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including hotspots on Gm04 and Gm19. The mixed model 
containing these loci explained 83.4 % of phenotypic vari-
ation. Candidate genes with Arabidopsis orthologs condi-
tioning SW were also proposed. The prediction accuracies 
of GS and MAS by cross-validation were 0.75–0.87 and 
0.62–0.75, respectively, depending on the number of SNPs 
used and the size of training population. GS also outper-
formed MAS when the validation was performed using 
unrelated panels across a wide range of maturities, with an 
average prediction accuracy of 0.74 versus 0.53. This study 
convincingly demonstrated that soybean SW is controlled 
by numerous minor-effect loci. It greatly enhances our 
understanding of the genetic basis of SW in soybean and 
facilitates the identification of genes controlling the trait. It 
also suggests that GS holds promise for accelerating soy-
bean breeding progress. The results are helpful for genetic 
improvement and genomic prediction of yield in soybean.

Introduction

Soybean (Glycine max), rich in both protein and oil, is one 
of the most economically important crops. It accounted 
for approximately 68  % of world protein meal consump-
tion and 57 % of world oilseed production during the past 
decades (USDA-FAS, http://www.fas.usda.gov/). As a yield 
component, seed weight (SW) is a complex and agronomi-
cally important trait in soybean. It is considerably attrib-
uted to seed size, which is an important character of soy-
bean cultivars and affects the quality of many soy products 
for human consumption, such as soy sprouts, soy nuts, 
edamame, soy sauce, natto and miso (Clarke and Wiseman 
2000; Friedman and Brandon 2001). Therefore, dissecting 
the genetic basis of SW is helpful to improve soybean yield 
potential and soy food as well.
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Seeds of flowering plants consist of three major com-
partments: embryo, endosperm and seed coat. Embryo and 
endosperm are two zygotic products of double fertilization 
with different genotypes. The embryo, that gives rise to the 
daughter plant, is diploid with a copy of genome from each 
parent. Whereas the endosperm, that provides nutrition for 
embryogenesis and seed germination, is triploid with one 
and two genome equivalents from paternal and maternal 
parent, respectively (Lopes and Larkins 1993). By contrast, 
the seed coat that encloses the embryo and endosperm is 
strictly of maternal origin and differentiated from mater-
nal-derived integuments (Haughn and Chaudhury 2005). It 
can be further divided into an inner and outer coat known 
as the tegmen and testa, respectively. The final seed size 
and weight is determined by the coordination among the 
embryo, endosperm and seed coat. In dicots like soybean, 
however, the endosperm is absorbed by the cotyledon, a 
part of embryo.

Research in Arabidopsis suggested that the cell divi-
sion and elongation of embryo, endosperm and integument, 
which are predominantly regulated by phytohormones, 
determine the final size of seeds (Jiang et  al. 2013; Ohto 
et al. 2005; Riefler et al. 2006; Schruff et al. 2006; Singh 
et  al. 2002). The Arabidopsis AUXIN RESPONSE FAC-
TOR 2 (ARF2), one of the ARF transcription factor fam-
ily members that bind to auxin-responsive elements in the 
promoters of auxin-regulated genes, plays a central role in 
various auxin-mediated developmental processes including 
seed growing (Okushima et al. 2005). The loss-of-function 
mutant arf2 resulted in an increased seed size and weight 
due to extra cell division in the integuments (Schruff et al. 
2006). The Arabidopsis histidine kinase 2 (AHK2), AHK3 
and AHK4 (also known as cytokinin receptors) fulfill 
important roles in cytokinin-dependent endospermal and 
maternal control of embryo size. Triple mutant ahk2,3,4 
showed increased cell number and cell size of the embryo, 
resulting in enlarged seed size (Riefler et  al. 2006). The 
transcriptional factor Arabidopsis APETALA2 (AP2), an 
ethylene responsive element binding protein and func-
tioning in the floral and seed development (Jofuku et  al. 
1994), has broad effects on the development of embryo, 
endosperm and seed coat. Large seed size was observed 
in loss-of-function mutant ap2, which exhibited elongated 
integument cells, enlarged embryo and endosperm (Ohto 
et al. 2005).

In soybean, research has shown that seed size and 
weight are controlled by both environmental and genetic 
factors. The temperature and water availability during seed 
filling and the duration of seed filling substantially affect 
seed size and weight (Dornbos Jr and Mullen 1991; Egli 
et al. 1978). Genetic studies have identified many quantita-
tive trait loci (QTLs) associated with seed weight or related 
traits in soybean (SoyBase, http://www.soybase.org/). 

However, because of the limited recombination or insuffi-
cient maker density, the previously identified chromosomal 
regions associated with SW were usually not fine enough to 
access candidate gene(s) (Niu et al. 2013; Salvi and Tuber-
osa 2005). This also hinders breeding efforts to improve 
seed weight and size in soybean through marker-assisted 
selection (MAS). Seed size in soybean is also believed to 
be relevant to domestication (Liu et  al. 2007). The culti-
vated soybeans have larger seed size and weight than their 
wild relatives (G. soja). A recent study indicated that the 
GmCYP78A10 gene, strongly associated with seed size in 
soybean, underwent artificial selection during early stage 
of soybean domestication (Wang et al. 2014). However, the 
molecular mechanism underlying SW and seed size in soy-
bean remains unclear although significant advance has been 
achieved.

With the decreased genotyping cost and improved sta-
tistical methods, genome-wide association study (GWAS) 
and genomic selection (GS) present promising prospects 
for genetic improvement of complex traits in crop spe-
cies. GWAS with a population of unrelated lines and high-
density single nucleotide polymorphism (SNP) markers 
is capable of identifying causal genes for a broad range 
of complex traits in different crops (Huang et al. 2010; Li 
et  al. 2013; Morris et  al. 2013). In soybean, it has been 
used to disclose the genetic architecture of agronomic 
traits (Zhang et al. 2015), seed composition (Hwang et al. 
2014) and disease resistance (Wen et al. 2014). GS refers to 
marker-based selection by capturing the total genetic vari-
ance with genome-wide markers without identifying a sub-
set of trait-associated markers (Meuwissen et al. 2001). In 
general, GS is expected to be more effective than MAS that 
based on a few loci for quantitatively inherited traits (Ber-
nardo and Yu 2007). A large number of GS studies have 
been reported in crop species such as maize (Albrecht et al. 
2011; Bernardo 1996; Piepho 2009; Technow et al. 2013) 
and wheat (Heffner et  al. 2011; Poland et  al. 2012; Rut-
koski et al. 2011) for various agronomic traits and disease 
resistance. However, its application to soybean is rarely 
addressed (Bao et al. 2014; Jarquin et al. 2014), and valida-
tion with unrelated population has not been reported.

Therefore, the objectives of this study were to (1) better 
understand the genetic architecture underlying SW in soy-
bean, and (2) explore the potential of marker-based predic-
tion as a new approach in soybean breeding. Twenty-two 
loci associated with SW and putative candidate genes with 
Arabidopsis orthologs involved in seed mass determination 
were identified via GWAS. GS exhibited higher prediction 
accuracies than MAS in all the tests of both cross-valida-
tion and validation with unrelated panels obtained from 
GRIN (http://www.ars-grin.gov/). This study enhances 
our understanding of the genetic architecture of SW and 
expedites the identification of genes conditioning SW in 

http://www.soybase.org/
http://www.ars-grin.gov/
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soybean. It demonstrates that GS can increase breeding 
efficiency and is also useful for genomic prediction of yield 
in soybean.

Materials and methods

Plant materials and field trials

Three hundred and nine plant introductions (PIs), obtained 
from the USDA Soybean Germplasm Collection, were 
planted in single-row plots in a randomized complete block 
design with three replications at four environments: Aurora 
(44°18′N and 96°40′W, 2011), Brookings (44°27′N and 
96°47′W, 2010 and 2012) and Watertown (45°06′N and 
97°05′W, 2012) in South Dakota, USA. The plots were 
3.05 m in length and 0.76 m in width (or row spacing), and 
86 seeds were sown per plot/row. According to the GRIN 
(http://www.ars-grin.gov/), 92  % of the PIs are maturity 
group (MG) 0 and 8 % MG 00, and 91 % originated from 
Northern China. The detailed information about the 309 PIs 
was given in our previous publication (Zhang et al. 2015).

Phenotypic evaluation and statistical analysis

All plots were bulk-harvested individually after full matu-
rity (R8 stage), and the seeds were dried in an air dryer. A 
sample of 100 cleaned seeds from each plot was randomly 
taken and weighed, and the data were presented as grams 
per 100-seed. The model for the phenotypic trait was yijk = 
µ + gi + lj + (gl)ij + bk(j) + eijk, where µ is the overall mean, 
gi is the genetic effect of the ith genotype, lj is the effect of 
the jth environment, (gl)ij is the interaction effect between 
the ith genotype and the jth environment, bk(j) is the block 
effect within the jth environment, and eijk is a random error 
following N(0, σe

2). Broad-sense heritability was calculated 
on an entry-mean basis as H2 = σg

2/[σg
2 + σgl

2/k + σe
2/(rk)], 

where σg
2 is the genotypic variance, σgl

2 is the genotype by 
environment interaction variance, k is the number of envi-
ronments, r is the number of replications. Estimation of 
variance components was performed by the varcomp pro-
cedure in SAS version 9.3 (SAS Institute, Inc., Cary, NC), 
with all effects considered to be random. The likelihood-
ratio-based R2 was calculated to estimate the proportion of 
total variation explained by the mixed linear model (MLM) 
containing all identified loci for trait as described by Sun 
et al. (2010).

Genotyping and quality control

The Illumina Infinium SoySNP50K BeadChip was used to 
genotype the population as described by Song et al. (2013), 
and 42,509 SNPs were identified with a call success rate 

of 85  % or greater. Of them, 61 SNPs present in unan-
chored sequence scaffolds were excluded from further 
analysis. The dataset had a missing rate of 0.6 %, and the 
missing data were imputed using BEAGLE version 3.3.1 
with default parameter settings (Browning and Browning 
2007, 2009). SNPs with a MAF  <  5  % in the population 
were excluded from further analysis as well. Finally, a total 
of 31,045 SNPs were used for GWAS. The genotypic data 
of these SNPs for the four GRIN panels were downloaded 
from the SoyBase (http://www.soybase.org/snps/index.
php), and the imputation analysis was performed same as 
described above for the main association panel.

Linkage disequilibrium estimation

Pairwise LD between markers was calculated as squared 
correlation coefficient (r2) of alleles using R package syn-
breed (Wimmer et al. 2012). Due to the substantial differ-
ence in recombination rate between euchromatic and het-
erochromatic regions, r2 was calculated separately for the 
two chromosomal regions. The physical length of euchro-
matic and heterochromatic regions for each chromosome 
was defined as in  the Gmax1.01 reference genome (Soy-
Base, www.soybase.org). Only r2 for SNPs with pairwise 
distance less than 10 Mb in either euchromatic or hetero-
chromatic regions was used to draw the average LD decay 
figure by R script using the equation described by Reming-
ton et al. (2001). The LD decay rate of the population was 
measured as the chromosomal distance where the average 
r2 dropped to half its maximum value (Huang et al. 2010).

Genome‑wide association analysis

To minimize the effects of environmental variation, best 
linear unbiased predictions (BLUPs) of genetic effect for 
each line were calculated using the R package lme4 (Bates 
et al. 2012) in the same model as described for phenotypic 
trait. The BLUPs were then used to fit various models for 
association analysis. The one-way ANOVA model for naive 
test, without correction of population structure and familial 
relatedness, was implemented in R (Team 2012). General 
linear model (GLM) with population structure and MLM 
accounting for both population structure and kinship were 
implemented in the Genomic Association and Prediction 
Integrated Tool (GAPIT) R package (Lipka et  al. 2012; 
Zhang et al. 2010).

For the naive test, the equation was

For the GLM analysis, the equation was

For the MLM analysis, the equation was

y = µ+ Xα + e.

y = µ+ Xα + Pβ + e.

http://www.ars-grin.gov/
http://www.soybase.org/snps/index.php
http://www.soybase.org/snps/index.php
http://www.soybase.org
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where y is a N × 1 vector of BLUPs of genetic effect (N 
is the number of line), μ is the overall mean, X is the inci-
dence matrix relating the individuals to the fixed marker 
effects α, P is the incidence matrix relating the individuals 
to the fixed  principal component (PC) effects β, and Z is 
the incidence matrix relating the individuals to the random 
group effects u obtained from the compression algorithm. 
The random group effects u follows a multivariate normal 
distribution with mean 0 and variance–covariance matrix 
2KVg, where K is the kinship matrix, and Vg is the genetic 
variance component. The random error term  e  follows a 
multivariate normal distribution with mean 0 and vari-
ance–covariance matrix IVe, where I is the identity matrix 
and Ve is the error variance component. GLM, compressed 
MLM and regular MLM could be achieved by set different 
level of compression as described by the manual of GAPIT. 
The first four PCs were involved in models as covariates 
according to Bayesian Information Criterion (BIC) test 
of the model fitness. The significance threshold for SNP-
trait associations was determined by false discovery rate (q 
value) <0.05 or P < 7.9 × 10−5.

Genomic prediction and marker‑assisted selection

Both cross-validation and validation with unrelated panels 
were conducted for GS and MAS. A modified cross-valida-
tion was performed as described by Wurschum et al. (2013) 
to estimate the prediction accuracy. Briefly, for a fivefold 
cross-validation, 62 PIs (20  %) of the association panel 
were randomly assigned to a validation set for each predic-
tion, and all of the remaining PIs (247, 80 % of the associa-
tion panel) were used as the training set. For the training 
population size-effect analysis, a subgroup (97, 147 or 197) 
of the remains was randomly selected as the training set. 
The loci effects were then estimated based on genotypic 
and phenotypic data of the training set. Finally, the esti-
mates of loci effect were used to predict the genomic esti-
mated breeding values (GEBVs) of the validation set based 
on the genotypic data. The whole process was repeated for 
1000 times. Ridge regression best linear unbiased predic-
tion (RR- BLUP) was used to predict GEBVs in GS, as 
it has been demonstrated an effective prediction method 
with high accuracy across a wide range of traits and crops 
(Heslot et al. 2012; Jarquin et al. 2014; Lipka et al. 2014). 
While in MAS, multiple linear regression (MLR) was 
employed. The prediction accuracy was calculated by 
dividing the average Pearson’s correlation (r) between the 
BLUPs of genetic effects and the GEBVs with the square 
root of the heritability (Resende et al. 2012). To investigate 
the prediction accuracies with different number of markers, 
three sets of markers (2000, 1000 and 500 SNPs in total, 

y = µ+ Xα + Pβ + Zu+ e,
respectively) were formed by randomly selecting 100, 50 
or 25 SNPs from each of the 20 chromosomes. Each set of 
markers was then used in the cross-validation as described 
above.

The RR-BLUP approach was conducted using the rrB-
LUP package (Endelman 2011) implemented in R (Team 
2012). Briefly, the following model was used for estimation 
of the marker effect in the training set:

where y is a t × 1 vector of BLUPs of genetic effect (t is the 
size of the training set), β is a m × 1 vector of marker effect 
and assumed random effect with Var[β] = Kσβ

2, where m is 
the number of marker and K is the identity matrix (Endel-
man 2011), X is the marker genotype matrix, and e is the 
residual error. The GEBVs of the validation set were pre-
dicted as:

For MAS by MLR method, different numbers of loci 
were selected from the 22 loci identified via GWAS 
through stepwise algorithm based upon Akaike informa-
tion criterion (AIC), which was implemented using R pack-
age MASS (Venables and Ripley 2002). While a control 
test was conducted typically for MAS with 15 loci, which 
gives the highest prediction accuracy in cross-validations. 
Briefly, 15 markers were randomly selected from the 
31,045 SNPs without replacement. The random sampling 
followed by cross-validations was repeated 1000 times. 
The marker effects of the training set were estimated using 
the fixed effects model:

where y is the vector of BLUPs of genetic effect (same as 
used for GWAS), μ is the mean, βi is the fixed effect of 
the selected marker i, Xi is the marker genotype matrix of 
selected marker i, and e is the residual error. The GEBV 
of each individual j in validation set based on the selected 
markers was calculated as:

in which l is the number of selected marker.
Both GS and MAS were validated with four unre-

lated data sets taken from GRIN (http://www.ars-grin.
gov/cgi-bin/npgs/html/desc.pl?51015). They were 
SOYBEAN.EVALUATION.1MN63 (MN63), SOY-
BEAN.EVALUATION.1IL64 (IL64), SOYBEAN.
EVALUATION.3IL83.2 (IL83.2) and SOYBEAN.EVALU-
ATION.MS989 (MS989) (Supplementary file Table S1). 
Lines presented in the association panel were excluded 
from analyses, and thus the final population size was 270, 
724, 192 and 425 for MN63, IL64, IL83.2 and MS989, 
respectively. The whole population of each panel was used 

y = µ+ Xβ + e,

ŷ = µ+ Xβ̂.

y = µ+ X1β1 + · · · + Xiβi + e,

ŷj = µ+ X1β̂1 + · · · + Xlβ̂l,

http://www.ars-grin.gov/cgi-bin/npgs/html/desc.pl%3f51015
http://www.ars-grin.gov/cgi-bin/npgs/html/desc.pl%3f51015
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for validation based on the marker effects estimated from 
the association panel. The prediction accuracies for these 
validations were simply estimated as the Pearson’s correla-
tion (r), as no heritability was available for adjustment.

Results

Statistics of phenotypes

The averaged SW over four environments showed a con-
tinuous distribution in the GWAS panel of 309 soybean 
PIs, with a wide range of variation from 7.3 to 23.6 g per 
100-seed (Supplementary file Fig. S1). The ANOVA indi-
cated that effects of genotypes, environments and their 
interaction were significant (Supplementary file Table S2). 
The correlations of trait performance across environments 
were quite high, averaged r > 0.85 (P < 10−10), indicating 
high repeatability of the trait performance. The estimate 
of broad-sense heritability was 0.97, suggesting that the 
majority of phenotypic variation in soybean SW is attrib-
uted to genetic effects.

Distribution of markers and linkage disequilibrium

A total of 31,045 SNPs with minor allele frequency (MAF) 
≥0.05 was used to GWAS for SW after quality control, 
resulting in a genome-wide marker density of 29  kb per 
SNP. On the SoySNP50K, however, markers were designed 
to unevenly distribute across chromosomal regions due to 
the substantial difference in recombination ratio between 
euchromatic and heterochromatic regions (Song et  al. 
2013). In the present study, 74.6 % of SNPs were located in 
euchromatic regions, exhibiting a marker density of 20 kb 
per SNP in euchromatic region but 62 kb per SNP in het-
erochromatic region. Accordingly, the linkage disequilib-
rium (LD) decayed (r2 drop to half of its maximum value) 
at 326 kb in euchromatic region, while in heterochromatic 

region LD did not decay until 4285 kb (Supplementary file 
Fig. S2).

Genome‑wide association analysis of seed weight

The MLM, taking both population structure and relative 
kinship into account (Yu et  al. 2006; Zhang et  al. 2010), 
was employed to conduct the association analysis. Principal 
component analysis was performed with the whole set SNPs 
to capture the overall population stratification of the associ-
ation panel. The first four PCs that explained 28.2 % of the 
total genetic variation were involved in the MLM according 
to the BIC test (Supplementary file Table S3). The first three 
PCs were presented in the supplementary file Fig. S3. Com-
pared with the GLM, which involves population structure 
only, and the naive model, which involves neither popula-
tion structure nor individual relationship, the MLM showed 
a greater control of genomic inflation (type I error) (Sup-
plementary file Fig. S4). We also conducted GWAS with 
a compressed MLM. However, similar results were found 
between the regular and the compressed MLM (Supplemen-
tary file Fig. S4). Therefore, all further analysis and results 
presented were referred to GWAS using the regular MLM.

Through GWAS, 48 SNPs significantly associated with 
SW were identified across 12 of 20 soybean chromosomes 
(Fig.  1). The contribution of a single SNP to the pheno-
typic variation was 1.8–3.8  % under MLM circumstance. 
For convenience of further analysis, the significant trait-
associated SNPs located in close proximity were clumped 
at LD r2  >  0.70 and the lead SNP was used to represent 
the locus (Table 1). As a result, 22 loci associated with SW 
were identified. Eight of them included multiple SNPs with 
the distance ranging from 14.7 to 427.6 kb between mark-
ers. The MLM containing all the 22 loci explained 83.4 % 
of phenotypic variation, suggesting that additive effects 
predominantly condition SW in soybean and pyramiding of 
desired alleles can be an effective way to improve soybean 
SW.

Fig. 1   Manhattan plot of GWAS for 100-seed weight (HSW) in soy-
bean. Negative log10-transformed P values of SNPs from a genome-
wide scan for HSW using mixed linear model including both kin-
ship and populations structure are plotted against positions on each 

of the 20 chromosomes. The significant traits-associated SNPs 
(P < 7.9 × 10−5) are distinguished by the threshold line and colored 
in red (color figure online)
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Loci effects and prediction of candidate genes

Three loci associated with seed weight, SW19, SW20 and 
SW21, were identified on Gm19. SW20 was target by 
the SNP Gm19_41144271_A_G (MAF  =  0.05). It was 
located 336  bp upstream of the transcript start site of a 
putative gene, Glyma19g33550. There was an average dif-
ference of 4.1 g per 100-seed between two alleles of this 
locus (Fig.  2a). SW19 and SW21 were located 130.8  kb 
upstream and 1613.3  kb downstream of SW20, respec-
tively. The two SNPs involved in SW19 were in complete 
LD (r2 = 1) and were 33.1 kb apart each other. The puta-
tive gene Glyma19g33421, identified close to the lead SNP 
Gm19_41013395_C_T (MAF =  0.27) (Fig.  2b), encodes 
a protein sharing 77.1  % similarity with the Arabidopsis 

HISTIDINE-CONTAINING PHOSPHOTRANSFER FAC-
TOR 5 (AHP5) (Phytozome, http://www.phytozome.net). 
On average, the individuals carrying the minor frequency 
allele of the lead SNP exhibited 1.9  g higher than those 
with major frequency allele in 100-seed weight (Fig. 2b). 
SW21 was led by the SNP Gm19_42921997_A_G at 
the 42.9 Mb position on Gm19 with a high MAF of 0.43 
(Fig.  2c). A putative gene, Glyma19g35180, encoding an 
AUX/IAA family protein, was found at 6.5 kb away from 
the lead SNP. The 100-seed weight of individuals with 
minor frequency allele at this locus was 1.3 g lower than 
those with major frequency allele (Fig. 2c).

The locus SW11, which was located at the 37.1  Mb 
position on Gm10, represented the strongest association 
in the present study with an allelic effect of 1.29  g per 

Fig. 2   Candidate genes for loci 
associated with seed weight on 
Gm19 and phenotypic differ-
ence between different alleles 
of each locus. a SW20, b SW19 
and c SW21. Top of the left 
panel shows a 0.5-Mb region 
each side of the lead SNP, 
whose position is indicated 
by a vertical blue dashed line. 
Negative log10-transformed P 
values of SNPs from the MLM 
are plotted on the vertical 
axis. Significant threshold is 
indicated as the gray dashed 
line at q = 0.05. The color of 
each SNP indicates its r2 value 
with the lead SNP as shown 
in the color index on the right 
top of the panel. Bottom of 
the left panel shows putative 
genes within 50 kb adjacent 
region each side of the lead 
SNP as indicated by green bars. 
Candidate gene is indicated by 
arrow. The boxplot on the right 
shows the distribution of aver-
age 100-seed weight over four 
environments for each locus 
allele. The number of individual 
for each allele is given in the 
parenthesis. The box shows the 
first, second (median) and third 
quartile. The width of the box is 
proportional to the square root 
of the number of individuals for 
each allele. The whiskers extend 
to the 1.5 times of interquartile 
or the data extreme whichever is 
smaller. The difference of mean 
(Δm), correlation coefficient (r) 
and P value for the correla-
tion is also given (color figure 
online)

http://www.phytozome.net


124	 Theor Appl Genet (2016) 129:117–130

1 3

100-seed. LD analysis revealed that a block about 218 kb 
length was related to this locus (Fig.  3a). Thirteen puta-
tive genes reside in this region. Among them, a MYB61-
like transcription factor, encoded by the putative gene 
Glyma10g28250, was found at 35  kb downstream of the 
lead SNP of SW11 (Gm10_37088544_G_T, MAF = 0.06) 
(Fig. 3a). Another locus, SW22, was located at the 0.48 Mb 
position on Gm20. It was targeted by six SNPs with an 
average MAF larger than 0.35, indicating the high reliabil-
ity of the marker-trait association. These SNPs were in high 
LD (r2 > 0.90) and corresponded to an LD block with about 
65  kb in length on Gm20. There were six putative genes 
located in this region (Fig. 3b).

Genomic prediction and MAS for seed weight

The prediction accuracies of GS and MAS using the loci 
identified via GWAS for SW were then investigated. When 
the training population reaches its maximum size (247), 
the prediction accuracies ranged 0.80–0.85 and 0.64–0.74 
for GS and MAS, respectively, varying with the num-
ber of SNPs used for prediction (Fig.  4a, b). For GS, the 
prediction accuracy using 2000 SNPs was 0.85, similar 
to that with the whole set of SNPs. The prediction accu-
racy remained as high as 0.80 when the number of SNPs 
used for prediction decreased to 500. For MAS, as shown 
in Table 2, all 22 loci identified via GWAS and 5, 10 and 
15 loci selected out of them were used, respectively. The 
highest prediction accuracy was 0.74 with 15 selected loci, 
which was 25  % higher than that with 15 random SNPs 
(Fig. 4b). The prediction accuracy decreased to 0.64 when 
only five selected loci were used. We also investigated the 
effects of training population size on the prediction accu-
racy of GS and MAS when a consistent number of 62 
accessions were randomly assigned as validation set. As 
shown in Fig. 4a, b, the prediction accuracies for both GS 
and MAS decreased along with the reduction of the train-
ing population size, regardless of the number of loci used. 
The allelic segregations of the 15 selected loci in the five 
PIs with the extreme SW are presented in Table 3.  

We further investigated the efficiency of GS with the 
entire set of SNPs and MAS with the 15 selected trait-
associated SNPs, with which the highest prediction accu-
racy was realized in MAS as described above, in predicting 
SW using four unrelated populations obtained from GRIN 
(http://www.ars-grin.gov/). These panels represent a wide 
range of maturities (MG 000-VIII) and a large variation for 
SW (Supplementary file Table S1 and Fig. S5). An approxi-
mately normal distribution was observed for SW in the 
panels except MS989 with a later maturity (Supplementary 
file Fig. S5). The prediction accuracies of GS ranged from 
0.63 for MS989 to 0.83 for 3IL83.2, 21 % averagely higher 

than that of MAS, which ranged from 0.42 for MS989 to 
0.58 for 1MN63 (Fig. 4c).

Discussion

In association study, relative kinship and population struc-
ture are two major confounding factors that may lead to 
spurious results (Yu et  al. 2006). The MLM taking both 
familial relatedness and population structure into account 
has been demonstrated as an effective way to control 
genomic inflation and has been widely used in GWAS 
for various complex traits and plant species (Huang et  al. 
2010; Li et  al. 2013; Morris et  al. 2013). Our previous 
study also showed that a marker-based principal analysis 
is sufficiently flexible to generate trait-specific population 
structure that optimizes the model fitness (Zhang et  al. 
2015). In the present study, the first four PCs as suggested 
by BIC test were used to rule out spurious association due 
to population structure during association analyses (Sup-
plementary file Table S3). We also compared different 
models and found that genomic inflation was attributed 
to both population structure and relative kinship in this 
study (Supplementary file Fig. S4). The MLMs (regular 
MLM and compressed MLM) showed a better control of 
genomic inflation than the naive model and the GLM with 
population structure, while the performances of the regular 
MLM and compressed MLM were similar (Supplementary 
file Fig. S4). It indicates that the feature of a trait should 
be taken into account for considering the optimal model, 
though compressed MLM was more powerful and effective 
in some association studies (Huang et al. 2010; Zhang et al. 
2010).

In soybean, more than 200 QTLs for SW have been 
reported across 20 chromosomes (SoyBase, http://www.
soybase.org/). Additionally, many QTLs associated with 
seed size, a trait highly related to SW, have also been iden-
tified. These QTLs could be used to confirm the loci identi-
fied via GWAS, especially the hot ones. In this study, 22 
loci associated with SW were identified. Each individual 
locus could explain a small proportion (<4  %) of pheno-
typic variance. The result demonstrated that soybean seed 
weight is a typical quantitative trait, genetically condi-
tioned by many minor-effect loci. Of the identified loci, 
15 have been previously reported at least once (Table  1). 
Among these loci, the SW11 locus at 37.1  Mb position 
on Gm10 exhibited the strongest association. In the simi-
lar region, four SW QTLs have been reported previously. 
Another locus SW2 at the 14.2  Mb position on Gm04 
has been reported to be associated with SW and seed size 
related traits, e.g. seed length, height and width, two and 
three times, respectively (Table  1). The SW21 on Gm19 

http://www.ars-grin.gov/
http://www.soybase.org/
http://www.soybase.org/
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Fig. 3   Candidate genome 
ranges for seed weight loci 
SW11 and SW22. Shown are 
genome regions harboring 
SW11 on Gm10 (a) and SW22 
on Gm20 (b). In the top panel, 
the negative log10-transformed 
P values of SNPs from GWAS 
for seed weight are plotted 
against the physical positions of 
the given chromosomal region. 
The bottom panel depicts the 
extent of LD in this region on 
r2. The r2 values are indicated 
with color key. The candi-
date region for the locus was 
indicated by two vertical dashed 
lines in gray. Genes within this 
region are indicated in the mid-
dle panel. Those with transcript 
accumulated during seed filling 
were highlighted in red and 
bold according to the “seed 
development transcript count” 
track on SoyBase (http://soy-
base.org/) (color figure online)

http://soybase.org/
http://soybase.org/
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Fig. 4   Prediction accuracies 
of genomic selection (GS) and 
marker-assisted selection (MAS) 
for the association panel and 
the panels obtained from GRIN. 
a, b The average prediction 
accuracies of 1000 iterations of 
GS and MAS for seed weight, 
respectively. The number of 
SNPs used for prediction was 
indicated in the legend. For GS 
with a subgroup of SNPs, an 
equal number of SNPs were 
randomly selected from each 
chromosome. For MAS, the 
prediction accuracies with 15 
randomly selected SNPs (R15) 
were also plotted as a control. 
c The prediction accuracies of 
GS with the entire set of SNPs 
and MAS with the 15 selected 
trait-associated SNPs for seed 
weight of the four GRIN panels. 
The maturities of individuals 
involved in each panel were 
indicated in parenthesis

Table 2   Lead SNPs of loci selected by stepwise method for MAS based on Akaike information criterion

No. of SNPs Selected SNPs for genetic breeding values prediction

5 Gm04_14213918, Gm14_5352488, Gm18_59490788, Gm19_41013395, Gm20_481573

10 Gm04_14213918, Gm06_13151347, Gm09_40164588, Gm10_37088544, Gm14_5352488, Gm18_59490788, Gm19_41013395, 
Gm19_41144271, Gm19_42921997, Gm20_481573

15 Gm04_14213918, Gm04_47414790, Gm06_13151347, Gm06_15115808, Gm07_15662403, Gm09_40164588, 
Gm10_37088544, Gm14_5352488, Gm14_6324126, Gm18_59490788, Gm18_61540919, Gm19_41013395, Gm19_41144271, 
Gm19_42921997, Gm20_481573

Table 3   Allelic segregation of the 15 selected loci in the five plant introductions (PIs) with extreme seed weight (SW) in the association panela

PI

SWb

(g/100-
seed)

Gm04
_1421
3918

Gm04
_4741
4790

Gm06
_1315
1347

Gm06
_1511
5808

Gm07
_1566
2403

Gm09
_4016
4588

Gm10
_3708
8544

Gm14
_5352
488

Gm14
_6324
126

Gm18
_5949
0788

Gm18
_6154
0919

Gm19
_4101
3395

Gm19
_4114
4271

Gm19
_4292
1997

Gm20
_4815
73

PI639548 7.1 T A C C T A T T A/G A C T A/G A A
PI639551 7.5 T A C C T A T T A A C T A/G G A
PI475821 7.7 T G T C T A T T G A C T G G A
PI639557B 7.7 T A C C T A T T A A C T A/G G A
PI468922 8.7 T A C C T A G T G A C T G G A
PI437565 19.9 T A T T C A T G G G C C G A G
PI603322 20.9 C G T T C A T G/T A/G A C C A/G A G
FC21340 21.8 T A C T C G G G A G T C A A G
PI538408 22.7 T G C T C G G G A G T C A A G
PI507350 23.9 T A C T C G G G A G T C A A G

a  The allele with positive effect on each locus is highlighted in red
b  Shown are the averages over 4 environments and 3 replications for each environment
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was mapped within an overlapped region of six SW QTLs 
and six QTLs for seed size related traits reported previ-
ously, indicating that SW21 might be in one of the hot-
test regions related to SW in soybean (Table 1). The high 
repeatability of these loci across various environments and 
genetic backgrounds implies a great potential of marker-
based breeding for SW in soybean. As SW plays an impor-
tant role in soybean yielding, these loci are also useful for 
soybean yield improvement.

One of the primary advantages of GWAS is the high 
mapping resolution as compared with linkage mapping. 
This feature enables GWAS to further narrow down the 
chromosomal region of candidate QTLs and predict causal 
genes. In this study, we were able to map SW11 and 
SW22 to a chromosomal region of 218  kb on Gm10 and 
65 kb on Gm20, respectively. Within the regions of SW11 
and SW22, there were 13 and six putative genes located, 
respectively (Fig. 4). According to the “Seed development 
transcript count” track at the SoyBase website (http://
soybase.org/), we further decreased the number of candi-
date genes to eight for SW11 and five for SW22, respec-
tively. The closest seed transcript to the lead SNP of the 
SW11 locus, Glyma10g28250, was predicted to encode a 
MYB61-like transcription factor. In Arabidopsis, MYB61 
is required for mucilage deposition and extrusion during 
imbibition of seed coat (Penfield et  al. 2001). In mature 
seed, mucilage is present in a dehydrate form within epi-
dermal testa cells, and is also important for seed germina-
tion and dormancy. Deficiency of mucilage was observed in 
some Arabidopsis mutants with phenotype in seed size and/
or weight such as ap2 and transparent testa glabra (ttg) 
(Debeaujon et al. 2000).

In addition, some candidates of interest for other loci 
were also identified. The candidate gene for SW19 locus, 
Glyma19g33421, annotated as an AHP family member 
(Table 1; Fig. 2b). AHPs play a key role in the two-com-
ponent pathway by which cytokinin signaling is conducted. 
In the two-component system, AHPs transmit cytokinin 
signal from the cytokinin receptors AHKs (also known 
as histidine kinase) to downstream Arabidopsis response 
regulators (ARRs) as well as cytokinin response factors 
(CRFs), which include a sub set of AP2 transcriptional fac-
tors (Rashotte et al. 2006). Both the triple mutant ahk2,3,4 
and the ap2 mutant showed enlarged seed size mainly 
due to increased size of embryo (Ohto et al. 2005; Riefler 
et  al. 2006). Interestingly, the Arabidopsis penta mutant 
ahp1,2,3,4,5 has a similar phenotype of enlarged embryo 
and seed size (http://arabidopsis.org). Therefore, it is con-
ceivable that Glyma19g33421, encoding an AHP protein, 
might be involved in cytokinin-mediated seed mass regula-
tion pathway in soybean. The SW21 locus was mapped to 
a region on Gm19 similar to 12 previously reported QTLs 
for SW or seed size related traits. The candidate gene, 

Glyma19g35180, putatively encodes an AUX/IAA fam-
ily protein (Fig.  2c). AUX/IAA family is one of the key 
regulators of the auxin-modulated genes and is involved 
in various developmental responses to auxin. It regulates 
the expression of auxin-induced genes by heterodimeriza-
tion with ARFs (Reed 2001). Arabidopsis ARF2 is a gen-
eral repressor of cell division. Loss-of-function mutant 
arf2 showed extra cell division in the integuments and 
dramatically increased seed size and weight (Schruff et al. 
2006). However, it is uncertain whether Glyma19g35180 
is involved in ARF2 mediated SW signaling in soybean. 
More studies like functional analyses of candidate genes 
are required to validate their possible roles in determining 
soybean SW.

GS is based on the genetic effects of dense markers 
across entire genome (Meuwissen et al. 2001). It hypotheti-
cally captures all genetic variations of a trait, while MAS 
is usually based upon a small number of loci, particularly 
major-effect loci. In our study, GS consistently outper-
formed MAS for SW in soybean for various cross-valida-
tions within the association panel, even though in the case 
that the prediction accuracy of MAS might have been over-
estimated when the same population as for trait-associated 
loci identification was used. Moreover, the superiority of 
GS was more obvious when unrelated panels were used in 
validation (Fig. 4c), indicating that GS is more robust than 
MAS in predicting soybean SW. In addition to the reason 
mentioned above that more genetic variants can be cap-
tured by GS than by MAS, the higher prediction accuracy 
of GS can be partially due to its ability to well capture the 
genetic relationship between training and validation sets, 
which also contributes to the prediction accuracy (Habier 
et al. 2007).

Compared with a previous GS study in soybean, the pre-
diction accuracy of GS in the present study was relatively 
high. Jarquin et  al. (2014) conducted GS for grain yield, 
plant height and maturity date in a population of 301 elite 
soybean breeding lines with 52,349 SNPs. The highest 
estimate of broad-sense heritability was 0.94 for maturity 
date, which is similar to the SW (0.97) in this study. In that 
study, however, the highest heritability-adjusted prediction 
accuracy was 0.70 for maturity date with the optimal pre-
diction model, which is lower than the highest prediction 
accuracy of 0.83 in the present study. Because the two stud-
ies had similar population size, number of SNPs and trait 
heritability, the difference in genetic architecture of traits 
and populations under study might be the major factors 
leading to the difference in prediction accuracies between 
the two studies.

Consistently with previous studies (Asoro et  al. 2011; 
Jarquin et al. 2014), we found that the prediction accuracy 
increased as the training population size increased in both 
GS and MAS. However, this tendency appeared in different 

http://soybase.org/
http://soybase.org/
http://arabidopsis.org
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patterns. In GS, the effect of training population size was 
relatively stable over predictions with different number of 
SNPs (Fig. 4a). While in MAS, the effect of population size 
was magnified with the increase of loci used for prediction 
(Fig. 4b). It implies that the prediction of MAS is more sen-
sitive to the change of training population sizes, which may 
lead to changes of relatedness between training and vali-
dation sets. Minimizing markers while keeping reasonable 
prediction accuracy is helpful to reduce genotyping cost in 
genomic prediction. We found that decreasing the number 
of SNPs did not necessarily sacrifice the prediction accu-
racies of GS, suggesting over-abundance of SNPs in the 
association panel. It can be explained by the extensive LD 
of the soybean genome and/or that not all SNPs contrib-
ute to the genetic variation of SW in soybean. Our results 
also suggested that a subset of 2000 SNPs (100 SNPs per 
chromosome) could be capable of providing equivalent 
prediction accuracy as the whole set of 31,045 SNPs did. 
Further decreasing the number of SNPs might be practica-
ble, depending on the budge availability and the require-
ment for prediction accuracy. To the unrelated population, 
further work is needed to address the marker density effect 
and the over-abundance of SNPs in soybean GS. In addi-
tion, the prediction accuracy of MAS with all the 22 loci 
identified was lower than that with 15 or 10 loci selected. It 
suggested that more loci involved in MAS might not neces-
sarily lead to higher efficiency as expected. Increasing the 
number of loci/markers used in MAS may not be an appro-
priate option in some cases even if efficiency of selection is 
the only issue to be considered.

In most of the GS or MAS studies, the training and 
validation populations are related, and cross-validation is 
used to estimate the prediction accuracy (Bao et al. 2014; 
Hoeck et  al. 2003; Jarquin et  al. 2014). However, their 
selection efficiency for unrelated lines is usually undeter-
mined. In the present study, besides cross-validation, vali-
dation with unrelated populations obtained from GRIN 
(http://www.ars-grin.gov/) was also carried out. We found 
that the prediction accuracy of GS varied among the panels 
with different groups of maturity (Fig. 4c). This phenom-
enon might be caused by the different degrees of similar-
ity in genetic compositions between the training panel and 
the validation sets. We noted that the prediction accuracies 
(0.74–0.83) for the early and medium maturity valida-
tion panels (MG 000-IV) were higher than that (0.63) of 
the late maturity panel (MG V-VIII). The high prediction 
accuracy of GS across a wide range of maturities may be 
benefitted from the broad genetic diversity of the asso-
ciation population and the dense SNPs used in the study. 
The latter helps to maximize the LD between markers and 
causal genetic variants and also increases the potential of 
capturing the genetic relatedness between training and test 
sets (Gowda et al. 2014; Habier et al. 2007). According to 

the information from USDA (http://www.usda.gov/), soy-
bean cultivars with MG 000-IV accounted for over three-
fourths of the U.S. soybean production in 2013. Therefore, 
GS with the marker effects estimated in this study hold a 
great potential in predicting soybean SW. Given SW is an 
important component of grain yield, the results are also 
useful for the genomic prediction and genetic improvement 
of soybean yield.

Conclusions

In this study, we identified 22 loci associated with SW 
via GWAS and thus convincingly demonstrated that 
soybean SW is conditioned by numerous loci of minor 
effect. We also refined candidate chromosomal regions 
for the known QTLs, including the hotspots on Gm04 
and Gm19. Candidate genes with Arabidopsis homologs 
involved in seed development, auxin and cytokinin sign-
alings controlling SW were proposed. Cross-validation 
showed that MAS could be a competitive alternative of 
GS when training and validation population were related 
or had similar genetic components. However, valida-
tion with unrelated populations across a broad range of 
maturities suggested that GS is superior to MAS. This 
study enhances our knowledge of the genetic basis of 
SW in soybean, and facilitates exploring the molecu-
lar mechanisms underlying the trait. It also benefits the 
genomic prediction of yield in soybean and suggests that 
GS would have a great potential in increasing genetic 
gains of soybean breeding.
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