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Abstract. Group signatures, introduced by Chaum and van Heijst~ al- 
low individual members of a group to sign messages on behalf of the 
group. The identity of the signer is kept secret except that a group au- 
thority can identify the signer if needed. This note presents a new group 
signature scheme, which hides the identi W of the signer unconditionally 
and (unlike previous similar suggestions) allows new members to join the 
group. Simplifying this scheme a somewhat more efficient scheme giving 
computational anonymity is obtained. The group authority identifies the 
signer using a general method. This method can also be used to simplify 
three of the schemes suggested by Chaum and van Heijst. Finally~ the 
schemes suggested here can be used to solve an open problem posed by 
Chaum and van Heijst. 

1 Introduction 

Group signatures as introduced in [CvHgl] allow members of a group to sign 
messages on behalf of the group in such a way that 

- the recipient of the signature can verify that it is a valid signature of that 
group, but can not discover which member of the group created it; 

- in case of dispute later on either the group members together or a trusted 
authority can identify the signer. 

Such a signature scheme can for example be used in invitations to submit tenders. 
All companies submitting a tender then form a group and each company signs 
its tender anonymously using the group signature. Later when the preferred 
tender has been selected the signer can be identified, whereas the signers of all 
other tenders will remain anonymous. A tender signed this way is binding as 
the identity of the signer can be computed without his cooperation (e.g, if the 
signer regrets his tender). 

I.I Related Work 

Group signatures should not be confused with the related notion of group ori- 
ented signatures where certain subsets of a group of people are allowed to sign 
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on behalf of the group. Such schemes do not provide a method for identifying 
the signers (see [D93] for a survey of such schemes). Another related concept is 
that of multi-signatures which require a digital signature by many persons (see 
[088] and [0093]). 

To the best of our knowledge group signatures have previously only been 
described in [CvHgl] (and again in [H92]), which presents four such schemes. 
One of these protects the anonymity of the signer unconditionally whereas the 
anonymity in the remaining three schemes depends on the difficulty of either 
factoring or computing discrete logarithms. The schemes also vary with respect 
to 

- Identification of the signer by the authority: 
The group authority should be able to identify the signer based on the signa- 
ture, the public key and some auxiliary, secret information. This is satisfied 
for the scheme giving unconditional anonymity, but not for the schemes 
giving computational anonymity. These schemes require that the authority 
contacts each group member until the signer is found. 

- New group members: 
It should be possible to change the group dynamically in the sense that 
adding a new member to the group should only require that the public key 
and the auxiliary information of the authority be changed. This require- 
ment is only satisfied for two of the schemes (both giving computational 
anonymity). 

Thus, none of the four schemes perform optimally with respect to both of these 
properties. 

[CvH91] also states the following as an open problem: is it possible to con- 
struct an efficient scheme in which certain subsets of the group members (e.g., 
the majority) can identify the signer? 

1.2 Resul ts  

This paper presents two group signature schemes: one gives unconditional anony- 
mity, whereas the other requires an assumption related to the discrete logarithm 
assumption. Both schemes allow the group to be changed dynamically, and the 
group authority can identify the signer given some auxiliary information about 
each group member. This actually uses a general principle, which also applies to 
some of the schemes in [CvHgl]. 

Furthermore, the auxiliary information used to identify the signer in the two 
schemes presented in this paper can very easily he shared verifiably among the 
group members such that for some k _> 1, any set of k group members can 
identify the signer (solving the above mentioned open problem). 

1 . 3  Conten t s  

The next section presents the method for identifying the signer. Section 3 then 
sketches a protocol due to Berry Schoenmakers (see [$93]) for proving knowl- 
edge of at least one out of many discrete logarithms. This idea underlies both 
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group signature schemes presented in this paper. Section 4 describes the scheme 
giving unconditional privacy, and Section 5 the scheme giving computational 
anonymity. Section 6 sketches a solution to the open problem mentioned above. 

2 I d e n t i f y i n g  t h e  S i g n e r  

This section describes a general way of identifying the signer of group signatures. 
Let the group members be P1, P2, ..., Pn for some n E IN, and let P~ have a secret 
key, s~. The public key of the group is denoted by K, and a signature on the 
message, m, with respect to this public key is denoted by aK(m). Suppose that a 
given scheme satisfies all requirements to group signatures except that the signer 
cannot be identified. In order to add this, the following property is needed: 

Given Sl, . . . , sn  and (rn, ax(m))  it is possible to determine which of the 
secret keys was used to construct the signature aK (m). 

Then a group signature scheme can be constructed as follows. The group selects 
two public keys and each member gets two secret keys in the given scheme. Let 
the secret key of P~ be (s~, t~) and the public key of the group be (K1, K2). Using 
s~ and t~, P~ makes signatures with respect to K1 and Ks, respectively. Thus 
each member signs a message by signing it twice. 

A pair (al,a2) is a valid signature on zn with respect to (K1,K2) if 

al ---- a/Q (m) and a2 ----- a/~2 (m). 

The authority is given (Q,..., in) as auxiliary information (and the identity of 
the member having t~ as secret key). By the above assumption this information 
enables the authority to identify the signer from a2, but of course not to sign 
(unless it can forge signatures with respect to/(i). 

This way of identifying signer will be called double-signing. Using double- 
signing the signer in three of the schemes in [CvH91] can be identified much 
easier than using the interactive protocols proposed there (at the cost of twice 
as long signatures). 

3 K n o w l e d g e  o f  O n e  o u t  o f  M a n y  W i t n e s s e s  

The group signatures in this paper are based on a protocol for proving knowledge 
of one out of many witnesses presented in [$93]. 

Let Gq denote a group of prime order q and let g be a generator of Gq. 
The common input to the prover and verifier is (g, h i , . . . ,  h~) for some n E IN, 
where each h~ E Gq. Let h -- g=~. Given one of these z~'s as secret input, the 
prover shows that he knows zo such that for some i E {1, 2 , . . . ,  n}: h~ -- gw. 
Schoenmakers protocol (based on [$91]) for doing this is sketched below for the 
c a s e  ~ -.~ ~ 1 .  
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1. P chooses s~,dj E 7]*q at random for i = 1 , 2 , . . . , n  and j = 2 ,3 , . . . , n .  

He then computes al = 9,1, ai = 9"~h.~ ~ for i = 2 , 3 , . . . , n  and sends 
(a~, a2,...,  a.) to V. 

2. V chooses a challenge c E 7/* at random and sends it to P. 
3. P first computes dl = c - ~ d~ and then 

= ~ s l + z l d l  f o r i = l ,  
r i  t s~ ~ for 2 _< i _< n 

and sends (dl, . . . ,  t in,r1, . . . ,  rn) to the verifier. 
4. V verifies that 

and that 

t= l  

gr, = a ih~ for i = 1, 2 , . . . ,  n. 

T h e o r e m  1 [S9S]. The above protocol is a witness indistinguishable (see [FS90]) 
proof of knowledge of w satisfying 

hi = 9 w for some i e {1, 2 , . . . ,  n}. 

The proof is omitted here, but the intuition is that each challenge c defines 
a set of q,-1 possible choices for d l , . . . , d~  and the prover cannot guess which. 
Witness indistinguishability follows from the fact that the verifier cannot tell 
which values of d~ the prover has selected before getting c. 

Remark. An extension of this protocol allows the prover to show that he knows 
at least k out of n secret keys (see [CDS93]). 

4 U n c o n d i t i o n a l  A n o n y m i t y  

This section presents a group signature scheme giving unconditional anonymity. 
We only consider the case with two persons (P1 and P2) in the group. The 
general case is obtained by a straightforward extension. 

First a scheme allowing only one message to be signed is presented, and then 
it is shown how to extend it to l E ~l signatures. 

4.1 S i g n i n g  One Message 

Let two generators gl and g2 of Gq be given (the actual selection of these gener- 
ators is not important as long as no group member can express one as the power 
of the other). The secret key of Pi is (zil,xi2) E 7/2 for i -- 1,2 and the public 
key is h~ = g~l g~2. Assuming hi ~ h2 two such persons can from a group with 
public key 

(hi, h2). 
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Fig. 1. Proving that z is constructed correctly with respect to hz 

Note, that the relation between P~ and h~ is revealed by the group's public key. 
If new members join the group their public keys are simply added. 

P~'s signature on a message m = (ml, m2) is z . . . .  1 "'2 plus a proof that 
this is correct with respect to either hi or h2. Next this proof will be explained 
and then its application to the group signature is described. The proof uses the 
idea of [$93] and is shown in Figure 1. 

Using the arguments in [$93] it can be shown that the protocol in Figure 1 
constitutes a proof that the prover knows a pair (s, t) such that 

z = m z m  2 "  ' A (h l=g~g~ V ha=gzgs)." ' 

I f  ]ogm~ rns ~ logot g2, there are two possible witnesses to this claim: a pair (s, t) 
such that hz = g~g~ and a pair satisfying h= =/~g~. 

L e m m a  2. If logm~ ms ~ log91 gs, the proof is ~ritness indistinguishable (see 
[FSgO]). 

Proof sketch. Given z there is exactly one pair (al,  as) such that 

~ 1  ~ 2  hl = g~=z g~= and z = " "1  " ' 2  

and exactly one pair (/~i,/~2) such that 

. . ,~_#2 and h2 9~119~2 �9 
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We have to show that a prover, knowing (al, a2) would construct messages with 
the same distribution as a prover knowing (/~I,/~) (the protocol for a prover 
knowing the witness to h2 is symmetric). 

First, notice that the distribution of (al, a2, 51, b2) is independent of whether 
the prover knows (a I, a2) or (/31, f12 ). Thus these numbers contain no information 
about the witness and no information about dl and d2. 

Next, given (al, ag., bl, b2) there is exactly one possible tuple (el, v2,Wl, ws) 
such that 

al = g~lg~2, bl ---- m~ ~m~ 2, as = g~lg~2 and bs ffi m~ #lm~ 2. 

Furthermore, the numbers (rl, rs ,ul ,  u2) are uniquely determined by: 

r l=vl- l -dlC~l ,  rs---vs-l-dla2, Ul- - - t# l+ds~l  and i~2----l#2"t-ds/~2. 

Thus the messages sent by the prover reveal no information about which of the 
two witnesses he knows, n 

Given three hash-functions, 7"/, 7~i and ~s, P~ now signs a message m as follows: s 

I. Compute from m a pair (ml,ms) E G~q as mj = 7-[j(m) for j -- I, 2. 
2. P~ computes z and executes the proof, computing c as 7-/(al, bl, a2, b2, ml, m2) 

(thus 7-I must be "pseudo-random" as required by Fiat and Shamir in [FS87]). 
3. The signature on m is (z, dl, d2, rx, r~, ul, us). It is verified by computing 

(al, bl, as, bg) and then verifying that c is the correct hash value and that 
c f d l  +d~. 

Using the notation from the proof of Lemma 2 ( a l , a s )  -- (xl l ,xls)  and with 
very high probability (fll,fls) ~ (x21,xss) if P1 is the signer. Thus, a person 
knowing the secret keys of/>1 and/>2 can tell whether/>1 or/>2 is the signer. 
Therefore, double-signing (see Section 2) can be used to turn this scheme into a 
group signature in which the authority can easily determine the signer. 

P ropos i t i on  3. The above group signature scheme satisfies the following three 
properties 

I. Before a member signs a message he is unconditionally protected against 
framing, s but afterwards the other group members together can frame him 
(given sufficient computing power). 

~. If  P~ signs two different messages, then an unlimited powerful receiver can 
easily tell that both signatures correspond to h~. 

3. If  both PI and P9 sign a single message, then an unlimited powerful receiver 
can see that the two signatures were made by different members, but he can- 
not tell which member made which signature (in the case of n group members 
it can be shown that all n! permutations are equally likely). 

2 By choosing two random, but fixed strings px and p2, 7/# can for example be imple- 
mented as 7-/(pj,m) for j ~- 1,2. Thus only one hash function is really needed. 

3 A member is said to be framed if other members and non members together make a 
signature for which he will later be held responsible. 
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Proof sketch. Very briefly, all three claims follow from the fact that before a 
person has signed a message, all q possible secret keys are equally likely, whereas 
a signature together with the public key uniquely determines the secret key. Q 

Thus in the application to submission of tenders even an all powerful entity 
cannot decide (from the signatures) which candidate submits which tender. 

Remark. A member able to compute discrete logarithms can make a group sig- 
nature for which no other member will be held responsible. 

4.2 Signing Many Messages 

There are many ways to extend the above scheme to allow each member to 
sign / E IN messages. The following sketches one possibility for groups of two 
persons. Let l + 1 generators gl, . . . .  g~+l of Gq be given. The secret key of Pi is 

7fl+1 for i = 1,2. The public key of the group is ( z . , . . . ,  z~,~+l) e - q  

(gl, . . . , gl+l, hl, h2) 

where h~ g~,l. .=,.t+l for i = 1, 2 (assume hi # h2). 
= " * Y/+I 

Pi's signature on a message m -- (ml,. ,mr+l) is z = m~" ~ffi~,l+1 plus 
�9 ' " "" "'/+1 

a proof that this is correct with respect to either hl or h2. A witness indistin- 
guishable proof of this can be constructed by modifying the protocol in Figure 1. 
The digital signature is then obtained as before. 

Each members public key gives together with t signatures t + 1 equations for 
determining that members secret key. The matrix corresponding to these equa- 
tions is the same for all members of the group. If it has full rank the underlying 
proof system is witness indistinguishable and the signatures reveal no informa- 
tion about who signed which message. Assuming that all messages are chosen at 
random (this is reasonable if the hash functions used are good), the probability 
that this matrix has rank t + 1 is: 

t qt 
j = l  q '~  "~ 1 ql+l" 

Thus in this scenario the scheme gives unconditional anonymity. 

Remark. An unlimited powerful attacker can obtain messages for which the ma- 
trix mentioned above does not have full rank, and in that case the attacker 
might be able to rule out possible combinations of signers. Note, however, that 
this attack requires both the computation of discrete logarithms and the ability 
to control the hash function. 

In the proposed application to submit tenders, it is not possible to perform 
such a chosen message attack as the signer selects the message. 
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Fig. 2. Proving (,) 

5 Computational Anonymity 

Again the scheme will be described for groups consisting of two persons, P1 
and />2. The public key of the group is (g, hi, h21 and the secret key of Pc is 
xi = log 9 hi for i = 1, 2. When signing a message ~n E Gq, P~ computes zi = m ~ ,  
chooses z3-~ E Gq at random and proves that he knows w such that 

( h l = g ~  A zl----mX~ V ( h 2 = g ~  V z 2 - - m ~ l  ('1 

The common input is (g, hi, h2, m, zl, z~) and the secret input of the prover is 
zl  or z2 (in Figure 2 the prover knows zl  - -  the case of z2 is symmetric). By 
a straightforward modification of [$93], it can be shown that the protocol is a 
proof of knowledge of a witness to ('1. 

This protocol can be turned into a signature scheme as in Section 4 (and 
[FS8711. Next it will be argued that the receiver of such signatures cannot tell 
whether the signature was made using zl  or z2. The protocol is not witness 
indistinguishable in the sense of [FSg0I, where it is required that even a distin- 
guisher who knows the possible witnesses cannot tell which witness the prover 
knows. That clearly does not hold for this protocol. Therefore the following con- 
tains a less formal argument for the anonymity of the group members. First, 
it is shown (based on a discrete logarithm assumption stated below) that if no 
group member has previously made any signatures it is infeasible to tell who 
made a given signature. Then it is argued that knowledge of other signatures 



179 

plus the identity of the corresponding signer does not help the receiver deciding 
which member made a given signature. The security of the scheme depends on 
the following two assumptions. 

A s s u m p t i o n  4. Let D be a probabilistic polynomial t ime machine which takes 
(g, h, n ,  z) as input. Let Dr= denote the probability that  D outputs 1, when n is 
chosen uniformly at random and log 9 h -- logm z. Let Pr# denote the probability 
tha t  D outputs 1 when n and z are chosen uniformly at  random. Then for all 
D: ]Pr= - Pr~] is negligible as a function of the order of the group (for all but  
a negligible fraction of the pairs (g, h)). 

For some of the arguments a stronger version of Assumption 4 is needed. Con- 
sider an oracle algorithm, A, working as follow on input (p, q,g, hl, h2): 

1. Repeat the following a polynomial number of times: 
(a) Choose a message, n at  random and select j E {1, 2}. 
(b) Get m ~j from the oracle. 

2. Get a pair (n0, z0), where n 0  is chosen at  random and zo is either n ~  ~ or 
~ , ~ 2  �9 

3. Output  j .  

A s s u m p t i o n  5. For every polynomially bounded A as above, the probability 
that  A outputs j such that  zo - n ~  ~ is '~olynomially close" to ~. 

Now consider three possible provers: 

P0: The input satisfies zl = n =1 and z2 = n=2; 
Po just chooses dl at random. 

PI: The input satisfies zl -- n ~ and z2 is chosen uniformly at random; 
P2: zl is chosen uniformly at random and z2 -- m =2. 

L e m m a  6. Under Assumption J the following holds. No polynomially bounded 
verifier can distinguish between Po and P2. Similarly, Po and P1 cannot be dis- 
tinguished. 

Proof sketch. Let a verifier 1 ? be given. 
Given g, hi ,  n ,  zl. We want to decide whether zl is chosen at random or zl = 
n z l  . 

1. Choose x2 at random and compute h2 = 9 ~2 and z2 -- n z2. 
2. Execute the protocol (P2, P'). 
3. If l ~ outputs P0 then output  O. Otherwise output  1. 

It is easy to see that  V's view in case zl = m xl is tha t  generated by Po and if 
Zl is chosen at random it is the same as tha t  generated by P2. [] 

This lemma shows that  given a signature from either P1 or P2 it is not feasible 
to tell which secret was actually used. However, in general the distinguisher may 
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have received many signatures before trying to recognize which secret key was 
used in a given signature. 

Assume that the hash function used in the signature scheme is such that 
making a signature is equivalent to executing the basic proof system with an 
honest verifier (i.e., choosing the challenge using 7/corresponds to choosing the 
challenge at random). 

If a distinguisher can identify the signer of a signature given some previous 
signatures and the identity of the corresponding signers, then the distinguisher 
could also identify the signer after executing the protocol in Figure 2 acting as 
the honest verifier. However, given the identity of the prover, the transcript of the 
honest verifier can be generated with the correct distribution by the distinguisher 
itself. Thus the only help, which the distinguisher obtains from these previous 
signatures is m~ # for the various messages ml, m2,.., and j -- 1 or j = 2. 
Assumption 5 says that this information is of no help. 

6 S h a r e d  I d e n t i f i c a t i o n  o f  t h e  S i g n e r  

When using double-signing each member has two secret keys of which one (called 
t~ in Section 2) is sent to the authority. If this key is shared among the n group 
members in a k out of n threshold scheme any k members can identify the signer. 

For the two schemes presented here the distribution as well as the identifica- 
tion can be done quite efficiently. Due to space limitations only the main idea will 
be sketched here for the computationally secure scheme (the same techniques can 
be used for the scheme in Section 4 using the non-interactive, verifiable secret 
sharing scheme from [P92]). 

First, each P~ shares his secret key t~ verifiably among all n group members. 
This can be done quite efficiently using the fact that  gt~ is part of the group's 
public key. Each member Pj gets a share t~j of this key, for which gt~# is publicly 
known (see [P91]). 

Later, when k members want to decide whether a given signature z on a 
message m was made by/~, each computes m t~#. Each of these partial results 
can then easily be combined into m t~. Cheating parties can be discovered by 
requiring a proof that this result is correct (e.g., using the efficient protocol in 
[Cha91]). They conclude that P~ was indeed the signer if and only if this equals 
Z. 

7 C o n c l u s i o n  

The first group signature scheme presented here protects the individual group 
member unconditionally. The second scheme is more efficient but the analysis is 
harder. Both schemes allow new group members to join the group dynamically, 
and they are very well suited to distributing the authority's information among 
the group members. This solves a problem posed by Chaum and van Heijst. 

Furthermore, both schemes use a general method for identification of the 
signer, which can also be used in other schemes. 
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