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Abstract We present a new approach to large-scale graph mining based on so-called back-
bone refinement classes. The method efficiently mines tree-shaped subgraph descriptors un-
der minimum frequency and significance constraints, using classes of fragments to reduce
feature set size and running times. The classes are defined in terms of fragments sharing
a common backbone. The method is able to optimize structural inter-feature entropy as
opposed to purely occurrence-based criteria, which is characteristic for open or closed frag-
ment mining. We first give an intuitive explanation why backbone refinement class features
lead to a set of relevant features that are suitable for classification, in particular in the area
of structure-activity relationships (SARs). We then show that backbone refinement classes
yield a high compression in the search space of rooted perfect binary trees. We conduct
several experiments to evaluate our theoretical insights in practice: A visualization suggests
low co-occurrence and high entropy of backbone refinement class features. By comparison
to a class of patterns sampled from the maximal patterns previously introduced by Al Hasan
et al., we find a favorable tradeoff between the structural similarity and the resources needed
to compute the descriptors. Cross-validation shows that classification accuracy is similar to
the complete set of trees but significantly better than that of open trees, while feature set size
is reduced by > 90% and > 30% compared to complete tree mining and open tree mining,
respectively. Furthermore, compared to open or closed pattern mining, a large part of the
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search space can be pruned due to an improved statistical constraint (dynamic upper bound
adjustment). This is confirmed experimentally by running times reduced by more than 60%
compared to ordinary (static) upper bound pruning. The application of our method to the
largest datasets that have been used in correlated graph mining so far indicates robustness
against the minimum frequency parameter, and a cross-validation run on this data confirms
that the novel descriptors render large training sets feasible, which previously might have
been intractable.

A C++ implementation of the mining algorithm is available at http://www.maunz.de/
libfminer-doc. Animated figures, links to datasets, and further resources are available at
http://www.maunz.de/mlj-res.

Keywords Correlated graph mining - Backbone - Dynamic upper bound pruning -
Structural diversity

1 Introduction

The problem of finding frequent and class-correlated patterns in large structured databases,
especially graph databases, plays an important role in several areas of science today. In med-
ical and environmental research, for instance, algorithms are now routinely used to automat-
ically derive structural descriptors from databases of molecular structures. These descrip-
tors (features) are then combined statistically in so-called Structure-Activity Relationships
(SARs), i.e. models correlating chemical structure with biological activity or chemical re-
activity. SAR models have become indispensible tools in many areas of science, from the
environmental sciences to pharmacological and toxicological applications.

Current methods for subgraph mining, however, still suffer from scalability problems
and, quite related, problems with excessively large solution sets. Most of the predomi-
nant approaches employ minimum frequency and possibly statistical correlation criteria
such as x2 values (Bringmann et al. 2006; Jahn and Kramer 2005; Kramer et al. 2001;
Nijssen and Kok 2004; Yan and Han 2002). An increasing minimum frequency tends to
favor a higher feature entropy, whereas statistical constraints retrieve subgraphs that are
correlated with the target classes. However, the thresholds used still lead to an explosion
in the number of frequent patterns, which is a significant drawback of these approaches.
As a result, the size of the resulting pattern set is usually multiple times larger than the
original database, rendering it useless for subgraph-based classification models and individ-
ual inspection by domain experts, at least for very large datasets. In order to build a more
sparse representation with a significantly reduced number of patterns, the solution set is of-
ten constrained to open' or closed features. This might however prune important structural
information, since only the support is considered, which may not be sufficient to adequately
summarize the diversity of subgraphs.

Hence, the implementation of an explicitly structural summarization strategy (defined in-
tensionally) should yield a higher compression ratio while still retaining all essential infor-
mation and achieving better running times. Our approach (Maunz et al. 2009), called back-
bone refinement class mining (BBRC mining), combines principles from correlated subgraph
mining (Bringmann et al. 2006; Morishita and Sese 2000) with a novel strategy to ensure
diversity in structure rather than in subgraph occurrence. We propose to increase structural

1We decided to use the term ‘open’ instead of ‘free’ (which is more common in the data mining literature),
because ‘free tree’ is used as a synonym for ‘unrooted tree’ in graph theory, see also Sect. 2.1.
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Fig. 1 Typical fragment type
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dissimilarity in order to both increase inter-pattern entropy and decrease the number of so-
Iution patterns. A natural property of tree-shaped subgraphs (the backbone) is used to rep-
resent classes, which renders the set suitable for computational models even for large-scale
datasets. We employ the chemical domain as our application area, i.e., we seek fragments of
chemical compounds that are associated with a classification endpoint, e.g., carcinogenic-
ity or genotoxicity. The approach is currently limited to the class of tree-shaped fragments.
However, in typical databases, they make up about 80-85% of substructures (see Fig. 1).

1.1 Organization of paper and summary of contributions

Before we conclude this section, we give an outline of the paper and summarize its contri-
butions?:

— First, we provide some background in graph theory, structural alerts, and related work
(Sect. 2).

— Subsequently, we give an intuition why backbone refinement class features lead to a set
of features suitable for classification purposes and explain the reasons for their structural
diversity and their efficient computation in practice (Sects. 3.1 and 3.2).

— Next, we present an algorithm for mining backbone refinement class features using effi-
cient structure- and significance-based pruning (Sects. 3.3 and 3.4).

— We compare the number of backbone refinement class features to the complete set of
subtrees in the search space of rooted perfect binary trees. This shows theoretically the
degree of compression of such features (Sect. 4).

— We evaluate the co-occurrence and similarity of backbone refinement class features. The
evaluation shows that these features form a well-distributed, structurally dissimilar set of
descriptors. This section includes a comparison to the ORIGAMI patterns by Al Hasan et
al. (2007) (Sect. 6).

— We present an empirical analysis of the computation of such descriptors, considering
time efficiency, solution set size and predictivity. The method is compared to complete
and open trees (Bringmann et al. 2006), as well as to the stochastic local search method
by Riickert and Kramer (2007) (Sect. 7).

— Finally, we present the results of a large-scale analysis with the largest dataset that has
been used in correlated graph mining (Sect. 8) so far.

2Note that the present paper extends a previous paper (Maunz et al. 2009) by new Sects. 2.2, 3.2, 4, 6, and
extended Sects. 1, 3.4 and 9. Moreover, some of the material from the previous paper is left out in the present

paper.
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2 Background and related work
2.1 Background: graph theory

We assume a graph database R = (r, X, a), where r is a set of graphs, ¥ # (J is a totally
ordered set of labels and a : r — {0, 1} is a function that assigns a truth value to every graph
in the database (binary classification). Graphs with the same classification are collectively
referred to as target classes. Every graph r € r is a labeled, undirected graph, i.e. atuple r =
(V,E,X,l),where V = ( is afinite set of nodes and £ C V = {{vy, v2} € {V x V}, v; # vy}
isasetof edgesand [ : VU E — X is a label function. The set of all labeled, undirected
graphs is referred to as G. An ordered set of pairwise different nodes {vy, ..., v,} is a path
between v; and v,,, if {v;, v;y1} € E,i € {1,...,m — 1}. The length of a path is defined as
the number of edges it contains. We only consider connected graphs here, i.e., there is a path
between each two nodes in the graph. The graph r = (V, E, ¥,1) is double connected, if
there exist two distinct paths between a pair of nodes {v;, v;} € E. A node v is adjacent to
an edge e = {ey, e}, if v = ¢ or v = e,. The number of distinct edges that a node is adjacent
to is called its degree. A subgraph r’ of r is a subset of vertices of 7 and some edges of r with
both endpoints in 7/, s.t. ¥’ is connected. We denote the subgraph relation by C. If ' C r,
then r’ is said to cover r. This induces a partial order on graphs, the more-general-than
relation <: for any graphs r, r’, s,

r'<r, ifrCs = r' Cs. €))
The subset of r that a graph r covers is referred to as the occurrences of r, its size as support
of r in r, denoted by supp(r,r). It is called open (closed), if for all s with supp(r,r) =
supp(s, r) itholds that r C 5 (r D s).

2.2 Background: structural alerts

In a typical toxicological setting it is desirable to identify substructures that discriminate
between toxic and nontoxic molecules. Commonly they are referred to as structural alerts.
Figure 2 shows the first four structural alerts by Begnini and Bossa, taken from the car-
cinogenicity and mutagenicity rulebase implemented in 7oxTree (Benigni and Bossa 2008).
Note the variation in size and shape of the patterns, which is quite representative for the
whole rulebase. The halogenated olefin contains merely two bonds, whereas the ester is a
branched, rather large structure.

In ToxTree, those (and many other) patterns are implemented in a decision tree, leading
to immediate classification as ‘active’ in case the candidate molecule contains any of them

a “/<—‘ ’
<o o= 7/ \{
el GNP

(a) Acyl halide (b) Ester of phospho- (c) N-methylol derivative (d) Halogenated
nic acid olefin

Fig. 2 Structural alerts from the Begnini/Bossa rulebase implemented in ToxTree (Benigni and Bossa 2008)
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as a substructure. The fragments reflect relevant biochemical knowledge and are crucial to
screening purposes and consolidation of experimental results in the chemical industry. The
feedback we receive from toxicological experts suggests that structural (dis)similarity is of
higher interest for rating and classifying chemicals than e.g. topological descriptors.

A use case that has become of vital importance is the prediction of properties of sub-

stances without relevant testing information, commonly referred to as read across approach.
The REACH guidance® clearly states that all new and existing chemicals manufactured or
imported in the EU at quantities > 1¢#/a will have to be re-evaluated under REACH leg-
islation and that animal testing has to be omitted wherever possible. Instead, equivalent
methods including QSARSs and data from structurally related substances have been chosen
to be mandatory steps in the process. It is generally believed that structural alerts will play a
pivotal role in driving those assessments by filling the gaps in the data.
How should a data mining method be designed that identifies such fragments? If we select
them according to statistical criteria (e.g. all substructures that exceed a x? threshold), we
will find a large number of redundant substructures that are only minor variants of the same
basic motif. Intuitively, we may want to reduce the number of alerts by choosing only the
most significant representative from a class of structurally related fragments. Choosing a
class representative with the highest statistical significance has several advantages over al-
ternative approaches to reduce the solution space. First of all, we can identify features with
the highest discriminatory power for toxic and nontoxic compounds. All other features have
lower discriminatory power, because they are either too general or too specific. Open sets
may be too general to discriminate efficiently, while closed sets are frequently too specific.
Secondly, we can achieve a significant reduction of the search results, without compromising
classification accuracy. The reduced number of fragments makes it easier for toxicological
experts to inspect search results and to interpret possible molecular mechanisms. Finally, our
approach is to use structural information rather than occurrences. This can avoid artifacts re-
sulting from co-occurrences of substructures, but it is also possible to identify cases where
a small modification of the structure leads to a large modification of the activity (provided
that the training set has a sufficient number of examples).

2.3 Related work

For an introduction to general tree mining, both theory and applications, see the overview
by Chi et al. (2001), which targets methods employing minimum frequency as a selection
criterion. Enumerating all frequent subtrees in a database can be done efficiently by using
depth-sequences, see Sect. 3.1. In order to summarize the mined features in the unsupervised
setting, i.e., when no target class information is available, most methods consider (only) the
support of features. For instance, the solution can be restricted to open (closed) subgraphs
of various types (see, e.g., the work of Yan and Han 2003). By definition, these techniques
represent refinements with identical occurrences by the most general (the most specific)
pattern. They can be easily integrated into graph mining with minimum support.

Riickert and Kramer (2007) presented a solution based on occurrence lists, which aims
for extensionally diverse sets of structural features. Stochastic local search (SLS) is used to
optimize the dissimilarity of features, more specifically, to minimize the dot product between
occurrence vectors. The main drawback of the approach is the excessively long running time
of SLS to find small sets of diverse features.

3REACH: Registration, Evaluation, Authorization and Restriction of Chemicals of the European Union, see
http://guidance.echa.europa.eu/guidance_en.htm.
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Generally, the common strategy in most of the current approaches is to represent a large
part of frequent patterns by representatives that form a summary of their occurrences. How-
ever, ignoring the wealth of structural information may be a drawback for three main rea-
sons:

1. Occurrence-based representation is not directly related to structure. For instance, refine-
ments with reduced support are not observed together, which might prune important data
or could lead to redundant patterns.

2. Itis not necessary to distinguish between different subgraph types for occurrence-based
methods, e.g., paths are refined to trees arbitrarily without changing the mining strategy.
Given the variability of graphs, structural invariants may be desirable.

3. Occurrence summarization methods are forced to mine a representative for any frequent
support level, which could impact performance.

The subset of closed subgraphs for which no frequent supergraphs exist is called maximal
(also known from version space theory as the positive border). Al Hasan et al. (2007) employ
sparse representations of maximal frequent subgraphs obtained by sampling. The approach
aims for structural diversity (orthogonality) of the sampled features while enforcing a certain
level of structural similarity (representativeness) at the same time. It is a supervised method
that repeatedly evaluates candidate sets using a score function.

In contrast to occurrence-based representations, such as open/closed features, we propose
to partition the search space directly by structure, as outlined in Sect. 3. The ORIGAMI
patterns are defined structurally, and therefore bear some similarity to our descriptors. In
this paper, we compare the latter favorably to both methodologies. To support our claims,
we will put forward theoretical and empirical evidence for the potential of our method to
provide a compressed representation of frequent and significant patterns, and to significantly
improve classification accuracy over occurrence-based techniques. Moreover, we show that
a structure-aware search can be implemented efficiently and that the method is scalable to
datasets larger than those previously considered in correlated class mining.

3 Backbone refinement class mining

We introduce the idea of backbone refinement classes (BBRCs). Then, we formally define
our concepts and discuss the actual implementation.

3.1 A new class of substructures

Let p = {vy,...,v,} € P be a path, then its sequence is defined as the string I(v;)
[((v1,v2))...1((Vu—1 vm)) I(vy), obtained by concatenating node and edge labels along
the path. This can be done in a similar fashion for (real) trees by encoding them as depth-
sequences, following a depth-first walk through the tree, thus building a sequence of nodes
and edges with the special property of annotating every node explicitly with its depth. Trees
can obviously have several depth sequences.

To enumerate trees uniquely (double-free), Nijssen and Kok (2004) use a canonical depth
sequence formulation that can be used to define a partial order among trees. Descending one
level in the partial order is equivalent to adding a node and an edge. Siblings in the par-
tial order can then be compared lexicographically to guarantee double-free enumeration.
Every prefix in a canonical depth sequence is also a canonical depth-sequence of the subtree
it represents, which guarantees completeness. Moreover, it is efficiently possible to decide
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Cc C Cc Cc
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Fig. 3 Three example trees ¢1, g2, and g3 with the same backbone b. It holds that ¢; <j ¢ and g3 <p ¢,
but neither g1 <p g3 nor g3 <p q1. Therefore, g1 and g3 are not in the same backbone refinement class

whether the extension of a canonical depth sequence by an edge and node (immediate re-
finement) will be canonical.

Every tree ¢ € T has a unique backbone b(t), which is defined as the longest path p C ¢
with the lowest sequence. Nijssen and Kok exploit this and re-label nodes/edges to make
the backbone appear always appear first in the canonical ordering for every tree. This al-
lows them to start the search with paths and refine trees from them. An (immediate) tree
refinement of ¢ € T is an addition of an edge and a node to ¢, such that the result ¢’ is still
acyclic, i.e. t’ € T. A backbone refinement is a tree refinement that is backbone-preserving,
ie. b)) =b@).

The following idea is central to backbone refinement class mining: A given backbone
spans a maximal tree, i.e., no tree refinement may be added to that tree without changing
the backbone. Since every tree has exactly one backbone, by maximally tree-refining all
backbones, the partial order of trees is disjointly partitioned across different backbones.

The classes we use are induced by the conjunction of backbone and refinement, hence
the name backbone refinement classes (BBRCs). For example, in Fig. 3, ¢, : C-C=C-C=
C(-C)-O-C and g, : C-C=C-C(-C)=C-0O-C are in different classes, but g3 : C-C=C-C(-C)=
C(-C)-0-C is in the respective classes of both ¢; and g,.* Assume that the search starts with
the backbone b : C-C=C-C=C-O-C from Fig. 3. Assume further that the search then refines
to ¢;. It may further refine to g;. However, to enumerate g, it will have to backtrack to the
backbone position and branch and initiate a new class. Since g3 is a supergraph of ¢; and ¢,
it is in both classes (but it is only enumerated once due to the enumeration strategy).

3.2 The intuition behind backbone refinement class mining

According to Sect. 3.1, backbone refinement classes partition the search space structurally,
and in Sect. 2.2 we sketched an approach to reduce feature set size based on most signif-
icant representatives of such classes. Thus, we propose to mine exactly one representative
for every backbone refinement class (if it contains at least one pattern satisfying minimum
frequency and significance constraint). We give an example where structural summarization
directly detects information that other methods may miss. Figure 4 depicts two structurally
similar compounds: eugenol, Fig. 4(a), and methyleugenol, Fig. 4(b). Eugenol is used widely
as flavoring agent and in medicine as a local antiseptic and anesthetic. Methyleugenol, how-
ever, is “reasonably anticipated to be a human carcinogen”.® In experiments with rodents,
methyleugenol induced cancer in multiple organs, especially in the liver.

Note that the structure graph of the latter is a refinement of the former. Such deviations
might therefore not be detected by methods that represent sets of features by most specific

4See http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html for notation.
5See http://ntp.niehs.nih.gov/ntp/roc/eleventh/profiles/s109meth.pdf for details.
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modifications turn a harmless
substance (/eft) into a carcinogen
(right). The backbones are
marked in bold

Fig. 4 Small structural /

(a) Eugenol (b) Methyleugenol
(4-allyl-2-methoxyphenol, (4-allyl-1,2-
Pubchem CID 3314) dimethoxybenzene,

Pubchem CID 7127)

or most general features. In contrast, our structural method is able to detect this case: Due to
the backbone change between the two structures, the structures belong to different backbone
refinement classes® and would therefore be represented differently. It can be argued that
the backbone change in the example was selected on purpose. In practice, however, we
found it useful in a surprisingly large number of cases. Also, other structural invariants are
conceivable, e.g. constraints on branching.

We select the most significant representative from every class induced by the structural
criterion. Figure 5 schematically depicts the general search space for two BBRCs starting
at the same root node (not disjoint, see Sect. 3.1), which may be a backbone or a real tree.
They branch into different directions, corresponding to mutually exclusive sets of features
with respect to “<” and meet at the maximal tree the corresponding backbone is able to span
(note that in general this maximal tree need not exist).

Classes may spread across many support levels, due to their structural definition. How-
ever, class representatives are more likely in the lighter regions of Fig. 5, i.e., patterns with
medium support tend to be most significant. Due to the convexity of the x? function, pat-
terns with very low or high support either have too little weight, or their occurrences’ class
distribution resembles closely the overall database distribution. More formally, for high-
support patterns, the weight factor 7 is close to 0, while for low-support patterns y is close
tom, and x — y is close to n — m, where x (y) is the number of instances (active instances)
covered by the pattern, and n (m) is the number of instances (active instances), see Sect. 3.4
for the exact definitions. To summarize, the dichotomy between classes leads to a sparse (by
taking only the maximal class member) and structurally diverse (by the structural definition
of classes) selection of features. Most BBRC features are sampled from the middle of the
search space, where the majority and the most diverse patterns reside. This distribution also
allows for early pruning of the search as well as robustness against increasing minimum
frequency since there is no need to visit every frequent support level (see Sect. 7.1.1).

3.3 Backbone refinement class mining
We now formally define our concepts. Undirected, labeled graphs are partially ordered. Let
P C G be the set of acyclic connected graphs with degree at most 2 (paths) and let 7 € G

be the set of acyclic connected graphs (trees). It holds that

PCTCG. 2)

50ur approach is currently limited to tree-shaped fragments, but that should not invalidate the argument.
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Fig. 5 BBRC search space Branching
(case 1) spanning multiple <
support levels (horizontal lines)

A
A

as opposed to occurrence-based
methods. BBRC features are g
more probable in lighter regions = f,,
-
- 7
o
: :
2 g
(>
y

Definition 1 (Backbone refinement classes) We are considering the Backbone Refinement
Classes of backbone b € P, denoted by BBRC;, = {BBRCy,, ..., BBRC},}, where each
BBRCy, is the set of trees that are backbone refinements of each other with respect to b,
i.e. forall ¢, ' € BBRC), the following conditions hold:

1. b(t) =b(t'), and
2. t<t'ort <t.

The backbone refinement relation given by conditions 1 and 2 is denoted by <. The set of
all backbone refinement classes for a graph database R is called BBRCk.

It follows directly from the definition, that backbone refinement classes are in general not
disjoint for the same backbone. More precisely, given two BBRCs BBRC), and BBRC,;,
they are associated in one of two possible ways: BBRCy, and BBRC,; are either

1. not disjoint, iff b = ¢, or
2. disjoint, iff b # c.

For case 1, members of the two classes BBRC), and BBRCCI. are enumerated such that the
refinement process starts at the same backbone, but at some later point branches into differ-
ent directions. It is possible that BBRC),, and BBRC,; have a common maximal supergraph
(see Figs. 3 and 5). For case 2, no common elements exist, since b and ¢ occupy disjoint
parts of the search space.

The objective of Backbone Refinement Class Representative Mining is to find the most
significant representative for each backbone refinement class, formally:

Definition 2 (Backbone refinement class representative mining) Given a graph database R,
a user-defined minimum support f and user-defined minimum y? value u, for all B €
BBRCp, find the most significant t € B that is frequent, i.e. supp(t, R) > f, and signifi-
cant with respect to occurrence in the target classes, i.e. x> > u. If more than one such
patterns exist, return the most general one.

@ Springer



202 Mach Learn (2011) 83: 193-218

We modified the graph miner Gaston (Nijssen and Kok 2004) to support BBRC mining.’
Gaston first enumerates all path refinements, and only thereafter starts enumerating tree re-
finements growing from all paths, thereby prohibiting backbone changes while applying tree
refinements recursively. Furthermore, Gaston uses a very efficient canonical representation
for graphs. Specifically, no refinement is enumerated twice. To allow for efficient pruning,
we keep BBRCs disjoint once they have branched, i.e., given two BBRCs A and B with
feature a € A and b € B, witha A b and b £ a, every ¢ with a < ¢ and b < ¢ is put either in
A or B, whichever BBRC is enumerated first. For example, g3 would be either assigned to
the class of ¢g; or ¢; in Fig. 3. The same holds true for the maximal tree in Fig. 5. However,
any pattern more general than the branch point can represent A or B or both.

3.4 Dynamic upper bound pruning

Here, we use the 2 distribution test (checking the adherence of a variable to a given distri-
bution) instead of the independence test (checking the statistical independence of variables).
For a pattern ¢, it is defined as
(y—2)  (x—y— 2y
2 _ n n
X[ ()C, y) - xm + x(n—m) ’ (3)

n n

where x = supp(t,r), and y < x is the number of actives in the support of 7, i.e., with label
(say) ‘1’. Similarly, n = |r|, and m < n is the total number of actives in r. It is possible to
calculate an upper bound for the x? values of refinements ¢’ of a pattern ¢ (see the work by
Morishita and Sese 2000), defined as:

X2, y()) <max{x*(y(@), y(1)), x*(x(t) — y(©), 0)}. )

Following their notation, we use x(g) and y(q) to emphasize the dependency of x and y
on g. This upper bound has the antimonotonic property and can thus be used for pruning
the refinements of a structure, if their upper bound falls below a given threshold. Using a
static, user-defined upper bound threshold u is referred to as static upper bound pruning
(Bringmann et al. 2006). To speed up the search, we may increase this threshold:

Definition 3 (Dynamic upper bound pruning) For any frequent pattern ¢, let x2 and Xf’[
denote the x? value for ¢ and x? upper bound for refinements of ¢, respectively. Let
Umae(t) = max{x>(t', R) | t' <, t}. Then, if u,.(t) > u, the user-defined upper-bound
threshold u# may be increased to u,,, (), since we only search for the maximal class ele-
ment.

The method for mining backbone refinement classes using dynamic upper bound pruning is
shown in Algorithms 1 and 2. The procedure is invoked as p.init() for any path p of length 1
with X,z, > u. As can easily be seen, procedure init() starts the search procedure expand()
with the longest, i.e., non-refineable, paths and subsequently backtracks to the shorter ones.
Thus, every path p satisfying the user defined minimum frequency and significance con-
straint serves as a backbone.

The tree search procedure expand() in Algorithm 2 works as follows: Lines 1-4 output
the maximal element, if no further refinements are available. Otherwise, for every refinement

TWe used version 1.1 (with embedding lists), see http://www.liacs.nl/~snijssen/gaston/.
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Algorithm 1 init():

Calculation of paths as candidate backbones

Input: A global user defined significance threshold u, a global user defined minimum
frequency m

QOutput: Immediate refinements of current structure that satisfy minimum frequency and
significance bounds.

1: for all ¢’ € this.ImmediatePathRefinements do
2. if X,f/ >u A q'.frequency > m then

3: q'.init()

4:  endif

5: end for

6: for all ¢’ € this.ImmediateTreeRefinements do
7. if qu/ >u A q'.frequency > m then

8: q'expand(q’, x;,) // q' is a tree

9: endif
10: end for

Algorithm 2 expand(qq., X;max):
Implementation of backbone refinement class mining via dynamic upper bound pruning

Input: A tree g,,,, with significance X;Im > u above the global user defined significance
threshold u, a global user defined minimum frequency m, a global variable updated = true
Qutput: The most significant backbone refinement of g, .

1: if this.ImmediateTreeRefinements == () { then
2:  print @pay
3 updated=false
4: end if
5: for all ¢’ € this.ImmediateTreeRefinements do
- 2 .2
6 cmax = max( Xy Xamar)
7 if Xuz,q/ > cmax A q' . frequency > m then
e 2 2
S if Hipmar < X/q/ then

qmax =4
C
11: updated = true
12: end if
13: q,~expand(qlnax ’ijax)
14:  else
15: if updated then
16: print gax
17: updated = false
18: end if
19:  end if
20: end for
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Fig. 6 Left: Backbone Refinement Classes for ¢ from Fig. 3 with numbered edges (1), (2), and (3). Dashed
borders indicate their boundaries due to condition 1 from Definition 1. Right: Associated search space for
non-refineable paths b, b’, and b”. Insignificant (95% ~ 3.84) nodes are dashed, pruned nodes are gray

on the same level, a new class is instantiated for every refinement ¢’. In line 6, cmax, the
maximal x? value seen so far (including ¢’) is calculated. Line 7 then implements dynamic
upper bound pruning by checking ¢’’s upper bound value against cmax. If it is lower, the
search is truncated and the maximal pattern at that point is output (lines 15-18). Otherwise,
it is updated and the iteration continues. Therefore, after including a subgraph as a feature,
all the refinements that are in backbone refinement relation to it are pruned away.

Figure 6 visualizes the refinement process for tree g3 by continuing the example from
Fig. 3. Figure 6(a) indicates BBRC boundaries due to condition 1. from Definition 1 by
dashed borders, while Fig. 6(b) shows how the three different non-refineable paths in g3
are used as backbones while the structure is explored. BBRC sizes are given in brackets.
Specifically,

— BBRC), contains two backbone refinement classes corresponding to the exclusive in-
clusion of either edge (1) or (2), BBRC;, and BBRC;,, with 4 subgraphs in total:
BBRCy,, =1{b, q1, 43}, BBRCy, = {b, q2, q3}.

We detail the expansion and pruning process for BBRC,,. Note the associated x2 and
upper bound ( x‘fm) values in Fig. 6(b).

Feature b has a x2 value of 3.88, and no refinement of b can have a x? value > 5.61.
Assume that b is the most discriminative pattern seen so far. Then, X;m = 3.88. Assume
further that the original threshold given by the user was u = 3.84 (= 95% significance
for 1 degree of freedom). Since 5.61 > 3.88, we expand b.

Feature ¢, is expanded before ¢, since it has the lower canonical depth sequence. It
has a x? value of 5.61, increasing the upper bound threshold X;m to that value, thus
making g, representative for BBRC;,,. However, it has an upper bound value of 4.90,
which is below the current threshold of 5.61. Thus it is not expanded.

Feature g, the right child, has a x2 value of 2.18. Since it is not in backbone refine-
ment relation to the left child, it initiates a new class. However, it can not be representative
of that class, since b has the higher x2 value. We therefore mark it with a dashed border.
(Even if b had a lower value, it could not be a representative, since its significance is be-
low u.) Thus, b will be the current representative for BBRC}, . Also, it has an upper bound
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value of 2.05, which is below the current threshold of 3.88. Thus it is not expanded (addi-
tionally, in our implementation, g3 would have already been considered as refinement of
g1 and not be enumerated a second time).

In summary, g3 (gray) will never be reached, due to dynamic upper bound pruning.
More specifically, although it could be a significant feature judging from the ¢, position
(its x2 value could be > u), the upper bound threshold has increased too far already,
making g the final representative for BBRC;,, already at that point. For BBRC,,, the
representative is b.

— BBRC)y contains two backbone refinement classes corresponding to the exclusive inclu-
sion of either edge (1) or (3), BBRC}, and BBRC}y,, with 4 subgraphs in total:

BBRCy, = {C-C=C-C=C-C, C-C=C-C(-C)=C-C, C-C=C-C(-C)=C(-0)-C},

BBRC), = {C-C=C-C=C-C, C-C=C-C=C(-0)-C, C-C=C-C(-C)=C(-0)-C}.

— BBRCy» contains a single backbone refinement class with 2 subgraphs:

BBRCp» = {C-C=C-C-C, C-C=C-C(=C)-C}.

The class members are enumerated by subjecting paths b, b’, and b” from Fig. 6(b) to Algo-
rithm 2. After backtracking, the same concept is applied to the other (shorter) paths in g,.

To assess the amount of overhead incurred by our method, running time analysis was
performed by comparing its profile to that of the original Gaston algorithm. The results
indicate that our algorithm is about 6% of the time concerned with x? and upper bound
calculations, and about 3% with additional control overhead due to the more sophisticated
expand() routine. Since running time gains of over 60% were obtained (see Sect. 7), it may
be concluded that the additional effort is justified.

4 Compression of feature set size using backbone refinement classes

This section contains a formula for calculating the number of backbone refinement classes
in a rooted perfect binary tree. A rooted perfect binary tree is a perfectly balanced binary
tree with a designated root node of degree 2. An example of height 3 is shown in Fig. 7(a).
The number of BBRCs is compared to the complete set of subtrees containing the root
node. We intend to theoretically show the amount of compression possible with BBRCs. Of
course, in real datasets, the search space will most likely not have the perfect binary property.
However, we observed that trees for typical carcinogenicity and mutagenicity databases have
a branching factor < 2. Therefore, it seems legitimate to simplify the theoretical setting
and use binary trees for the estimation of compression. Furthermore, it is intuitive that the
relationships described in the following will also hold for higher branching factors.

(@) (b)

[NS 2 OS]
n
e

—_

Fig. 7 Left: Rooted perfect binary tree with height 3. A longest path 8* of length 6 has been marked by
dashes. It has branches B g = {a, b, c, d}, where the subtrees induced by b and ¢ have longest paths of length

o(b) = o(c) = 2. The path B* induces p(B8*) = 4! = 24 backbone refinement classes. Right: A backbone
with branches a, b, ¢ (gray) attached
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Fig. 8 Set graph corresponding
to the subsets of {a, b, ¢} and the
partial order induced by the
subset relation

4.1 Branches and induced backbone refinement classes

Consider a backbone g of a certain length such as the one in Fig. 7(b) with length 4. A branch
(gray) is either present or not present (Fig. 7(b) shows all branches present). The number
of branches is o (8) = length(8) — 1, where length(f) is the number of edges in 8. Let
the branches be labeled a, b, c, .... Consider the set B of branches {a, b, c, ...} and all its
subsets including the empty set. The subsets can be partially ordered in a directed set graph
according to “C”, such as shown in Fig. 8 for the set {a, b, c}.

Note that there is alway a node corresponding to the full set of branches (with in-
deg o (B) and outdeg 0), as well as a node corresponding to the empty set (with indeg 0
and outdeg o (B)), where in(out)deg of a node is the number of edges going into (emanating
from) that node.

Lemma 1 The number of paths from the empty set node to the full set node in the set graph
of a backbone equals the number of backbone refinement classes induced by this backbone.

Itis p(B) = o (B)!.

Proof Starting at the empty set node, after having traversed i edges, there are o (8) —i ways
to add exactly one item to the current set, which in combination yields o (8)! different paths.

Let By, ..., B, denote all the subsets of B, including the full and empty sets. Associate
x € B; with the following meaning: x is present on the backbone. It follows that two sibling
nodes in the set tree induce two different backbone refinement classes, since all elements in
one class contain a branch that no element from the other class contains (no two trees are
refinements of each other).

On the other hand, the subgraph relation between a child and a parent node does not
induce a new backbone refinement class, since all branches on the parent are still present on
the child. d

4.2 Number of backbone refinement classes

Lemma 2 The number of backbone refinement classes induced by a subtree of height h with
root node on the backbone of a rooted perfect binary tree is recursively given by

h—1

b(h)=(h— D!+ (h— 1)) _bG). 5)

i=1
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Proof From Lemma 1: The number of backbone refinement classes induced by a longest
path B of this branch is p(8) = (h — 1)!.

Then, for every branch b; of the branches by, ...,b,_; of B, we recursively add its
number of induced classes. Every branch can be combined uniquely with the 7 — 2 other
branches, or combined with none, thus appearing in a total of 2 — 1 induced classes. a

We are now in the position to state the result of this section.

Theorem 1 The number of backbone refinement classes in the search space of rooted perfect
binary trees of height h is recursively given by

B(l)=1 (©6)

h i—1 -1
By =) 27" [(f iD= Y b+ ~2) Zb(r)}, h=2 (D)
ij=2 s=1 =1
Proof There are Z? j= 2i=12/=1 paths containing the root in a rooted perfect binary tree
of height h. For each pair (i, j), the corresponding path has i 4+ j — 2 subtree inducing
branches (because of the missing branch at the root node) and (i + j —2)! induced backbone
refinement classes. Then, for every branch, we add its number of induced classes. On each
side of the root, every branch can be combined uniquely with the i — 2 and j — 2 other
branches, respectively. ]

4.3 Number of subtrees

Székely and Wang (2005) showed that a rooted perfect binary tree with height / has exactly
Fy=1g""1-1 ®

non-empty subtrees containing the root, where ¢ ~ 1.502837.

4.4 Comparison of BBRC and tree set sizes

For different values of height & we calculate the number of backbone refinement classes
(B(h)) according to Theorem 1, as well as the complete tree set size (F(h)) according to
the result of Szekely and Wang. Figure 9 compares the values for heights 1 to 8. Clearly,
F grows much faster than B. Note that there is a double exponential in F' which does
not occur in B. The log-scaled chart in Fig. 9 reveals this extra exponential growth of F,
while B is nearly linear on the investigated interval. In summary, we have a compression by
backbone refinement class descriptors of at least an order of magnitude compared to the full
set of subtrees.

5 Datasets
For the experiments in Sects. 6 and 7, we used four chemical datasets with binary target

classification obtained from the Carcinogenic Potency Database (CPDB) at http://potency.
berkeley.edu/cpdb.html, version 08/04/29:

— Salmonella Mutagenicity (SM, 388 active/810 compounds)
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1.00E+100
h B(h) F(h) F
1 1 4 1.00E+080
2 8 25
3 632 676 1.00E+060
4 60280 458330
5 11922296  2.101e+11 1.00E+040
6 41260409  4.413e+22 B
1.00E+020
7 2.138e+12  1.947¢+45
8 1.537e+15  3.792e+90 1L00E+000
1 3 4 5 6 7 8

Fig.9 Comparison of BBRC and full subtree set sizes for heights 1 to 8 (log-scaled). Clearly, F' grows much
faster than B

— Rat Carcinogenicity (RC, 459 active/1145 compounds)
— Mouse Carcinogenicity (MoC, 428 active/927 compounds)
— Multicell Call (MuC, 553 active/1067 compounds)

For the large-scale analysis in Sect. 8, we performed experiments on parts of the NCI Yeast
Anticancer Drug Screen datasets at http://dtp.nci.nih.gov/yacds/download.html (April 2002
release). This dataset reports growth inhibition of yeast strains when exposed individually
to a large number of compounds as compared to solvent only:

— AC-One (stage 0): Total of 87 264 compounds, 12 068 active (active, if growth inhibition
of at least 70% in at least one strain)

— AC-AII (stage 0): Total of 87264 compounds, 5 777 active (active, if growth inhibition of
at least 70% in all strains)

— AC-AII (stage 1): Total of 10924 compounds at the high dose (50 microM), 5433 active
(active, if growth inhibition at least 70% in all strains)

6 Diversity and representativeness

In order to back up our intuition from Sect. 3.2, we use the Salmonella mutagenicity (SM)
dataset to visualize and analyze the distribution of BBRC features on molecular data in a
2-D embedding based on co-occurrence and entropy, indicating occurrence-based similar-
ity. The other three CPDB datasets yield similar results (all available at http://www.maunz.
de/mlj-res). We also investigate structural similarity for all CPDB datasets and compare the
results to a previously described feature type sampled from the positive border of the search
space.

6.1 Co-occurrence and entropy
In this section, we use the method of Schulz et al. to embed BBRC features and molecules

into a 2-D plane (Schulz et al. 2009). The point coordinates are influenced by:

— Feature-molecule co-occurrence: Features are placed close to the molecules they instan-
tiate.

— Feature-feature co-occurrence: Co-occurring features are placed close to each other.

— The entropy of patterns induced by the target classes of molecules (active/inactive).
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Fig. 10 Euclidean embedding of features and molecules based on co-occurrence and entropy for the
Salmonella mutagenicity dataset. A flash-animated version is available at http://www.maunz.de/mlj-res

For the feature-molecule co-occurrences, an instantiation matrix is used. The negative en-
tropy of the features is multiplied on this matrix to associate molecules with the features that
are most significant for the determination of their class, where the entropy is defined as

H(@) ==Y Peqlogpeg, ©)
ce{0,1}

and p., is the empirical (induced) probability of feature g being instantiated in target
class c. Then, all co-occurrence values are combined in a likelihood function.

Figure 10 shows the Euclidean embedding: The data points consist of features (triangles)
and molecules (circles), the distances are found by a local optimization procedure maximiz-
ing the log-likelihood of the data. The lower the entropy of a feature the brighter its color,
indicating its potential to discriminate between classes (green for active, red for inactive).

We observe that differently colored features are nearly perfectly separated along a di-
agonal from top left to bottom right. Also, there are very few non-discriminating features
(mainly in the center). The features are well distributed across the plane, with few clusters.
Thus, BBRC features have a low co-occurrence and high entropy, otherwise there would
be more clusters. They are also highly discriminative, as indicated by color brightness. The
molecule classes (blue for active, salmon for inactive) are also well separated, following the
feature distribution to some extent. The main agglomeration of molecules (below the center)
is widely stretched, especially for the active class (green). There are some remarkably dis-
tinguished and dense molecule groups in the outer parts, which always consist of members
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Fig. 11 Pairwise BBRC features ORIGAMI
similarity distribution for the —_—
CPDB datasets. The median is in
the ORIGAMI interval SM
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of the same class. Those groups are especially well characterized. This visual evidence, to-
gether with the statistical measures from our earlier paper (Maunz et al. 2009), suggest that
instances are well-covered by BBRC features.

In summary, it can be stated that the 2-D embedding of molecules and features, com-
bining co-occurrences and entropy information, indicates that BBRC features are, from this
perspective, suitable candidates for classification tasks.

6.2 Structural similarity

We compare BBRC features to the class of “«a-orthogonal, B-representative patterns” intro-
duced by Al Hasan et al. and their ORIGAMI approach (Al Hasan et al. 2007) in terms of
structural similarity. They defined the similarity between two features p and g as

[mpg|

, 10
max(lpl. 14D (10

sim(p, q) =
where m p, is the maximum common (edge-induced) subgraph of p and ¢ and |x| is the
number of edges of x. Therefore sim is the size of the maximum common subgraph relative
to the larger graph. Al Hasan et al. investigated «a-orthogonal patterns with pairwise sim-
ilarity values with o € [0.15, 0.35]. They obtained such feature sets by sampling from the
positive border (maximal patterns). Running times reported in their analysis were & 2750 s
(=45 m 48 s) for a set of 1000 features obtained from a database of 1084 compounds using
a minimum frequency threshold of 2.3% (pp. 9-10).

Figure 11 shows boxplots of the pairwise BBRC feature similarity distribution for the
four CPDB datasets. It gives the median (bold bar in the middle), the upper and lower quar-
tile (box boundaries, comprising 50% of the data) and therefore also the inter-quartile dis-
tance. We also used minimum frequency 2.3%, individually calculated for each dataset. The
boxplots show that, except for the Salmonella mutagenicity dataset, BBRC features had a
median similarity of < 0.4, and that, in two cases, median values were inside the ORIGAMI
interval. The running time for mining the BBRC features on the four datasets were 0.22 s,
0.34 s, 0.24 s, and 0.37 s for mining 519, 413, 263, and 447 features, respectively.

In summary, the tradeoff between mining time and structural diversity seems favorable.
The diversity was obtained with a simple structural criterion in an unsupervised fashion. Ad-
ditionally, they can be derived efficiently enough to be even used in “on demand”-settings,
i.e. in ad-hoc situations.
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7 Feature count, efficiency of calculation and expressiveness

This section investigates the usefulness of backbone refinement class features as descrip-
tors in classification tasks with a focus on efficiency. For fixed minimum frequency and
significance thresholds, we compare them to the complete set of subtrees and open trees
(Bringmann et al. 2006), as well as to the stochastic local search method by Riickert and
Kramer (2007).

7.1 Descriptor computation and predictivity

We evaluated four types of fragment descriptors according to feature count, running time,
predictive accuracy as well as to sensitivity and specificity for the detection of active com-
pounds. The four types are:

1. All Linear Fragments.

2. Significant Trees: trees that are frequent and have a minimum x? significance of 95%.

3. Open Trees: the most general of the trees with the same occurrences from 2.

4. BBRC Representatives: the most significant representatives of the backbone refinement
classes from 2.

It should be pointed out that 3. and 4. form a summarization of the features in 2. For the
tree-shaped descriptors (2.—4.), we employed a minimum frequency of 6 to avoid excessive
numbers of subgraphs, which is well below 1% of the data set size in all cases. For the linear
subgraphs (1.), we applied no minimum frequency and no significance threshold. However,
refinement was stopped at frequency 1, i.e., a fragment with single occurrence was included
in the set of fragments but not further refined.

Fragment types 1., 2., and 4. were calculated with the proposed approach. For the open
trees (3.) we used the method by Bringmann et al. (2006).

Mined subgraphs were evaluated in a leave-one-out crossvalidation. For each fold, sig-
nificance value calculation and feature selection were done from scratch to avoid informa-
tion flow between folds. Prediction was performed with a nearest-neighbor technique, using
Tanimoto similarity, where each substructural feature was quantified by its x? significance
value (Helma 2006). A training compound was selected as neighbor, if its similarity to the
query structure exceeded 0.3 (this cut-off value was used as default throughout our experi-
ments), and its contribution to the prediction was weighted by its similarity. If no neighbor
could be identified, no prediction was made. Otherwise, a minimum of five neighbors was
used. Besides the actual classification, a confidence value based on mean neighbor similarity
was calculated for every single prediction. Aromatic rings in the structures were represented
in Kekulé notation with alternating single and double bonds. In this study, we consider for
efficiency reasons only the core chemical structure without hydrogen atoms. Hydrogens
attached to fragments can be inferred from matching the fragments back to the training
structures.

7.1.1 Effectiveness

Table 1 compares the resulting fragment set sizes for the different fragment types and
Table 2 indicates the mining times we obtained for BBRC representatives with differ-
ent statistical metric pruning techniques. More specifically, those times correspond to

8The authors kindly provided us with a binary of their algorithm sfgm, pointing out that it may not be
optimized for speed and uses a breadth-first search technique known to be memory demanding.
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Table 1 Feature set sizes for All

linear fragments, Significant trees SM RC MoC MuC

and Open trees and BBRC

representatives for the four 1. All linear fragments 48259 86300 49816 70802

CPDB datasets 2. Significant trees 27093 94991 22395 29970
3. Open trees 8062 4569 1937 5122
4. BBRC representatives 2715 5183 3083 3636

Table 2 Comparison of running time for mining BBRC representatives using different pruning techniques
for the four CPDB datasets

Pruning type ~ Applicableto ~ SM RC MoC MuC
S % s % S % s %
None 1,2,3,4 2.63 100.00 21.23 100.00 3.71 100.00 5.17 100.00
Static 2,3,4 2.55 96.97 21.11 99.43 298 80.32 4.76 92.07
Dynamic 4 0.44 16.73 6.63 3122 213 57.41 1.76 34.04
100.00% 100.00% 92.20%
63.37%
T
34.85%
T
8.28%
- 5.74%
[ ] mm
Lin. Fragm. Sign. Tr. Open Tr. BBRC Repr. None Static Dynamic
(a) Feature count mean reduction (b) Runtime mean reduction

Fig. 12 Mean values of Tables 1 and 2, taken for the four CPDB datasets. Feature set size is reduced by
> 30% and running time by > 60% compared to Open Trees/Static Upper Bound Pruning

BBRC mining using no statistical pruning, static upper bound pruning and dynamic up-
per bound pruning, respectively. Mining times for open trees using sfgm were as fol-
lows: 1,899 s (SM), 28,537 s (RC), 1,744 s (MoC), and 2,594 s (MuC). Figure 12 sum-
marizes the information from Tables 1 and 2 by mean values of relative feature count
and running time reduction across the different datasets. These empirical findings sug-
gest that fragment set sizes may be reduced by 94%, 91% and 31% through the use of
BBRC representatives compared to linear subgraphs, significant trees and open fragments,
respectively. Furthermore, the application of dynamic upper bound adjustment is associ-
ated with a reduction in running time by 63.34% and 60.92% compared to using no sta-
tistical pruning and static upper bound pruning, respectively. Considering that open trees
cannot use dynamic upper bound adjustment, static upper pruning applies to them (see
also Sect. 8.2 and the work of Bringmann et al. 2006). The “no pruning” setting cor-
responds to ordinary fragment search with only minimum frequency as antimonotonic
constraint, i.e., to the original Gaston implementation. Performance comparisons in this
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Table 3 Descriptor accuracy for the CPDB datasets, obtained with leave-one-out crossvalidation. Bold fig-
ures indicate the best results

SM RC

All % AD % wt.% All % AD % wt.%
1. All linear fragments 75.0 77.8 83.0 63.7 67.0 71.5
2. Significant trees 74.6 80.7 86.8 64.4 70.0 81.8
3. Open trees 75.5 80.6 84.5 64.5 68.7 80.0
4. BBRC representatives 74.6 79.4 85.4 67.2 70.4 82.2

MoC MuC

All % AD % wt.% All % AD % wt.%
1. All linear fragments 67.6 72.7 79.9 69.3 72.4 79.6
2. Significant trees 73.3 75.7 83.7 71.9 75.6 83.5
3. Open trees 71.5 74.4 80.8 70.2 73.5 81.3
4. BBRC representatives 71.7 76.5 82.0 70.3 74.1 84.9

class-blind setting, e.g., to gSpan, can be found in the literature (Nijssen and Kok 2006;
Worlein et al. 2005).

7.1.2 Predictivity

This section compares accuracy, sensitivity and specificity of descriptors 1.—4. in a binary
classification task. Sensitivity (specificity) measures the proportion of target class positives
(target class negatives) which are correctly identified as such. Accuracy is the overall frac-
tion of correct predictions. The figures reported in this section are derived as follows: all
includes all unweighted predictions, AD (or Applicability Domain predictions) considers
the top 80% unweighted predictions as ranked by confidence (Helma 2006), whereas wt.
includes again all predictions, but this time the contribution of every prediction is weighted
by its associated confidence value. The rationale for this measure is that errors of high-
confidence predictions should be penalized more heavily than errors of low-confidence pre-
dictions. Therefore, wt. combines and aggregates both types of information into one mea-
sure.

Table 3 compares the accuracy values of BBRC representatives to all linear fragments,
significant trees, and open significant trees. Table 3 shows that tree-shaped subgraphs always
perform better than linear subgraphs, whether for all or AD predictions or for weighted accu-
racy. BBRC representatives outperform open trees in 10 out of 12 cases. The mean accuracy
difference between BBRC representatives and significant trees is —0.27 &= 1.47, whereas it
is 1.1 £ 1.44 compared to open trees and 2.77 &= 1.66 compared to linear fragments, respec-
tively. A paired ¢-test on the accuracy values revealed that BBRC representatives perform
significantly better than open trees (¢t = 2.65, df = 11, p-value = 0.02267), while no sig-
nificant difference between BBRC representatives and the complete set of trees (+ = 0.65,
df =11, p-value = 0.5302) was observed. Figure 13 compares the four different types of
descriptors in ROC space, showing the differences in sensitivity and specificity for the pre-
diction of active compounds. There is a trend for better values when tree-shaped fragments
are used, clearly signaling the higher information load present in those descriptors. BBRC
representatives seem to exhibit a lower false alarm rate compared to open trees. Indeed, a
paired ¢-test on the false positive ratios confirmed that BBRC representatives significantly
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Fig. 13 ROC plots for the CPDB datasets comparing Significant Trees (black), BBRC Representatives (dark
gray), Open Trees (light gray) and All Linear Fragments (hollow). Circles denote predictions weighted by
confidence, squares predictions in applicability domain, and triangles all predictions

Table 4 Accuracy table for datasets used in the study of Riickert and Kramer obtained by 10-fold crossvali-
dation

All AD wt. #Features Time
NCTRER 0.74 0.79 0.82 1782 0.65
Bloodbarr 0.72 0.75 0.84 616 0.22
Yoshida 0.55 0.59 0.58 377 0.16

improved on specificity ( = —4.60, df = 11, p-value = 0.00077). A significant difference
in sensitivity could not be detected. All four test results were confirmed with Wilcoxon
signed rank tests (Wilcoxon 1945). We also evaluated backbone refinement class represen-
tatives on the three datasets from the study of Riickert and Kramer (2007). To render the
results comparable, we also used 6% of the dataset size as minimum frequency threshold.
After performing 10-fold crossvalidation, we obtained the accuracies shown in Table 4.
Apart from the Yoshida dataset, the results seem to be competitive to the respective figures
from the original publication. In particular within the applicability domain, results are very
similar to those of the SLS method. The table also gives the mean number of features and
the running time for feature calculation per fold. In terms of running times, the method pro-
posed here is much faster, as the construction of the trie for the SLS method typically takes
a few minutes, whereas the SLS run itself may take hours (Riickert and Kramer 2007).
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In summary, BBRC representatives exhibit a significantly higher specificity compared
to open trees, while overall accuracy seems to be competitive to significant trees. They are
more sparse than open trees (reducing feature count), and dynamic upper bound adjustment
is multiple times more effective than the static method used for open tree mining in terms of
running times.

8 Large-scale analysis

We employed publicly available large-scale databases (see Sect. 5) to assess several ad-
vanced aspects of BBRCs beyond running time, feature count and predictivity. To the best
knowledge of the authors, AC-One (stage 0) is the largest labeled dataset that has been con-
sidered in correlated graph mining. The analysis investigates different minimum frequency
thresholds and the impact of aromatic perception, i.e., whether the miner uses special labels
for carbons and edges that are part of an aromatic ring, or whether Kekulé notation employ-
ing alternating single and double bonds is used. Finally, we report on a crossvalidation run
using those large-scale data. All experiments were carried out on the same computer as in
Sect. 7.

8.1 Dataset coverage and class sizes

Given that BBRCs are partially ordered, it is likely that their representatives occur more
frequently than at minimum frequency, since, in general, they are not the most specific frag-
ment of their respective classes (see Sect. 2.3). Ideally, this should give a good coverage of
the dataset with few descriptors of a relatively high minimum frequency. Such a reduced set
would then allow for fast, memory saving computational models as well as for interpretable
representations of the (de)activating substructures of a training set. In particular, for use in a
predictive model, it is necessary to assess the coverage and representativeness of descriptors.

First, we examined the highest minimum frequency of 200 for the AC-One (stage 0)
and AC-All (stage 0) datasets to see how well they would cover the data set, i.e., assessed
numbers of descriptors per compound, and compared them to the respective figures for a
minimum frequency of 100. It clearly can be observed that the mean coverage does not
change much. For instance, the AC-One (stage 0) dataset with aromatic perception has a
mean log value of 1.650 for a minimum frequency of 200, and a mean log value of 1.673 for
a minimum frequency of 100. A comparison of the median values (1.623 vs. 1.633) showed
an even smaller difference indicating a skew to the right for a minimum frequency of 100.
In contrast, the effects of missing aromatic perception were much greater. The AC-One
(stage 0) dataset without aromatic perception has a mean log value of 1.878 for a minimum
frequency of 200 and a mean log value of 1.896 for a minimum frequency of 100. Similar
results were obtained for the AC-All (stage 0) data (details omitted).

The conclusion here is that a lower minimum frequency does not increase coverage for
the majority of compounds, as it might be expected from the feature count differences pre-
sented in the previous section. In contrary, the normality of the corresponding density curves
(not shown) indicate clearly that coverage is handled more appropriately by the higher
threshold. In this setting, for AC-One (stage 0) [AC-AIl (stage 0)], the mean number of
descriptors per compound is about 10'93 & 42.6 [10'®! ~ 40.7] with aromatic ring percep-
tion and about 10'°! ~ 81.28 [10"82 ~ 66.07] without.

In summary, consistent with the intuition from Sect. 3.2, the method proved robust in
terms of descriptor coverage for the higher threshold, allowing for fast mining with higher
frequency thresholds. Moreover, the results provide additional evidence for the coverage
capacity of tree-shaped descriptors.
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Table S BBRC feature counts for large-scale datasets AC-One (stage 0) and AC-All (stage 1). ‘?” indicates
that computation terminated with an error

AC-one (stage 0) AC-all (stage 1)
Significant trees 1190763 291729
Open trees ? 216206
Maximal trees 556673 148562
BBRC representatives 31450 14 381

RC feature counts for large-scale datasets AC-One (stage 0) and AC-All (stage 1). *?” indicates that compu-
tation terminated with an error

Table 6 Validation results for

large-scale datasets AC-One All AD Weighted

(stage 0) and AC-All (stage 1),

using BBRCs AC-one (st. 0) 68.4 71.9 78.3
AC-all (st. 1) 67.7 71.2 77.5

8.2 Crossvalidation

To conclude our experiments, we report on two large-scale crossvalidation runs using aro-
matic perception. Since a balanced dataset is vital for a nearest-neighbor approach, and in
view of the results from earlier sections, we extracted a subset of AC-one (stage 0), com-
posed of all actives and an equal number of inactives sampled randomly from the dataset
(2% 11700 = 23400 compounds). The second run, on AC-AII (stage 1), used all actives
and inactives (in total, 5248 + 5300 = 10548 compounds). We compared the number of
BBRC representatives to the feature counts of other summarization methods. This time we
additionally investigated the set sizes of maximal patterns (the positive border as implied by
minimum frequency and significance constraints; see the work by Al Hasan et al. 2007). For
AC-AlI (stage 1), the extraction of open trees with s £gm took > 10 h, BBRC representatives
took 1 m 13 s. For AC-one (stage 0), the s fgm system computing open trees terminated with
an error, while BBRC representatives took 4 m 52 s. Table 5 shows BBRC representatives
had a very condensed representation of below < 5%; maximal and open patterns achieved a
reduction up to only ~ 50%; thus, BBRC representatives reduce feature counts much more
drastically for these large-scale datasets than for the smaller validation datasets (see Sect. 7).

Indeed, BBRC representatives turned out to be the only practically useful feature type for
validation on the (quite powerful) computer we used. A prediction included the derivation of
the training set similar to the query instance based on features occurring in the compounds
and the calculation of the prediction in the same fashion as in Sect. 7. With open trees,
we obtained impractical prediction times of > 60 s, whereas BBRC representatives gave a
mean of 4.7 s and 11.1 s, respectively. Also, RAM usage was unacceptable with open trees.
Table 6 shows the validation results we obtained.

In summary, we consider the class of BBRC representatives a promising candidate for
large-scale structural datasets, rendering them computationally feasible. Judging from our
results in Sect. 7, we can also be quite confident about the quality of predictions compared
to other types of subgraph features.

@ Springer



Mach Learn (2011) 83: 193-218 217

9 Conclusion

We introduced backbone refinement classes (BBRCs), a particularly useful class of sub-
graphs for mining databases of chemical compounds. Due to their definition, they are struc-
turally distributed in search space as opposed to features resulting from purely occurrence-
based methods. They can be calculated efficiently due to their distribution around the
medium-frequent patterns. Thus, not all frequency levels above minimum frequency have
to be searched.

We derived a formula for calculating the number of backbone refinement classes for the
special class of rooted perfect binary trees. A comparison to the complete set of subtrees
containing the root revealed at least an order of magnitude difference. It seems reasonable
to assume similar relations also for different types of trees.

We investigated occurrence-based similarity as well as structural similarity of BBRC
features, indicating low co-occurrence and high inter-feature entropy, as well as structural
dissimilarity. Specifically, we compared the method to a class of features sampled from the
positive border supervised by structural dissimilarity. We were able to show that BBRC fea-
tures fall into the target interval of that method two out of four times and that their similarity
is < 0.4 three out of four times. The time needed to calculate those features was < 1 s,
compared to &~ 45 m for the other method. Thus, a large fraction of structurally similar fea-
tures are left out, which cannot be guaranteed by occurrence summarization methods, such
as open or closed subgraphs.

The experimental results revealed that the expressiveness of backbone refinement class
representatives is significantly higher than that of open trees, because a lower number of
features is associated with better accuracy, mainly due to higher specificity, reducing false
alarms in classification tasks. The method proves to be highly efficient compared to min-
ing significant and open trees, dramatically reducing running time and number of features
mined. For smaller datasets, such as the CPDB databases, it seems even suitable for ad-hoc
use, e.g. on-demand calculations.

In our experiments on the largest labeled set of chemical compounds used so far in class-
correlated graph mining, we showed that BBRCs can be computed within reasonable time
and used in simple predictive learning schemes. In view of the drastic decrease in numbers,
they may also be suitable for identifying so-called structural alerts, i.e., chemical substruc-
tures that are thought to be particularly toxic.
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