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Abstract
The main focus of this paper is on the family of evolutionary algorithms and their real-life applications. We present the

following algorithms: genetic algorithms, genetic programming, differential evolution, evolution strategies, and evolu-

tionary programming. Each technique is presented in the pseudo-code form, which can be used for its easy implementation

in any programming language. We present the main properties of each algorithm described in this paper. We also show

many state-of-the-art practical applications and modifications of the early evolutionary methods. The open research issues

are indicated for the family of evolutionary algorithms.

Keywords Nature-inspired methods � Genetic algorithm � Genetic programming � Differential evolution � Evolution

strategy � Evolutionary programming � Real-life applications

1 Introduction

These days, in the area of soft computing research we can

observe a strong pressure to search for new optimization

techniques which are based on nature. Figure 1 presents

some approaches in optimization techniques with a con-

centration on evolutionary approaches. Today, the whole

family of evolutionary optimization algorithms is referred

to as evolutionary computation (EC) algorithms. In the

evolutionary computation domain, we can mention the

following main algorithms: the genetic algorithm (GA) [1],

genetic programming (GP) [2], differential evolution (DE)

[3], the evolution strategy (ES) [4], and evolutionary pro-

gramming (EP) [5]. Each of these techniques has many

different varieties and is used in many different industrial

applications.

This paper is a state-of-the-art paper which topic is

connected mainly with evolutionary algorithms (EAs) such

as GA, GP, DE, ES, and EP. (In the other paper [6], we

have presented swarm intelligence algorithms (SIAs) such

as ant colony optimization (ACO), particle swarm opti-

mization (PSO), and others in which social collaboration

between agents exist.) The other nature-based methods,

like family of physical algorithms (e.g., simulated anneal-

ing, extremal optimization, harmony search, cultural

algorithm, gravitational search, river formation dynamics,

black hole algorithm), or family of plant intelligence

algorithms (e.g., flower pollination algorithm, invasive

weed optimization, paddy field algorithm, artificial plant

optimization algorithm, photosynthetic algorithm, plant

growth optimization, rooted tree optimization), are not

considered here due to their less popularity.

The aim of this paper is to present a short overview of

the practical applications of evolutionary algorithms (EAs).

The paper is the complement to [6] where a state of the art

of industrial (real-life) applications of swarm intelligence is

presented. The paper is organized as follows. In Sect. 2, we

briefly present the main EAs, namely genetic algorithm,

genetic programming, differential evolution, evolution

strategies, and evolutionary programming. Section 3

describes the various uses of the considered methods in
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selected areas. Finally, recent advances and the current

trends of the EAs are described.

2 Brief presentation of the EAs

2.1 Genetic algorithms

The genetic algorithm (GA) [1] is one of the oldest and

most known optimization techniques, which are based on

nature. In the GA, the search for solution space imitates the

natural process which takes place in the environment, and

the Darwinian theory of species evolution is taken into

consideration. In GAs, we have a population of individuals;

each, called a chromosome, represents a potential solution

to the problem. The problem being solved is defined by the

objective function. Depending on how ‘‘good’’ the given

individual is fitted to the objective function, the value

which represents its quality is attributed to it. This value is

referred to as the fitness of the individual, and it is a main

evaluating factor. Highly valued individuals have a better

chance to be selected to the new generation of the popu-

lation. In GAs, we have three operators: selection (a new

population of individuals is created based on the fitness

values of individuals from the previous generation),

crossover (typically parts of individuals are exchanged

between two individuals selected to the crossover), and

mutation (the values of particular genes are changed ran-

domly). Algorithm 1 presents the standard GA in the

pseudo-code form (for more details see [7]).

Many modifications of the standard GA have been

developed; some of them are listed in Table 1.

2.2 Genetic programming

Genetic programming (GP) [2] is relatively new; it is a spe-

cialized form of a GA which operates on very specific types of

solution, using modified genetic operators. The GP was

developed by Koza [2] as an attempt to find the way for the

automatic generation of the program codes when the evalua-

tion criteria for their proper operation is known. Because the

searched solution is a program, the evolved potential solutions

are coded in the form of trees instead of linear chromosomes

(of bits or numbers) widespread in GAs. As GP differs from

GA the used coding schema, the main loop of GP is the same

as in Algorithm 1. Of course, the genetic operators are spe-

cialized for working on trees, e.g., crossover as exchanging the

subtrees, mutation as a change of node or leaf. Some modifi-

cations of the GP are shown in Table 1.

2.3 Differential evolution algorithm

The differential evolution (DE) is a type of evolutionary

algorithm useful mainly for the function optimization in

continuous search space. Although a version of DE algo-

rithm for combinatorial problems has also been discussed

[51], the principal version of the DE algorithm was

Fig. 1 Taxonomy of nature-inspired methods
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Table 1 The 46 algorithms selected from the whole family of the GA, GP, and DE

Algorithm, references Author Short description Year

Genetic algorithm (GA)

GA [1] Holland Simulate the natural evolution process—survival of the fittest individuals 1975

Micro GA [8] Krishnakumar Evolve very small populations that are efficient in locating promising areas 1989

Cellular GA [9] Manderick et al. Based on the concept of structured populations and GAs 1989

Non-dominated sorting GA [10] Srinivas et al. Extension of the GA for multiple-objective function optimization 1994

Contextual GA [11] Rocha Inspired by the biological system of RNA editing found in organisms 1995

Grouping GA [12] Falkenauer Developed to solve clustering problems 1996

Quantum-inspired GA [13] Narayanan et al. Concepts and principles of quantum mechanics are used in algorithm 1996

Linkage learning GA [14] Harik Algorithm is capable of learning genetic linkage in the evolutionary process 1997

Island GA [15] Whitley et al. Multiple subpopulations helps to prevent genetic diversity 1998

Non-dominated sorting GA II [16] Deb et al. Extension of NSGA with fast non-dominated sorting approach 2000

Interactive GA [17] Takagi The fitness of individuals is assigned by human rather by a function 2001

Jumping gene GA [18] Man et al. Inspired by the biological mobile genes mechanism existing in chromosome 2004

Dynamic rule-based GA [19] He et al. Based on heuristic rules which are crucial to cut down the solution space 2006

Hierarchical cellular GA [20] Janson et al. Population structure is augmented with a hierarchy according to the fitness 2006

Non-dominated sorting GA III

[21]

Deb et al. Extension of NSGA-II by using a reference point approach 2014

Tribe competition-based GA [22] Ma et al. Population of individuals is divided into multiple tribes 2017

Fluid GA [23] Jafari-Marandi

et al.

Biologically, the fluid GA is closer to what happens in the genetic world 2017

Block-based GA [24] Tseng et al. GA more suitable for construct the disassembly sequence planning 2018

Genetic programming (GP)

GP [2] Koza Populations of computer programs are genetically bred using natural

selection

1992

Cartesian GP [25] Miller et al. Represents a program using two-dimensional grid of nodes 2000

Grammar-guided GP [26] Ratle et al. Initialization procedure is based on dynamic grammar pruning 2000

Gene expression programming

[27]

Ferreira Chromosomes encode expression trees which are the object of selection 2001

Multi-gene GP [28] Kaydani et al. Structure selection combined with a classical method for parameter

estimation

2012

Geometric semantic GP [29] Moraglio et al. Searches directly the space of the underlying semantics of the programs 2012

Surrogate GP [30] Kattan et al. One of the two populations is evolved with the aid of meta-models 2015

Memetic semantic GP [31] Ffrancon et al. Taken into account the semantics of a GP tree 2015

Statistical GP [32] Haeri et al. Uses statistical information to generate some well-structured subtrees 2017

Multi-dimensional GP [33] La Cava et al. GP with novel program representation for multi-dimensional features 2018

Differential evolution (DE)

DE [3] Storn et al. Differential mutation operator is used to perturb vectors in population 1997

SaDE [34] Qin et al. Suitable learning strategy and parameter settings are gradually self-adapted 2005

jDE [35] Brest et al. An efficient technique for adapting control parameter settings is used 2006

Chaotic DE [36] Wang et al. Properties of chaotic system are used to spread the individuals in search space 2007

JADE [37] Zhang et al. Updating control parameters in an adaptive manner 2009

EPSDE [38] Mallipeddi et al. Pool of mutation strategies with a pool of control parameter values coexists 2011

CoDE [39] Wang et al. Combining trial vector generation strategies with control parameter settings 2011

Multi-population DE [40] Yu et al. Multiple subpopulations exchange information via mutation operation 2011

ACDE [41] Choi et al. Each individual has its own control parameters 2013

Improved JADE [42] Yang et al. Extension of JADE algorithm in which the adaptation of CR is improved 2014

Extended adaptive Cauchy DE

[43]

Choi et al. Modification of ACDE by attaching bias strategy adaptation mechanism 2014

jDErpo [44] Brest et al. Uses a gradually increasing mechanism for controlling control parameters 2014

RDEL [45] Ali Based on a couple of local search mutation and a restart mechanism 2014
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discussed by Storn and Price [3]. The main advantages of

DE over a traditional GA are: It is easy to use, and it has

efficient memory utilization, lower computational com-

plexity (it scales better when handling large problems), and

a lower computational effort (faster convergence) [52]. The

standard DE procedure is shown in Algorithm 2. Presented

there DE optimizes the problem with n decision variables.

Parameter F scales the values added to the particular

decision variables (mutation), and CR parameter represents

the crossover rate [52] (xi;j is the value of jth decision

variable stored in ith individual in the population). More

detailed information on how the parameters should be

tuned can be found in [53]. The main idea of the DE

algorithm is connected with computing the difference

between two individuals chosen randomly from the popu-

lation. (The DE determines the function gradient within a

given area—not at a single point.) Therefore, the DE

algorithm prevents the solution of sticking at a local

extreme of the optimized function [52]. Twenty years of

DE development resulted in many modifications. Some of

them are shortly presented in Table 1.

2.4 Evolution strategies

The evolution strategies (ESs) are different when com-

pared to the GAs, mainly in the selection procedure. In the

GA, the next generation is created from the parental pop-

ulation by choosing individuals depending on their fitness

value, keeping a constant size of the population. In the ES,

a temporary population is created; it has the different size

than the parental population (depending on the assumed

parameters k and l). In this step, the fitness values are not

important. Individuals in the temporary population undergo

crossover and mutations. From such populations, an

assumed number of the best individuals are selected to the

next generation of the population (in a deterministic way).

ESs operate on the vectors of the floating point numbers,

while the classical GA operates on binary vectors. The

primary types of ESs are ES(1 þ 1), ES(lþ kÞ, and

ES(l; k) [7].

2.4.1 Evolution strategy ES(1 1 1)

It is the oldest approach; only one individual x is evolved.

The initial individual x is randomly generated. In each

iteration, only one new individual y is created. The cross-

over operator does not exist, and the mutation operator

creates the individual y by adding a randomly generated

number to each gene of the individual x. The normal dis-

tribution N with a mean value equal to zero and a standard

deviation equal to one is used. The value of ith gene in the

individual y is computed as follows: yi ¼ xi þ r � Nið0; 1Þ,
where r is a parameter which determines the range of the

mutation. Based on the fitness value of individuals x and y,

the better one is selected for the new generation and

becomes a new individual x. Parameter r undergoes

adaptation by the so-called rule of 1/5 successes. Accord-

ing to this rule, the best results are obtained when the

relation R between successful mutations and all mutations

is equal to 1/5. When during k successive generations, the

relation R is higher than 1/5, then the value of the r
parameter is increased. When the relation R is lower than

1/5, then the value of the r parameter is decreased. The r
parameter does not change when the relation R is equal to

1/5 [7].

Table 1 (continued)

Algorithm, references Author Short description Year

Colonial competitive DE [46] Ghasemi et al. Algorithm is based on mathematical modeling of sociopolitical evolution 2016

Memory-based DE [47] Parouha et al. Two ‘‘swarm operators’’ have been introduced into DE algorithm 2016

SQG-DE [48] Sala et al. Combines aspects of stochastic quasi-gradient methods within DE algorithm 2017

UDE [49] Trivedi et al. Unifying the main idea of CoDE, JADE, SaDE, and ranking-based mutation 2017

OCSinDE [50] Draa et al. Use a compound sinusoidal formula for scaling factor and crossover rate 2018

12366 Neural Computing and Applications (2020) 32:12363–12379

123



2.4.2 Evolution strategy ES(l+ k)

This is an extension of the ES(1 ? 1). The ES(lþ k) has a

self-adaptive mutation range, which replaces the 1/5 suc-

cess rule implemented in ES(1 ? 1). In the ES(lþ k),

each individual in the population contains additional

chromosome r, consisting of values of standard deviation

for each gene. These values are used during mutation

procedure. The crossover operator operates before the

mutation. Both chromosomes (consisting of the value of

variables, and of the value of r parameters) undergo

mutation and crossover processes [7]. Algorithm 3 presents

the pseudo-code of the ES(lþ k).

2.4.3 ES(l,k) evolution strategy

This type of the ES is used more often than ES(lþ k). The

operation of both algorithms is almost identical. The only

one difference is that in the ES(l; k), the new population

P(t) is created using only the best individuals from the

‘‘children’’ population M(t). In this case, l has to be greater

than k. Such selection gives the advantage of ES(l; k) over

the ES(lþ k); in the latter, the population can be domi-

nated by one individual which is much better than others

and the values of standard deviations r are not well tuned.

The ES(l; k) does not have this disadvantage because the

individuals from the parental population Pðt � 1Þ are not

copied to the new generation P(t) [7].

The pseudo-code of the ES(l; k) is almost the same as

Algorithm 3. The only one difference is line 10; here, it is:

‘‘10: select l the best individuals to population P(t) from

the population M(t).’’

Today, the covariance matrix adaptation evolution

strategy (CMA-ES) is perceived as a state-of-the-art ES

[54, 55]. Several variants of CMA-ES were developed [55]

to enhance the efficiency or robustness of the method by

different techniques. In the CMA-ES algorithm, the adap-

tation of the population size or other parameters was pre-

sented in papers [56]. The CMA-ES algorithm employs

global weighted recombination for both, strategy and

object variables, adapts the full covariance matrix for

mutation and, in general, is based on the scheme of the

ES(l; k). The CMA-ES algorithm can handle poorly scaled

functions, and its performance remains invariant under

rotation of the search space [54]. Some modifications of

ESs are mentioned in Table 2.

2.5 Evolutionary programming

Evolutionary programming (EP) was developed as a tool

for discovering the grammar of the unknown language.

However, EP became more popular when it was proposed

as the numerical optimization technique. The EP is similar

to the ES(lþ k), but with one essential difference [7]. In

EP, the new population of individuals is created by

mutating every individual from the parental population,

while in the ES(lþ k), every individual has the same

probability to be selected to the temporary population on

which the genetic operations are performed. In the EP, the

mutation is based on the random perturbation of the values

of the particular genes of the mutated individual. The

newly created and the parental populations are the same

sizes (l ¼ k). Finally, the new generation of the population

is created using the ranking selection of the individuals

from both, the parental and the mutated populations. The

pseudo-code of the standard EP method is presented in

Algorithm 4. EP, like other evolutionary methods, has

many modifications. Some of them are listed in Table 2.

2.6 Evolutionary algorithms: problems
and challenges

EAs are a very interesting research area. There are many

open research problems such as: control of the balance

between the exploration and exploitation properties; the
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self-adaptive (or adaptive) control of steering parameters;

reducing the number of CMA-ES algorithm parameters;

introducing new selection schemes; and increasing their

effectiveness. The latter is important especially in the area

of evolutionary design and in evolvable hardware. Also,

new more efficient techniques for constraint handling are

needed.

Additionally, more investigation into the application of

EAs to dynamic optimization problems, to the optimization

in noisy and non-stationary environments, and to multi-

objective optimization problems (especially with a large

number of decision variables) is required. Also, further

research is needed in the population size adaptation in

different optimization scenarios. Novel strategies should be

developed to deal with expensive problems more compet-

itively. Among these matters, there is the open question of

constraint handling in EAs specifically to solve engineering

optimization problems. As we know, the constraint han-

dling methods can be classified into six main categories:

penalty methods, methods evolving in the feasible region,

methods using parallel population approaches, methods

based on the assumption of superiority of feasible indi-

viduals, methods using multi-objective optimization tech-

niques, and hybrid methods. Of course, each of these

categories can be divided into several subcategories. The

taxonomy of the constraint handling techniques with EAs

can be found in the paper [77] by Petrowski et al. If we

want to use the proper constraint handling method in EAs

for real-world application, we should find the answer to the

several questions such as is the objective function defined

in the unfeasible domain (if not, the penalization methods

cannot be used, for example): are there any active

Table 2 The 24 algorithms selected from the whole family of ES, and EP

Algorithm, references Author Short description Year

Evolution strategy (ES)

ES [4] Rechenberg Primarily mutation and selection are used as search operators 1973

Derandomized self-adaptation ES

[57]

Ostermeier et al. Derandomized scheme of mutative step size control is used 1994

CSA-ES [58] Ostermeier et al. Adaptation concept uses information accumulated from the old generations 1994

CMA-ES [54] Hansen et al. Mutation strategy scheme called covariance (COV) matrix adaptation is

used

2001

Weighted multi-recombination ES

[59]

Arnold Weighted recombination is used for improving the local search performance 2006

Meta-ES [60] Jung et al. Based on incremental aggregation of partial semantic structures 2007

Natural ES [61] Wierstra et al. Use the natural gradient to update a parameterized search distribution 2008

Exponential natural ES [62] Glasmachers

et al.

Significantly simpler version of natural ES algorithm 2010

Limited memory CMA-ES [55] Loshchilov Reduction in time–memory complexity by covariance matrix decomposition 2014

Fitness inheritance CMA-ES [63] Liaw et al. Computational cost reduction at fitness evaluation using fitness inheritance 2016

RS-CMSA ES [64] Ahrari et al. Several subpopulations explore the search space in parallel 2017

MA-ES [65] Beyer et al. COV update and COV matrix square root operations are no longer needed 2017

Weighted ES [66] Akimoto et al. ES with weighted recombination of general convex quadratic functions 2018

Evolutionary programming (EP)

EP [5] Fogel et al. Inspired by macro-level or species-level process of evolution 1966

Improved fast EP [67] Yao et al. Uses a Cauchy instead of Gaussian mutation as the primary search operator 1992

Generalized EP [68] Iwamatsu A Levy-type mutation is used as the primary search operator 2002

Diversity-guided EP [69] Alam et al. Guides the mutation step size using the population diversity information 2012

Adaptive EP [70] Das et al. Strategy parameter is updated based on the number of successful mutations 2013

Social EP [71] Nan et al. Algorithm is based on a social cognitive model 2014

Immunised EP [72] Gao Mutation operation and selection operation based on artificial immune

system

2015

Mixed mutation strategy EP [73] Pang et al. Employs Gaussian, Cauchy and Levy mutation operators 2016

Fast Convergence EP [74] Basu Developed to boost convergence speed and solution quality in EP 2017

Immune log-normal EP [75] Mansor et al. Combination of log-normal-based mutation EP with artificial immune

system

2017

ADM-EP [76] Hong et al. EP with automatically designed mutation operators 2018
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constraints at the optimum? (if not, the methods based on

the search on the feasible region boundaries are irrelevant);

what is the nature of the constraints? (if only one of the

constraints is a nonlinear inequality, the methods for linear

constraints are excluded). Moreover, in the real-world

application of EAs with constraint handling techniques the

effectiveness of a method is often dominated by two other

decision criteria such as complexity and difficulty of

implementation. Currently, penalty methods, feasibility

rules, and stochastic ranking methods are used in real-

world applications very often due to their simplicity [77].

Therefore, as we can see, there is no general approach for

handling the constraints with EAs able to deal with any

real-world problem, so the research on constraint handling

techniques in EAs for real-world application is still a hot

topic.

In EAs, there are many open research problems, which

are discussed in more detail in [53, 78].

Despite these weaknesses, we observe the growing

popularity of EAs (please see Figs. 2, 3). If we analyze the

number of publications in the Web of Science (WoS)

database (years 2000–2018) for particular EAs, we can see

that their number is growing from year to year for the

algorithms: GA, GP, DE, and ES. Only for EP algorithm,

the number of published articles has been decreasing since

the 2013 year. The total number of papers published in

WoS database (years 2000–2018) which are related to

these algorithms was equal to 98,596 for GA, 7038 for GP,

13,308 for DE, 1804 for ES, and 1585 for EP. Also, we

have study the popularity of some EA methods in the

selected scientific databases such as Google Scholar,

Springer, IEEE Xplore, ACM, Scientific, Science Direct,

Sage, Taylor, and Web of Science. The total number of the

papers was equal to 1,304,205 for GA, 186,791 for GP,

119,668 for DE, 53,254 for ES, and 73,716 for EP.

Also, many practical applications of EAs methods have

been patented by such corporations like Caterpillar Inc.,

Yamaha Motor Co. Ltd., Fujitsu Limited, International

Business Machines Corporation, Lsi Logic Corporation,

Honda Research Institute Europe Gmbh, Prometheus

Laboratories Inc., Siemens. The total number of patents

registered in the Google Patents database (in years

2000–2018) for the particular EA methods was equal to

43,284 for GA, 2960 for GP, 2039 for DE, 1191 for ES,

and 1583 for EP. More detailed information is presented in

Table 3.

We believe that over the next few years researchers will

focus on the above areas.

Fig. 2 Number of publications in the WoS database (years

2000–2018): GA (a), GP (b), DE (c)

Fig. 3 Number of publications in the WoS database (years

2000–2018): ES (a), EP (b), sum of publications for all listed

algorithms GA, GP, DE, ES, EP (c)
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3 Evolutionary algorithms in real-life
problems

Similar to swarm intelligence algorithms [6], a major

reason is a growing demand for smart optimization meth-

ods in many business and engineering activities. EAs are

suitable mainly for optimization, scheduling, planning,

design, and management problems. These kinds of prob-

lems are everywhere, in investments, production, distri-

bution, and so forth. If we analyze, the results obtained

from the WoS database (popularity of only ten first WoS

categories for each method—for more detailed information

see Table 4), we can see that the EAs methods are mainly

used in the area such as:

• Engineering electrical electronics,

• Computer science artificial intelligence,

• Computer science theory methods,

• Computer science interdisciplinary applications,

• Automation control system,

• Computer science information systems,

• Operations research management science.

When in WoS we will select a field Highly Cited in

Field, we can see that the highly cited papers (in which EA

methods are used) are from the following industry areas for

the particular EA methods:

• GA—energy fuels (EF), engineering electrical elec-

tronic (EEE), operations research management science

(ORMS), engineering civil (EC),

• GP—engineering civil (EC), water resources (WR),

energy fuels (EF), automation control systems (ACS),

• DE—energy fuels (EF), automation control systems

(ACS), engineering electrical electronics (EEE), engi-

neering civil (EC),

• ES—construction building technology (CBT), energy

fuels (EF), engineering civil (EC), engineering electri-

cal electronic (EEE),

• EP—construction building technology (CBT), engi-

neering civil (EC), computer science software engi-

neering (CSSE), transportation science technology

(TST).

Therefore, in this paper, we will concentrate only on the

real-world applications of particular EA methods in above

areas of industry. In the next subsections, the abbreviation

of industry area will be given in parenthesis after reference

number to currently discussed paper.
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3.1 Genetic algorithms in real-life problems

The GAs are a universal optimization tool. Using GAs, we

can solve constrained optimization problems, multimodal

optimization problems, continuous optimization problems,

combinatorial optimization problems, and multi-objective

optimization problems. Thus, there is a wide range of real-

world applications of GAs. In this short section, we show

only a few of them.

The paper [79] (EF) by Lv et al. presents the solar array

layout optimization problem which is solved by GA. The

presented numerical method is based on rotating model of a

stratospheric airship to optimize the solar array layout. The

results demonstrate that the proposed method is helpful in

the preparation stage for installing large area flexible solar

arrays. Also, it is shown that due to solar array optimization

the output power of solar panel is significantly improved.

In paper [80] (EF) by Ma et al., the optimization model

based on the GA, developed to reduce the energy con-

sumption of high-sulfur natural gas purification process, is

presented. A case study was performed in a high-sulfur

natural gas purification plant with the capacity of

300 � 104 N m3=d. The results demonstrate that the energy

consumption of the purification plant was reduced by

12.7%.

In [81] (EEE), Yin et al. report a GA-inspired strategy

designed and incorporated in the sequential evolutionary

filter. Due to this strategy, the resampling used in most of

existing particle filters is not necessary, and the particle

diversity can be maintained. The experimental results show

that the proposed sequential evolutionary filter offers better

state estimation results than three other comparative filters.

The authors of [82] (EEE) investigate the pros and cons

of hybridization of a GA and local search on the basis of a

hard practical and up-to-date problem, namely the routing

and spectrum allocation of multi-cast flows (RSA/M) in

elastic optical networks (EONs). They proposed an effi-

cient optimization method for solving the RSA/M problem

in EONs. The proposed method outperformed all other

competing methods. Additionally, introduction of Baldwin

effects helped to preserve the population diversity in GA.

In the paper [83] (ORMS), the local-inventory-routing

model for perishable products is presented. The proposed

model integrates the three levels of a decision in the supply

chain such as the number and location of required ware-

houses, the inventory level at each retailer, and the routes

traveled by each vehicle. It is shown that the model

developed in this paper is NP-hard; therefore, the authors

develop a GA-based approach to solve this problem effi-

ciently. It is shown that presented approach achieves a

high-quality near-optimal solution in reasonable time.

The paper [84] (ORMS) by Ramos et al. presents new

container loading algorithm with load balance, weight

limit, and stability constraints which use a load distribution

diagrams. This algorithm is based on multi-population

biased random-key GA, with a new fitness function that

takes static and loads balance into account. Due to incor-

porate weight balance goal with stability guaranteed by full

base support and by the mechanical equilibrium conditions,

the proposed approach is very effective.

Table 4 Number of the papers

registered in the WoS database

for ten the most popular area of

applications for each algorithm

Area of applications GA GP DE ES EP ALL

Engineering electrical electronic 26,961 1364 3902 516 755 33,498

Computer science artificial intelligence 23983 3376 4294 655 634 32,942

Computer science theory methods 13,253 2460 2071 451 330 18,535

Computer science interdisciplinary applications 11,355 888 1669 216 177 14,305

Automation control systems 9217 437 1027 120 176 10,977

Computer science information systems 8318 673 996 136 170 10,293

Operations research management science 7397 282 791 106 74 8650

Engineering mechanical 6197 – – – – 6197

Telecommunications 5850 – 725 – 98 6673

Energy fuels 5325 – 835 – 149 6309

Computer science software engineering – 688 – 111 79 878

Mathematical computational biology – 329 – – – 329

Engineering civil – 304 – – – 304

Engineering multi-disciplinary – – 785 – – 785

Physics applied – – – 125 – 125

Mathematics applied – – – 98 – 98

GA Genetic algorithm, GP genetic programming, DE differential evolution, ES evolution strategy, EP
evolutionary programming, ALL sum of the papers for all listed algorithms in given area of applications
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In [85] (EC) by Yan et al., a framework to determine the

investment plan to strengthen a railway system to earth-

quake hazard is proposed. This framework consists of four

parts. In the third part, an investment optimization model is

formulated, and in part four, this model is solved using GA.

The proposed approach has been applied to the real Chi-

nese railway system. The obtained results show that the

presented framework is more responsive to the earthquake

impact on railway system compared to topology-based

methods.

In the paper [86] (EC) by Ascione et al., the multi-

objective optimization of operating cost for space condi-

tioning and thermal comfort to achieve a high level of

building energy performance is presented. The main

objective of proposed GA is to optimize the hourly set

point temperatures with a day-ahead horizon, based on a

forecast of weather conditions and occupancy profile. In

comparison with the standard control strategy, the pre-

sented approach generates a reduction of operating cost up

to 56%.

In [87] (EC) by Lin et al., a time-optimal train running

reference curve is designed with least time-consuming, but

highest energy consumption, and it is optimized by adding

multi-point coasting control to realize energy saving with a

relative rise in time. Multi-population GA is adopted to

solve this multi-point combinatorial optimization problem.

Simulation results, based on real line condition and train

parameters of Shanghai line 7, demonstrate the advance-

ment of multi-point coasting control with the proposed

approach.

In [88] (EC), the application of GA to minimization of

average delay for an urban signalized intersection under the

oversaturated condition is presented. Relieving urban

traffic congestion is an urgent call for traffic engineering.

One of the key solutions to reduce congestion is the

effectiveness of traffic signalization. The current traffic

signal control system is not fully optimized for handling

the oversaturated condition. Simulation results show that

GA is able to control the traffic signals for minimizing the

average delay to 55 s/vehicle.

Zhang et al. [89] (EEE) use the flexible GA for node

placement problems. Node placement problems are

encountered in various engineering fields, e.g., the

deployment of radio-frequency identification systems or

wireless sensor networks. The flexible GA with variable

length encoding, subarea-swap crossover, and Gaussian

mutation is able to adjust the number of nodes and their

corresponding properties automatically. Experimental

results show that the flexible GA offers higher performance

than existing tools for solving node placement problems.

In the paper [90] (EF) by Reddy, the scheduling problem

considering the hybrid generation system is presented. The

new strategy based on GA for the optimal scheduling

problem taking into account the impact of uncertainties in

the wind, solar photovoltaic modules with batteries, and

load demand forecast is proposed. From simulation results

(for IEEE 30 and 300 bus test systems), it can be noticed

that with a marginal increase in the cost of day-ahead

generation schedule, a significant reduction in real-time

mean adjustment cost is obtained.

3.2 Genetic programming in real-life problems

The GP possesses many practical applications.

In [91] (ACS) et al. the handwriting character recogni-

tion system for inertial-sensor-equipped pens is presented.

In this system, the characteristic function is calculated for

each character using a GP algorithm. The experimental

results show that the performance of the proposed method

is superior to that one of the state-of-the-art works in the

area of recognizing Persian/Arabic handwriting characters.

Bagatur and Onen [92] (WR) propose novel models for

the prediction of flood routing in natural channels using the

gene expression programming (GEP) algorithm, which is

one of the extensions of GP algorithm. The GEP method

makes use of few hydrologic parameters such as inflow,

outflow, and time. The performance of the proposed

models is evaluated by two goodness-of-fit measures. The

proposed GEP models are tested for the three datasets

taken from the literature. It is proved that the GEP models

show superior performance to the other solution techniques

based on the Muskingum model.

In the paper [93] (EF) by Abkenar et al., an intelligent

fuel cell (FC) power management strategy is proposed. The

main objective of the proposed approach is to improve FC

performance at different operating points without

employing DC/DC interfacing converters. A hybrid all-

electric ships (AES) driveline model using GP is utilized to

formulate operating FC voltage based on the load current,

FC air, and fuel flow rates. The proposed approach main-

tains FC performance and reduces fuel consumption, and

therefore ensures the optimal power sharing between the

FC and the lithium-ion battery in AES application.

The authors of [94] (EC) use GP algorithm to develop

models to predict the deterioration of pavement distress of

the urban road network. Five models for the prediction of

pavement distress progression such as cracking, raveling,

pothole, rutting, and roughness are created. In order to

obtain a training dataset, and validation dataset, the real

data from the roads of Patiala City, Punjab, India, have

been collected. It was shown that GP models predict with

high accuracy for pavement distress and help the decision

makers for adequate and timely fund allocations for the

preservation of the urban road network.

12372 Neural Computing and Applications (2020) 32:12363–12379

123



3.3 Differential evolution in real-life problems

The DE algorithm also found many real-world

applications.

In [95] (EF), Ramli et al. present an application of multi-

objective SaDE algorithm for optimal sizing of a photo-

voltaic (PV)/wind/diesel hybrid microgrid system (HMS)

with battery storage. The multi-objective optimization is

used to analyze the loss of power supply probability, the

cost of electricity, and the renewable factor in relation to

HMS cost and reliability. The proposed approach is tested

using three case studies involving differing house numbers

for the city Yanbu, Saudi Arabia. The results obtained are

useful in investigating optimal scheduling of HMS com-

ponents and can be used as a power reference for the

economic operation of PV and wind turbine generators.

Yao et al. [96] (EF) use a multi-objective DE algorithm

for optimizing a novel combined cooling, heating, and

power-based compressed air energy storage system. The

system combines a gas engine, ammonia–water absorption

refrigeration system, and supplemental heat exchangers.

The proposed optimization technique is used to find a

trade-off between the overall exergy efficiency and the

total specific cost of final product. The best trade-off

solution which was selected possesses a total product unit

cost of 20.54 cent/kWh and an overall exergy efficiency of

53.04%.

In the paper [97] (ACS) by Wang et al., the DE algo-

rithm is applied for wind farm layout optimization with the

aim of maximizing the power output. Due to a new

encoding mechanism in DE, the dimension of the search

space is reduced to two, and a crucial parameter (i.e., the

population size) is eliminated. In comparison with seven

other methods, the proposed approach is able to obtain the

best overall performance, in terms of the power output and

execution time.

The authors of [98] (EEE) investigate the problem of

linear dipole array synthesis. Dynamic DE algorithm is

proposed for synthesizing shaped power pattern by using

element rotation and phase optimization for a linear dipole

array. Based on two experiments for synthesizing flattop

and cosecant squared pattern, the effectiveness and

advantages of the proposed approach were verified in

comparison with the phase-only optimization and the

amplitude-phase joint optimization.

Tian et al. [99] (EC) use a multi-objective hybrid

DE?PSO algorithm in order to create a set of Pareto

solutions for the problem of dual-objective scheduling of

rescue vehicles to distinguish forest fires. The novel multi-

objective scheduling model to handle forest fires subject to

limited rescue vehicles constraints, in which a fire spread

model is introduced into this problem to better describe

practical forestry fire is presented. Results show that the

proposed approach is able to quickly produce satisfactory

Pareto solutions in comparison with GA and PSO

algorithms.

3.4 Evolution strategies in real-life problems

Studying the literature, we can find fewer papers with the

real-life applications of ESs than those with GAs. Below

we shortly present some of them.

The paper [100] (CBT) by Hasancebi presents ES inte-

grated parallel optimization algorithm to minimize the total

member weight in each test steel frame. Steel frames with

various beam–column connection and bracing configura-

tion are considered for comparative cost analyzes. Three

multi-story buildings are chosen (10, 20, and 30-story

buildings) as examples for numerical verification of pro-

posed method. The results collected are utilized to reach

certain recommendations regarding the selection of eco-

nomically feasible frames for the design of multi-story

steel buildings.

In [101] (EF), Fadda et al. consider the usage of electric

batteries in order to mitigate it. In energy distribution

systems, uncertainty is the single major cause of power

outages; therefore, the authors propose intelligent battery

able to maximize its lifetime while guaranteeing to satisfy

all the electric demand peaks. The battery exploits a cus-

tomized steady-state ES to dynamically adapt its recharge

strategy to changing environments. Experimental results on

both synthetic and real data demonstrate the efficacy of the

proposed approach.

In the paper [102] (EC) by Ogidan et al., the enhanced

non-dominated sorting ES algorithm that uses a specialized

operator to guide the algorithm toward known sanitary

sewer overflows (SSOs) locations is presented. The main

objectives of the proposed method are the maximization of

SSO reduction and minimization of rehabilitation cost. The

proposed method was tested in an existing network in the

eastern San Antonio Water System network. The presented

approach improves the convergence rate by approximately

70% over the tested alternative algorithms.

The authors of [103] (EEE) investigate the problem of

wireless sensor fault diagnosis based on fusion data anal-

ysis. The fault diagnosis model is proposed based on the

hierarchical belief rule-based model, and the CMA-ES

algorithm is used to optimize the initial parameters of the

proposed model. In order to validation of presented

approach, a case study based on Intel laboratory dataset of

sensors is designed. The experiments prove the effective-

ness of the proposed method in comparison with back

propagation neural network model and the fuzzy expert

system.
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In the paper [104] (EEE), the problem of subsurface

inverse profiling of a 2-D inhomogeneous buried dielectric

target is presented and solved using proposed iterative

optimization method which is based on CMA-ES algo-

rithm. In relation to the results obtained using EP and PSO,

the results obtained using CMA-ES significantly outper-

form the other two optimization techniques in the inho-

mogeneous imagining.

The paper [105] (EEE) by Emadi et al. presents CMA-

ES algorithm for tasks scheduling in the cloud computing

environment. The need for planning the scheduling of the

user’s jobs is an important challenge in the field of cloud

computing. The causes are manifold; the most important

are: ever-increasing advancements of information tech-

nology, an increase in applications and user needs for these

applications with high quality, also the popularity of cloud

computing among user, and rapid growth of them during

recent years. The results obtained indicate that presented

algorithm, led to a reduction in execution time of all tasks,

compared to the shortest processing time algorithm, longest

processing time algorithm, and GA and PSO algorithms.

3.5 Evolutionary programming in real-life
problems

In the literature, we can find the applications of EP in many

different areas. However, in WoS the number of papers in

which EP algorithm is used is decreasing since the 2013

year. Below we shortly present some of them.

The paper [106] (TST) by Yan et al. presents bi-sub-

group self-adaptive EP algorithm for seeking the Pareto

optimal solution of the multi-objective function of the

hybrid electric vehicle (HEV) and the best degree of hybrid

(DOH) for this vehicle. In the proposed algorithm, the

evolution of Cauchy operator and Gauss operator are par-

allel performed with different mutation strategies. More-

over, the Gauss operator owns the ability of self-adaptation

according to the variation of adaptability function. The

simulation results show that the optimal DOH is equal to

0.311 for given HEV. Also, the validity of simulating

method was proved, and the fuel saving effect was con-

sistent with authors’ expectations.

In the paper [107] (CBT) by Gao, a new evolutionary

neural network whose architecture and connection weights

simultaneously evolve is proposed. This neural network is

based on immunized EP algorithm and is used in the novel

inverse back analysis for underground engineering. As a

numerical example, an underground roadway of the

Huainan coal mine in China is chosen for the verification of

the accuracy of the presented inverse back analysis. The

results obtained show that using the proposed method, the

computed displacements agree with the measured ones.

Therefore, it is demonstrated that the new inverse back

analysis method is a high-performance method for usage in

underground engineering.

Jiang et al. [108] (EC) use EP algorithm to find weights

and the threshold value in the neural network which is

applied to the traffic signal light control. According to the

historical traffic flow data of a crossroad, the next node’s

traffic flow data are predicted. Due to predicted data, the

traffic signal light frequency can be re-adjusted in order to

improve traffic congestion and other traffic problems. The

results obtained show that the connection of EP algorithm

with the neural network has a good effect on traffic signal

light optimization.

The authors of [109] (CSSE) propose a novel approach

to navigate over 3-D terrain using best viewpoints. The

concept of viewpoint entropy is exploited for best view

determination, and greedy n-best view selection is used for

visibility calculation. In order to connect the calculated

viewpoints, the authors use an EP algorithm for the trav-

eling salesman problem. It was shown that the computed

and planned viewpoints reduce human effort when used as

starting points for scene tour. The proposed method was

tested on real terrain and road network datasets.

3.6 Which EA should be used for a given
problem?

What lesson for a potential user of evolutionary computa-

tion emerges from the above overview? The question is

simple, but the answer is hard. All discussed methods are

from the same family—evolutionary approaches to opti-

mization problems. The principal question could be: Which

of the discussed methods is suitable for the given problem?

Expanding the answer to all heuristic methods in general,

not just evolutionary algorithms, the best answer seems to

be: take the method you know best, you can define your

problem well in terms required by this method, you

understand the sensitivity of this method to parameters, you

can fine-tune this method. Let us see, for example, on

energy fuels area. Numerous evolutionary approaches are

applied within this scope. It is not possible to indicate one

of them as the best for this particular subject. The similar

situation is with other areas of industry.

As we can see, the literature on the evolutionary algo-

rithms in general and in their industrial applications is

plentiful, but very rarely this literature concerns applica-

tions that have been used in practice. Following [110], we

can say that the theory does not support the practice; there

is a big gap between theory and practice. Theoretical

results on properties such as convergence, diversity,

exploration, exploitation, deceptiveness, and epistasis are

not useful enough for practice. Significant topics from the

practice point of view are constraint and noise handling

methods, robustness, or multi-objective optimization. The
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progress in the above matters is also observed; however,

these methods are tested mainly on simple silo problems or

standard sets of numerical functions, so their usefulness to

practitioners working on EA-based software applications is

very limited.

It is worth mentioning that the real usefulness of EAs

could be not only in industry. The spectacular achievement

of EA is presented in [111]. The artificial intelligence

system, with the use of EA, the first time discovered a new

theory, namely a mechanism of planar regeneration. The

remarkable ability of these small worms to regenerate body

parts made them a research model in human regenerative

medicine.

4 Summary and future trends

As it is shown in this paper, the evolutionary algorithms are

a popular research domain. Each year many new modifi-

cations of these algorithms are proposed. Some of these

modifications are shortly described in Tables 1 and 2. The

EAs are applied to solve many industry problems. When

we cannot use a dedicated algorithm for a given problem,

one of the EAs will be a good choice. Of course, we must

remember about specific issues the user can face when

dealing with EAs. Here, we can mention two main prob-

lems. First of this problem is a premature convergence (the

population converging to a suboptimal solution instead of

an optimal one). We can solve this problem by introducing

the mechanism which will provide a lower transfer rate of

the genetic material between individuals—the whole pop-

ulation is divided into several subpopulations (so-called

islands) and periodically migrate an individual between

islands [15]. Another solution of the premature conver-

gence problem is a cooperation of EAs with branch and

bound algorithm endowed with interval propagation tech-

niques, as it was shown in [112]. The second problem is

related to the optimal trade-off between exploration and

exploitation properties of EA. One of the solutions to this

problem is control of the level of selection pressure [113].

We can do this by introducing specialized genetic operators

which will guarantee high population diversity at the start

of the algorithm operation (high exploration property–

small exploitation property) and a low population diversity

at the end of the algorithm operation (low exploration

property–high exploitation property). A survey about

exploration and exploitation in EAs can be found in [114].

As future trends in EAs, we can mention some main

directions. The first of current trend is a hybridization of

two or more algorithms to obtain better results. Currently,

in the literature, we can find an increasing number of

papers where hybrid algorithms are presented. Also, many

researchers work on modifications of EAs to improve their

computational performance. In many recently published

papers, we can find modifications of GA [22, 23, 115, 116],

GP [31, 32, 117, 118], DE [48, 49, 119, 120], ES [64, 65],

and EP [74, 75]. An interesting domain of future research

in EAs is also memetic algorithms. The term memetic

algorithm is widely used as a synergy of the evolutionary

algorithm or any other population-based approach with

separate local search techniques as the Nelder–Mead

method. We can find very interesting information about

future trends in EAs in the paper [121] written by Eiben

et al. As one of the future trends in EAs, the authors point

out the increasing interest in applying EAs to embodied or

embedded systems, that is, employing evolution in popu-

lations for which the candidate solutions are controllers or

drivers that implement the operational strategy for some

situated entities, and are evaluated within the context of

some rich, dynamic environment: not for what they are, but

for what they do. Finally, there is another one important

issue especially in the industrial application of EA meth-

ods. Very often in real-world problems, we must optimize a

function in a high-dimensional domain. This process usu-

ally is very complex and takes a lot of computational time.

Therefore, in real applications, the EAs designed for this

type of problems should be designed to be implemented

easily to run in parallel (or easy to run in GPU) to reduce

their computational time. A greater effort in this feature

should be in future proposals because this could be a cru-

cial feature to decide whether an algorithm is useful in real

applications. Some research in the area of EAs can be

connected with the so-called surrogate models (computa-

tionally cheaper models of real-world problems) which can

be used in the place of full fitness evaluation, and that

refine those models through occasional full evaluations of

individuals in the population [121]. Also, very often

industry problems have many objectives. In tandem with

algorithmic advances, the interactive evolutionary algo-

rithms are used to increase the efficiency of EAs in multi-

objective optimization [121]. As we know, each engi-

neering problem is defined by the different objective

function and has a different landscape of search space. The

values of EAs parameters which are ‘‘good’’ in one prob-

lem cannot be sufficient in another one. Therefore,

searching for new techniques in such area as automated

tuning and adaptive parameter control is still a hot topic in

EAs. Another important issue in the industrial application

of EA methods is a proper definition of an objective

function. The industrial problems are very complex.

Therefore, a definition of a good mathematical model

(good objective function for EAs) for a given industry

process is also a very demanding task. The ‘‘quality’’ of the

chosen objective function will have a great influence on the

results obtained using EA methods. The next issue which

we want to mention in discussing is repeatability of the EA
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methods. As we know, the EAs are stochastic techniques.

Each time the EA method is run, a different result can be

obtained. Therefore, the main focus should be on ensuring

repeatability of the results generated by EA techniques.

This issue is very important for application on EA methods

in industry.

In summary, we believe that in the future, new evolu-

tionary algorithms will be developed, and the research

problems connected with evolutionary algorithms will

always be a hot topic for researchers.
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