberto Gorrieri

able to read values from the high buffer. The resulting system is reported in Ta-

Table 17. The Access_Monitor_7

Access_Monitor_7 < (Modh | Modl | Interf6)\ L

Modh < ((Monitor_7(1) | Object(1,0) | hBuf(empty)) \ Lh)

[res(0,y)/val(0,y)]
Modl = ((Monitor_7(0) | Object(0,0) | hBuf(empty)) \ Lh)
[res(0,y)/val(0,y)]
Monitor _7(x) et access_r(l, x).
(if x < then
r(x,y).val(l,y).Monitor_7(x)
else
val(l, err). Monitor_7(z))
+
accessw(l,x, z).
(if x > I then
w(z, z).Monitor 7(x)
else
Monitor_7(zx))

ble 17 where L = {res, access_r,access_w} and Lh = {r,w,val(1,y)}. Table 18
reports the output of the (successful) verification of the SBSNNI property for
Access_Monitor_7. This task takes about 20 seconds on a SUN5 workstation,
supporting our claim that a modular definition would help. Moreover, we can
also check the new version of the monitor is functionally equivalent to the pre-
vious ones: in about 5 minutes, CoSeC is able to check that Access_Monitor_7
~p Access_Monitor_5, and so also Access_Monitor_7 ~p Access_Monitor_6.

As a final remark, the compositional verification is more convenient only
when building complex systems as parallel composition of simpler ones. For
this reason, the tool offers to the user the choice between the normal and the
compositional verification algorithms. It is up to the user to choose which one
(s)he thinks could go better, or even to make them work in parallel.

5 Conclusion

In this paper we have proposed a formal model for the specification and analysis
of information flow properties. We have adopted a particular algebraic style in

Classification of Security Properties 391

Table 18. Verification of SBSNNI on Access_Monitor_7 exploiting composi-
tionality

Command: c_sbsnni Access_Monitor_7
[\] Verifying Modh | Modl | Interf_6
[1] Verifying Modh
[1] Verifying Modl
[1] Verifying Interf_6
[1] Verifying Interf_6_1
[I] Verifying Interf_6_0
true

the definition of such properties. Indeed we have always given properties which
are parametric with respect to a notion of semantic equivalence. This is useful
since we can change the discriminating power of a property by simply “plugging
in” the appropriate equivalence notion. Moreover, in this way we have obtained
very compact and simple definitions. We have also seen how this algebraic style
can be very profitable when automatically checking the properties. Indeed we
can reduce the task of checking a security property to the well studied problem
of checking the semantic equivalence of two terms of the language.

We have seen that the main motivation for information flow properties is
historically bound to system security, in particular to the detection of direct and
indirect information flows inside a system. However we have obtained a very
general setting where we can study if a certain class of users, the high level
users, can in some way interfere with the low level ones. Indeed we have used
this Non-Interference abstraction in order to model the absence of information
flow: “if high level users cannot interfere with low level ones then no information
flow is possible from high to low level”.

We have tried to convince the reader that the properties we have proposed are
satisfactory for the detection of information flows inside a system, in particular
the BNDC' property which can also detect flows due to potential high level
deadlocks.

In recent papers [28,3], the underlying model has been extended in order
to deal with time and probability. Once an appropriate semantics equivalence
has been defined in these new models, the BNDC' property has been shown to
naturally handle the new features of the model. In particular, in such models,
BNDC' has been shown to be able to detect timing and probabilistic convert
channels, respectively.

Another aspect we are studying is the possibility of defining a criterion for
evaluating the quality of information flow properties [33]. We are trying to do
this by defining classes of properties which guarantee the impossibility of the
construction of some “canonical” channels. We have seen, for example, that using
some systems which are not BNDC' it is possible to obtain a (initially noisy)

392 Riccardo Focardi and Roberto Gorrieri

perfect channel from high to low level. The aim is to classify the information
flow properties depending on which kind of channels they effectively rule out.

We have seen that it is possible to automatically check almost all the prop-
erties we have presented. Indeed we are still looking for a good (necessary and
sufficient) characterization of the BNDC' property. We have also briefly pre-
sented the CoSeC tool. In [47], Martinelli has applied partial model checking
techniques to the verification of BNDC, leading to the implementation of an
automatic verifier [16] which is able to automatically synthetize the possible
interfering high-level process.

As we have stated above, the setting we have proposed is quite general. We
claim that information flow (or NI) properties could have a number of differ-
ent applications since they basically capture the possibility for a class of users
of modifying the behaviour of another user class. This generality has allowed
to apply some variants of our properties to the analysis of cryptographic proto-
cols [15,30,29,31], starting from a general scheme proposed in [34]. This has been
the topic of the second part of the course “Classification of Security Properties”
at FOSAD’00 school, and we are presently working on a tutorial which will cover
it [27].

This application of NI properties to network security is new to our knowl-
edge. The interesting point is that they can be applied to the verification of
protocols with different aims, e.g., authentication, secrecy, key-distribution. We
have analyzed a number of different protocols, thanks to a new tool interface
which permits to specify value-passing protocols and to automatically generate
the enemy [15]; this has also allowed to find new anomalies in some cryptographic
protocols [16].

In [19,20,11,12], a new definition of entity authentication, which is based
on explicit locations of entities, has been proposed. We are presently trying
to characterize also this property through information flow. We also intend to
carry the BNDC' theory over more expressive process calculi, like, e.g., pi/spi-
calculus [2] and Mobile Ambients [13]. This would allow to compare it with
new recent security properties proposed on such calculi and reminiscent of some
Non-Interference ideas (see, e.g., [37,35]).

References

1. M. Abadi. “Secrecy by Typing in Security Protocols”. Journal of ACM, 46(5):749—
786, 1999. 331

2. M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi
calculus. Information and Computation, 148(1):1-70, 1999. 331, 392

3. A. Aldini. “Probabilistic Information Flow in a Process Algebra”. To appear in
proceedings of CONCUR’01, 2001. 391

4. P. G. Allen. “A Comparison of Non-Interference and Non-Deducibility using CSP”.
In Proceedings of the Fourth IEEE Computer Security Foundations Workshop,
pages 43-54, Franconia, New Hampshire, June 1991. 368

5. D. E. Bell and L. J. La Padula. “Secure Computer Systems: Unified Exposition
and Multics Interpretation”. ESD-TR-75-306, MITRE MTR-2997, March 1976.
332

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Classification of Security Properties 393

J. A. Bergstra and J. W. Klop. “Algebra of Communicating Processes with Ab-
straction”. Theoretical Computer Science, 37:77-121, 1985. 356

P. Bieber and F. Cuppens. “A Logical View of Secure Dependencies”. Journal of
Computer Security, 1(1):99-129, 1992. 333

C. Bodei, P. Degano, F. Nielson, and H. Riis Nielson. “Static Analysis of Processes
for No Read-Up and No Write-Down”. In proc. of 2nd FoSSaCS’99, Amsterdam,
March 1999. Springer. 331

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. “A Theory of Communicat-
ing Sequential Processes”. Journal of the Association for Computing Machinery,
31(3):560-599, July 1984. 340, 348, 353

S. D. Brookes and A. W. Roscoe. “An Improved Failures Model for Communicating
Processes”. In Proceedings of the Pittsburgh seminar on concurrency, pages 281—
305. Springer-Verlag, LNCS 197, 1985. 370, 375

C. Bodei, P. Degano, R. Focardi, and C. Priami. “Authentication via Localized
Names”. In Proceedings of CSFW’99, pages 98-110. IEEE press, 1999. 331, 392
C. Bodei, P. Degano, R. Focardi, and C. Priami. “Primitives for Authentication
in Process Algebras”. Theoretical Computer Science, to appear, 2001. 331, 392
L. Cardelli and A. Gordon. “Mobile Ambients”. In proceedings of FoSSaCS’98,
pages 140-155. Springer LNCS 1378, 1998. 392

R. Cleaveland, J. Parrow, and B. Steffen. “The Concurrency Workbench: a Seman-
tics Based Tool for the Verification of Concurrent Systems”. ACM Transactions
on Programming Languages and Systems, Vol. 15 No. 1:36-72, January 1993. 334,
377, 379, 380

A. Durante, R. Focardi, and R. Gorrieri. “A Compiler for Analysing Cryptographic
Protocols Using Non-Interference”. ACM Transactions on Software Engineering
and Methodology, 9(4):489-530, 2000. 392

A. Durante, R. Focardi, and R. Gorrieri. “CVS at Work: A Report on New Fail-
ures upon Some Cryptographic Protocols”. In proceedings of Mathematical Meth-
ods, Models and Architectures for Computer Networks Security, pages 287299,
St. Petersburg, Russia, May 2001. LNCS 2052. 392

N. Durgin, J. Mitchell, and D. Pavlovic. “Protocol composition and correctness”.
In proceedings of Workshop on Issues in the Theory of Security (WITS ’00), Uni-
versity of Geneva, July 2000. 331

R. Focardi. “Comparing Two Information Flow Security Properties”. In Pro-
ceedings of Ninth IEEE Computer Security Foundation Workshop, (CSFW’96),
(M. Merritt Ed.), pages 116-122. IEEE press, June 1996. 348, 368

R. Focardi. “Located Entity Authentication”. Technical Report CS98-5, University
of Venice, 1998. 392

R. Focardi. “Using Entity Locations for the Analysis of Authentication Proto-
cols”. In Proceedings of Sixth Italian Conference on Theoretical Computer Science
(ICTCS’98), November 1998. 392

R. Focardi. Analysis and Automatic Detection of Information Flows in Systems
and Networks. PhD thesis, University of Bologna (Italy), 1999. 331, 348

R. Focardi and R. Gorrieri. “An Information Flow Security Property for CCS”.
In Proceedings of the Second North American Process Algebra Workshop (NAPAW
’93), TR 93-1369, Cornell (Ithaca), August 1993. 348

R. Focardi and R. Gorrieri. “A Taxonomy of Trace-based Security Properties for
CCS 7. In Proceedings Seventh IEEE Computer Security Foundation Workshop,
(CSFW’94), (Li Gong Ed.), pages 126-136, Franconia (NH), June 1994. IEEE
Press. 348

394

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Riccardo Focardi and Roberto Gorrieri

R. Focardi and R. Gorrieri. “A Classification of Security Properties for Process
Algebras”. Journal of Computer Security, 3(1):5-33, 1994/1995. 333, 335, 348,
362, 363, 376, 377

R. Focardi and R. Gorrieri. “Automatic Compositional Verification of Some Se-
curity Properties”. In Proceedings of Second International Workshop on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’96), pages
167-186, Passau (Germany), March 1996. Springer-Verlag, LNCS 1055. 377

R. Focardi and R. Gorrieri. “The Compositional Security Checker: A Tool for
the Verification of Information Flow Security Properties”. IEEE Transactions on
Software Engineering, 23(9):550-571, September 1997. 335, 348, 377

R. Focardi, R. Gorrieri, and F. Martinelli. “Classification of Security Properties
(Part II: Network Security)”. Forthcoming. 392

R. Focardi, R. Gorrieri, and F. Martinelli. “Information Flow Analysis in a Discrete
Time Process Algebra”. In Proceedings of 13th IEEE Computer Security Founda-
tions Workshop (CSFW13), (P.Syverson ed.), pages 170-184. IEEE CS Press, July
2000. 391

R. Focardi, R. Gorrieri, and F. Martinelli. Message authentication through non-
interference. In Proc. of 8th International Conference in Algebraic Methodology
and Software Technology (AMAST), 2000. 392

R. Focardi, R. Gorrieri, and F. Martinelli. “Non Interference for the Analysis
of Cryptographic Protocols”. In Proceedings of ICALP’00, pages 744-755. LNCS
1853, July 2000. 331, 392

R. Focardi, R. Gorrieri, and F. Martinelli. Secrecy in security protocols as non-
interference. In Workshop on secure architectures and information flow, volume 32
of ENTCS, 2000. 392

R. Focardi, R. Gorrieri, and V. Panini. “The Security Checker: a Semantics-
based Tool for the Verification of Security Properties”. In Proceedings Eight IEEE
Computer Security Foundation Workshop, (CSFW’95) (Li Gong Ed.), pages 60—
69, Kenmare (Ireland), June 1995. IEEE Press. 377

R. Focardi, R. Gorrieri, and R. Segala. “A New Definition of Multilevel Secu-
rity”. In proceedings of Workshop on Issues in the Theory of Security (WITS ’00),
University of Geneva, July 2000. 391

R. Focardi and F. Martinelli. “A Uniform Approach for the Definition of Security
Properties”. In Proceedings of World Congress on Formal Methods (FM’99), pages
794-813. Springer, LNCS 1708, 1999. 392

C. Fournet and M. Abadi. “Mobile Values, New Names, and Secure Communica-
tion”. In Proceedings of the 28th ACM Symposium on Principles of Programming
Languages (POPL’01), pages 104-115, January 2001. 392

J. A. Goguen and J. Meseguer. “Security Policy and Security Models”. In Proceed-
ings of the 1982 Symposium on Security and Privacy, pages 11-20. IEEE Computer
Society Press, April 1982. 332, 333, 348

M. Hennessy and J. Riely. “Information Flow vs. Resource Access in the Asyn-
chronous Pi-Calculus”. In proceedings of ICALP, pages 415-427, 2000. 392

Y. Hirshfeld. “Bisimulation Trees and the Decidability of Weak Bisimulations”.
Technical report, Tel Aviv University, 1996. 356

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985. 336,
337, 368

J. Hopcroft and J. Ullman. Introduction to Automata Theory, Languages and
Computation., pages 22-24. Addison-Wesley, 1979. 381

41

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Classification of Security Properties 395

D. M. Johnson and F. J. Thayer. “Security and the Composition of Machines”. In
Proceedings of the Computer Security Foundations Workshop, pages 72-89, June
1988. 333, 376

P. Kanellakis and S. A. Smolka. “CCS Expressions, Finite State Processes, and
Three Problems of Equivalence”. Information € Computation 86, pages 43-68,
May 1990. 355, 380, 381

R. Keller. “Formal Verification of Parallel Programs”. Communications of the
ACM, 19 (7):561-572, 1976. 333

G. Lowe. “Casper: A Compiler for the Analysis of Security Protocols”. Journal of
Computer Security, 6:53-84, 1998. 331

G. Lowe and B. Roscoe. “Using CSP to detect Errors in the TMN Protocol”. IEEE
Transactions on Software Engineering, 23(10):659-669, 1997. 331

D. Marchignoli and F. Martinelli. Automatic verification of cryptographic proto-
cols through compositional analysis techniques. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and the Analysis of Sys-
tems (TACAS), 1999. 392

F. Martinelli. “Partial Model Checking and Theorem Proving for Ensuring Security
Properties”. In Proceedings of the 11th Computer Security Foundation Workshop,
(CSFW’98). IEEE press, 1998. 361, 392

D. McCullough. “Noninterference and the Composability of Security Properties”.
In Proceedings, 1988 IEEE Symposium on Security and Privacy, pages 177—-186.
TEEE Computer Society Press, April 1988. 333, 376

J. K. Millen. “Hookup Security for Synchronous Machines”. In Proceedings of
the Third Computer Security Foundation Workshop III. IEEE Computer Society
Press, 1990. 333

R. Milner. Communication and Concurrency. Prentice-Hall, 1989. 333, 335, 337,
339, 340, 343, 344, 361, 363, 364

J. C. Mitchell, M. Mitchell, and U. Stern. “Automated Analysis of Cryptographic
Protocols Using Mure”. In Proceedings of the 1997 IEEE Symposium on Research
in Security and Privacy, pages 141-153. IEEE Computer Society Press, 1997. 331
R. De Nicola and M. Hennessy. “Testing equivalences for processes”. Theoretical
Computer Science, 34:83-133, 1984. 341, 348, 353

L. C. Paulson. “Proving Properties of Security Protocols by Induction”. In 10th
Computer Security Foundations Workshop, pages 70-83. IEEE Computer Society
Press, 1997. 331

G. Plotkin. “A Structural Approach to Operational Semantics”. Technical Report
DAIMI-FN-19, Aarhus University, 1981. 334

A. W. Roscoe. “Model Checking CSP”. In A. W. Roscoe (ed) A Classical Mind.
Prentice Hall, 1994. 368, 375

A. W. Roscoe, J. C. P. Woodcock, and L. Wulf. “Non-interference through Deter-
minism”. In Proceeding of European Symposium on Research in Computer Security
1994 (ESORICS’94), pages 33-53. Springer-Verlag LNCS 875, 1994. 368, 369, 370,
375

P. Y. A. Ryan. “A CSP Formulation of Non-Interference”. In Proceedings of the
1990 Computer Security Foundation Workshop III, Franconia, 1990. IEEE press.
368

P. Y. A. Ryan. “Mathematical Models of Computer Security”. In this volume.
376

S. Schneider. “Verifying authentication protocols in CSP”. IEEE Transactions on
Software Engineering, 24(9), September 1998. 331

396

60.

61.

62.

63.

64.

Riccardo Focardi and Roberto Gorrieri

G. Smith and D. M. Volpano. “Secure Information Flow in a Multi-Threaded
Imperative Language”. In Proc. of POPL, pages 355-364, 1998. 331

L. J. Stockmeyer and A. R. Meyer. “Word problems requiring exponential time”.
In Proceedings of the 5th ACM Symposium on Theory of Computing, pages 1-9,
Austin, Texas, 1973. 355

D. Sutherland. “A Model of Information”. In Proceedings of the 9th National
Computer Security Conference, pages 175-183. National Bureau of Standards and
National Computer Security Center, September 1986. 333, 376

C. R. Tsai, V. D. Gligor, and C. S. Chandersekaran. “On the Identification of
Covert Storage Channels in Secure Systems”. IEEE Transactions on Software
Engineering, pages 569-580, June 1990. 332

J. T. Wittbold and D. M. Johnson. “Information Flow in Nondeterministic Sys-
tems”. In Proceedings of the 1990 IEEE Symposium on Research in Security and
Privacy, pages 144-161. IEEE Computer Society Press, 1990. 333

	Classification of Security Properties
	Introduction
	SPA and Value-Passing
	The Language
	Operational Semantics and Equivalences
	Trace Equivalence
	Observational Equivalence
	Failure/Testing Equivalence

	Value-Passing SPA
	The Access Monitor

	Information Flow Properties
	Properties Based on Trace Equivalence
	Detecting High Level Deadlocks through Failure/Testing Equivalences
	Properties Based on Observational Equivalence
	Building Channels by Exploiting Deadlocks
	Comparison with Related Work
	Lazy Security
	Failure Non Deducibility on Compositions
	Comparison

	Other Security Properties

	The Compositional Security Checker
	Input-Output and Architecture
	Checking the Information Flow Properties
	A Sample Session
	An Example: Checking the Access Monitor
	State Explosion and Compositionality

	Conclusion

